Homework Assignment 2. Due Thursday Feb. 20.

1. $\mathbf{5} \mathbf{p t s}$ Consider the iteration

$$
x_{k+1}=T\left(x_{k}\right):=2 x_{k}-3 x_{k}^{2} .
$$

(a) What are the fixed points of this iteration?
(b) Find the maximal interval where the map $x_{k+1}=T\left(x_{k}\right)$ is a contraction.
(c) What is the order of convergence to the nonzero fixed point x^{*} ?
(d) For which values of x_{0} does this iteration converge to x^{*} ?

2. 5 pts

(a) Consider the equation $x^{m}=0$ where m is an integer greater than 1 . Then $x^{*}=0$ is the only root, and it is degenerate. Show that the Newton's method converges linearly and find the the asymptotic error constant.
(b) Let f be a real-valued function of one variable continuous derivatives of all orders. Let $f\left(x^{*}\right)=0, f^{\prime}\left(x^{*}\right) \neq 0, f^{\prime \prime}\left(x^{*}\right)=0$, and $f^{\prime \prime \prime}\left(x^{*}\right) \neq 0$. Prove that then the Newton iteration converges cubically (i.e. with order 3).

3. 10 pts

The Van der Pol oscillator

$$
\begin{align*}
& \dot{y_{1}}=y_{2}, \\
& \dot{y_{2}}=\mu\left(1-y_{1}^{2}\right) y_{2}-y_{1} \tag{1}
\end{align*}
$$

has a stable and globally attracting periodic solution for each $\mu \geq 0$. The Matlab code FindPeriodicSolution.m finds the periodic solution for the given μ and returns the maximal value of y for this solution. Consider the problem of finding μ such that the maximal value of y for this periodic solution is 10 . The Matlab command setting up the corresponding nonlinear equation is:

```
fun = @(x)FindPeriodicSolution(x) - 10;
```

The code SolveNonlinEq.m solves this equation using the bisection method (method $=1$) and a quasinewton method with the derivative approximated using the forward difference $($ method $=2)$.
Read Lecture 5 in G. W. Stewart, Afternotes on Numerical Analysis, implement the hybrid method (secant/bisection) described there, and use it to solve this nonlinear equation. Make your code print out the iteration number and the corresponding estimate for the solution μ at each iteration.
Submit a printout of your implementation of the hybrid method, a printout of your code. Comment out all plotting commands, and write a report comparing the numbers of iterations and runtimes in the bisection method, quasinewton method with the forward difference for derivative estimation, and the hybrid method.

