Homework Assignment 6. Due Thursday April 2.

1. Let A be a real symmetric $n \times n$ matrix. A powerful algorithm for finding a specific eigenpair of A starting from an initial approximation for the eigenvector is the Rayleigh quotient iteration. The Rayleigh quotient is a function $Q : \mathbb{R}^n \to \mathbb{R}$ defined by

$$Q(x) := \frac{x^{\top} A x}{x^{\top} x}.$$
(1)

The Rayleigh quotient iteration algorithm is written below. The norm $\|\cdot\|$ in it is the 2-norm.

Input An initial guess for the desired eigenvector: $w \in \mathbb{R}^n$. A symmetric $n \times n$ matrix A. Tolerance tol. **Initialization** Normalize the approximation to eigenvector: v = w/||w||; Compute approximation to eigenvalue: $\lambda = v^{\top}Av$; Compute the residual: $r = Av - \lambda v$; **The main body** while ||r|| > tol do1: Solve $(A - \lambda I)w = v$ for w; 2: Normalize: v = w/||w||; 3: Update λ : $\lambda = v^{\top}Av$; 4: Recompute the residual: $r = Av - \lambda v$; end Algorithm 1: Rayleigh quotient iteration

Remark The Rayleigh quotient iteration converges cubically, i.e., the order of convergence is 3. This is a rare luck!

- (a) (2 pts) Show that if $\{\lambda, v\}$ is an eigenpair of A then $\{(\lambda \mu)^{-1}, v\}$ is an eigenpair of $(A \mu I)^{-1}$.
- (b) (3 pts) Verify that if v is an eigenvector of A then: (i) $Q(v) = \lambda$, the corresponding eigenvalue, and (ii) $\nabla Q(v) = 0$, i.e., v is a stationary point of Q(x).
- (c) (5 pts) In step 1 of the Rayleigh quotient algorithm, we solve the system $(A \lambda I)w = v$. The matrix $(A - \lambda I)$ is close to singular if λ is close to an actual eigenvalue of A. However, step (1) is not ill-conditioned. Explain why using your knowledge of condition numbers.
- (d) (5 pts) Let A be a $N \times N$ matrix of the form

$$A := \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 \end{bmatrix}$$

This matrix often arises in finite difference methods: $h^{-2}A$ (h = 1/N is the step in space) is the approximation to the second derivative operator.

The eigenvalues and eigenvectors of A are well-known: for k = 1, 2, ..., N,

$$\lambda_k = -4\left(\sin\frac{\pi k}{2N+2}\right)^2, \quad v_k = \left[\sin\left(\frac{\pi k}{N+1}\right), \sin\left(\frac{2\pi k}{N+1}\right), \dots, \sin\left(\frac{N\pi k}{N+1}\right)\right]^\top.$$
(2)

Set N = 100. This matrix A is set up in Matlab using the commands (see Matlab's help on spdiags if you are not familiar with this command):

Pick the initial approximation for an eigenvector:

```
x = linspace(0,1,N)';
v = x.*(1-x); % '.*' means that the multiplication is performed entrywise
```

Implement the Rayleigh quotient algorithm to compute an eigenpair starting from this approximation. Display the found eigenvalue with 15 digits after comma (format %.15e). To which eigenvalue of A did the algorithm converge? How many iterations were performed?

Do the same task for v = x(1-x)(x-1/2) and v = x(1-x)(x-1/3)(x-2/3). Submit your code and its printout.

2. (10 pts) Problem 1 in Chapter 5 in BindelGoodman.pdf (page 123) posted on ELMS. Hint: to do (a), count flops in reducing the $n \times (2n)$ matrix [A, I] to $[U, L^{-1}]$ using Gaussian elimination.