Homework Assignment 3. Due Thursday Feb. 27.

- 1. (6 pts) Let $A = (a_{ij})$ be an $m \times n$ matrix, $m \ge n$. Show that then:
 - (a) For the l_1 -norm,

$$||A||_1 = \max_j \sum_i |a_{ij}|,$$

i.e., the maximal column sum of absolute values.

(b) For the max-norm or l_{∞} -norm

$$||A||_{\max} = \max_{i} \sum_{j} |a_{ij}|,$$

i.e., the maximal row sum of absolute values

2. (8 pts) Let \mathcal{P}_4 be the vector space of polynomials of degree ≤ 4 . Consider two bases in \mathcal{P}_4 : the standard basis

$$\mathcal{E} = \{1, x, x^2, x^3, x^4\}$$

and the Chebyshev basis

$$\mathcal{T} = \{T_0(x) := 1, \ T_1(x) := x, \ T_2(x) = 2x^2 - 1, \ T_3(x) := 4x^3 - 3x, \ T_4(x) = 8x^4 - 8x^2 + 1\}.$$

(a) Write out the differentiation matrices in the bases \mathcal{E} and \mathcal{T} , i.e., the matrices

$$D_{\mathcal{E}} :=_{\mathcal{E}} [d/dx]_{\mathcal{E}}$$
 and $D_{\mathcal{T}} :=_{\mathcal{T}} [d/dx]_{\mathcal{T}}$

(b) Let V be a vector space with two bases \mathcal{B} and \mathcal{C} , and let the transition matrix from \mathcal{B} to \mathcal{C} be $P_{\mathcal{C}\leftarrow\mathcal{B}}$, i.e., if $v \in V$ is

$$v = \sum \beta_i x_i = \sum \gamma_i y_i, \quad \text{i.e.} \quad x := [v]_{\mathcal{B}}, \quad y := [v]_{\mathcal{C}}, \quad \text{then}$$
$$[v]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[v]_{\mathcal{B}}, \quad \text{i.e.}, \quad y = P_{\mathcal{C} \leftarrow \mathcal{B}} x.$$

The columns of $P_{\mathcal{C}\leftarrow\mathcal{B}}$ are vectors β_i 's written in the basis \mathcal{C} . The inverse of the matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is the transition matrix from \mathcal{C} to \mathcal{B} whose columns are the vectors γ_i written in the basis \mathcal{B} :

$$P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1}=P_{\mathcal{B}\leftarrow\mathcal{C}}$$

Let L be a linear transformation: $L: V \to V$. Its matrices in bases \mathcal{B} and \mathcal{C} are

$$_{\mathcal{B}}[L]_{\mathcal{B}}$$
 and $_{\mathcal{C}}[L]_{\mathcal{C}}$.

Show that

$${}_{\mathcal{C}}[L]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} {}_{\mathcal{B}}[L]_{\mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}}.$$
(1)

Note that while the notations I have used are somewhat long, they make the rule for matrix change as a result of basis change easy-to-remember.

- (c) Find the transition matrix from the standard basis \mathcal{E} to the Chebyshev basis \mathcal{T} in \mathcal{P}_4 .
- (d) Verify that (1) holds for the differentiation matrices that you have found in item 2a.
- 3. (5 pts) Let A be a symmetric positive definite $n \times n$ matrix, i.e., $A^{\top} = A$ and for all $v \in \mathbb{R}^n$, $v \neq 0, v^{\top}Av > 0$. Show that the map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ given by

$$\langle v, w \rangle = w^{\top} A v$$

defines an inner product.