Homework Assignment 11. Due Thursday May 7.

1. (5 pts) Let f be four times continuously differentiable on $[a, b]$. Derive Simpson's quadrature rule and the error estimate for it:

$$
I(f)=\int_{a}^{b} f(x) d x=S(f)+E^{S}(f)
$$

where

$$
\begin{gathered}
S(f)=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right], \\
E^{S}=-\frac{1}{90} f^{(i v)}(\eta)\left(\frac{b-a}{2}\right)^{5}
\end{gathered}
$$

2. ($\mathbf{5} \mathbf{~ p t s}$) Consider an adaptive quadrature method based on the trapezoidal rule where each interval is divided into 3 equal subintervals whenever the error estimate exceeds the tolerance. Derive and justify an error estimate for this method of the form

$$
E=\alpha|T(a, c)+T(c, d)+T(d, b)-T(a, b)|,
$$

with

$$
T(x, y)=\frac{1}{2}(y-x)[f(x)+f(y)],
$$

where $c=a+\frac{1}{3}(b-a), d=a+\frac{2}{3}(b-a)$, and α are to be found.
Hint: mimic the argument in quadrature.pdf.
3. (5 pts) Write a program implementing the adaptive trapezoidal rule that you have developed in the previous problem. Use it to integrate $f(x)=\left(1+x^{2}\right)^{-1}$ over the interval $[-5,5]$. Make a table showing the number of correct digits and the number of nodes for various values of tolerance. Hint: modify my code AdaptiveSimpson.m or the Python code in Wiki: Adaptive Simpson's.

