Homework Assignment 12. Due Tuesday May 12.

1. ($\mathbf{5} \mathbf{~ p t s}$) Let $w(x)$ be a weight function and $\left\{p_{n}\right\}$ be a family of monic (i.e., their leading coefficients are 1) polynomials orthogonal w.r.t. the corresponding inner product. We have shown that p_{n} 's satisfy the Three-Term Recurrence Relationship (TTRR) of the form

$$
\begin{gathered}
x p_{0}=p_{1}+B_{0} p_{0}, \\
x p_{k}=p_{k+1}+B_{k} p_{k}+A_{k} p_{k-1}, \quad k=1,2, \ldots, \quad \text { where } \\
A_{k}=\frac{\left\|p_{k}\right\|^{2}}{\left\|p_{k-1}\right\|^{2}}, k \geq 1, \quad B_{k}=\frac{\left\langle x p_{k}, p_{k}\right\rangle}{\left\|p_{k}\right\|^{2}}, k \geq 0 .
\end{gathered}
$$

However, we often need the TTRR coefficients for the corresponding orthonormal set of polynomials $\left\{\tilde{p}_{n}\right\}$. Show that $\left\{\tilde{p}_{n}\right\}$ also satisfy a TTRR of the form

$$
\begin{gathered}
x \tilde{p}_{0}=\alpha_{1} \tilde{p}_{1}+\beta_{0} \tilde{p}_{0}, \\
x \tilde{p}_{k}=\alpha_{k+1} \tilde{p}_{k+1}+\beta_{k} \tilde{p}_{k}+\alpha_{k} \tilde{p}_{k-1}, \quad k=1,2, \ldots,
\end{gathered}
$$

where

$$
\alpha_{k}=\sqrt{A}_{k}=\left\|p_{k}\right\| /\left\|p_{k-1}\right\| \quad \text { and } \quad \beta_{k}=B_{k} .
$$

Hint: Observe that $p_{k}=\lambda_{k} \tilde{p}_{k}$, where $\lambda_{k}=\left\|p_{k}\right\|$.
2. ($\mathbf{5} \mathbf{~ p t s}$) Design a quadrature rule (i.e., find nodes and weights) for evaluating integrals of the form

$$
I(f)=\int_{-1}^{1} f(x) d x
$$

with minimal number of nodes that is exact for all polynomials of degree 5 or less. This will be a so-called Gauss-Legendre quadrature rule.

