Homework Assignment 3. Due Thursday Feb. 27.

1. ($\mathbf{6} \mathbf{~ p t s}$) Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix, $m \geq n$. Show that then:
(a) For the l_{1}-norm,

$$
\|A\|_{1}=\max _{j} \sum_{i}\left|a_{i j}\right|,
$$

i.e., the maximal column sum of absolute values.
(b) For the max-norm or l_{∞}-norm

$$
\|A\|_{\max }=\max _{i} \sum_{j}\left|a_{i j}\right|
$$

i.e., the maximal row sum of absolute values
2. (8 pts) Let \mathcal{P}_{4} be the vector space of polynomials of degree ≤ 4. Consider two bases in \mathcal{P}_{4} : the standard basis

$$
\mathcal{E}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}
$$

and the Chebyshev basis

$$
\mathcal{T}=\left\{T_{0}(x):=1, T_{1}(x):=x, T_{2}(x)=2 x^{2}-1, T_{3}(x):=4 x^{3}-3 x, T_{4}(x)=8 x^{4}-8 x^{2}+1\right\} .
$$

(a) Write out the differentiation matrices in the bases \mathcal{E} and \mathcal{T}, i.e., the matrices

$$
D_{\mathcal{E}}:=\mathcal{E}[d / d x]_{\mathcal{E}} \quad \text { and } \quad D_{\mathcal{T}}:=\mathcal{T}[d / d x]_{\mathcal{T}}
$$

(b) Let V be a vector space with two bases \mathcal{B} and \mathcal{C}, and let the transition matrix from \mathcal{B} to \mathcal{C} be $P_{\mathcal{C} \leftarrow \mathcal{B}}$, i.e., if $v \in V$ is

$$
\begin{gathered}
v=\sum \beta_{i} x_{i}=\sum \gamma_{i} y_{i}, \quad \text { i.e. } \quad x:=[v]_{\mathcal{B}}, \quad y:=[v]_{\mathcal{C}}, \quad \text { then } \\
{[v]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[v]_{\mathcal{B}}, \quad \text { i.e., } y=P_{\mathcal{C} \leftarrow \mathcal{B}} x .}
\end{gathered}
$$

The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are vectors β_{i} 's written in the basis \mathcal{C}. The inverse of the matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is the transition matrix from \mathcal{C} to \mathcal{B} whose columns are the vectors γ_{i} written in the basis \mathcal{B} :

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=P_{\mathcal{B} \leftarrow \mathcal{C}} .
$$

Let L be a linear transformation: $L: V \rightarrow V$. Its matrices in bases \mathcal{B} and \mathcal{C} are

$$
\mathcal{B}_{\mathcal{B}}[L]_{\mathcal{B}} \quad \text { and } \quad \mathcal{C}[L]_{\mathcal{C}}
$$

Show that

$$
\begin{equation*}
\mathcal{C}[L]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B} \mathcal{B}}[L]_{\mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}} . \tag{1}
\end{equation*}
$$

Note that while the notations I have used are somewhat long, they make the rule for matrix change as a result of basis change easy-to-remember.
(c) Find the transition matrix from the standard basis \mathcal{E} to the Chebyshev basis \mathcal{T} in \mathcal{P}_{4}.
(d) Verify that (1) holds for the differentiation matrices that you have found in item 2a
3. (5 pts) Let A be a symmetric positive definite $n \times n$ matrix, i.e., $A^{\top}=A$ and for all $v \in \mathbb{R}^{n}$, $v \neq 0, v^{\top} A v>0$. Show that the map $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
\langle v, w\rangle=w^{\top} A v
$$

defines an inner product.

