Homework Assignment 10. Due Thursday April 30.

1. ($\mathbf{5} \mathbf{~ p t s)}$ Derive the one-sided backward difference second-order estimator for the first derivative

$$
\begin{equation*}
D_{2-}^{1}[f](x, h)=\frac{3 f(x)-4 f(x-h)+f(x-2 h)}{2 h} . \tag{1}
\end{equation*}
$$

and an error estimate for it using the method of undetermined coefficients. I.e., write

$$
D_{2-}^{1}[f](x, h)=\frac{1}{h}[a f(x)+b f(x-h)+c f(h-2 h)]=f^{\prime}(x)+C h^{2}+\ldots,
$$

Taylor-expand the terms $f(x-h)$ and $f(x-2 h)$ around x, and set up and solve an appropriate linear system for the coefficients a, b, and c. As a result, you will be also find the constant C in the main error term.
2. (a) ($\mathbf{5} \mathbf{~ p t s}$) Use one step of Richardson extrapolation to derive (1). Proceed as follows. Start with the first-order backward difference estimator:

$$
F(h):=\frac{f(x)-f(x-h)}{h} .
$$

Taylor-expand $f(x-h)$ around x and obtain a series:

$$
F(h)=f^{\prime}(x)+a_{1} h+a_{2} h^{2}+a_{3} h^{3} \ldots
$$

Then write out this estimator for h and $2 h$. Use a linear combination of $F(h)$ and $F(2 h)$ to knock out the error term proportional to h. Obtain a second-order estimator for f^{\prime} and an error formula for it. This estimator must coincide with (1).
(b) ($5 \mathbf{p t s}$) Denote the second-order estimator obtained in the previous item by $F(h, 2 h)$. Use F with $2 h$ and $3 h$ to obtain another second-order estimator $F(2 h, 3 h)$. Use an appropriate linear combination of $F(h, 2 h)$ and $F(2 h, 3 h)$ to get a third-order estimator for f^{\prime}. Write out the resulting estimator in terms of $f(x), f(x-h), f(x-2 h)$, and $f(x-3 h)$. Check your result using the table "Backward finite difference" in Wiki: finite difference coefficient.
3. (5 pts) Write out the Lagrange polynomial $p(x)$ interpolating a smooth function $f(x)$ at $x-h$, x, and $x+h$. Take the derivative of $p(x)$ with respect to x and evaluate it at $x-h, x$, and $x+h$. Compare your results with second-order backward-, central-, and forward-difference estimators for the first derivative of f. Comment on your results.

