Homework Assignment 6. Due Thursday April 2.

1. Let A be a real symmetric $n \times n$ matrix. A powerful algorithm for finding a specific eigenpair of A starting from an initial approximation for the eigenvector is the Rayleigh quotient iteration. The Rayleigh quotient is a function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
Q(x):=\frac{x^{\top} A x}{x^{\top} x} \tag{1}
\end{equation*}
$$

The Rayleigh quotient iteration algorithm is written below. The norm $\|\cdot\|$ in it is the 2-norm.

```
Input \(A n\) initial guess for the desired eigenvector: \(w \in \mathbb{R}^{n}\).
\(A\) symmetric \(n \times n\) matrix \(A\).
Tolerance tol.
Initialization Normalize the approximation to eigenvector: \(v=w /\|w\|\);
Compute approximation to eigenvalue: \(\lambda=v^{\top} A v\);
Compute the residual: \(r=A v-\lambda v\);
The main body
while \(\|r\|>\) tol do
    1: Solve \((A-\lambda I) w=v\) for \(w\);
    2: Normalize: \(v=w /\|w\|\);
    3: Update \(\lambda: \lambda=v^{\top} A v\);
    4: Recompute the residual: \(r=A v-\lambda v\);
end
```

Algorithm 1: Rayleigh quotient iteration
Remark The Rayleigh quotient iteration converges cubically, i.e., the order of convergence is 3 . This is a rare luck!
(a) (2 pts) Show that if $\{\lambda, v\}$ is an eigenpair of A then $\left\{(\lambda-\mu)^{-1}, v\right\}$ is an eigenpair of $(A-\mu I)^{-1}$.
(b) (3 pts) Verify that if v is an eigenvector of A then: $(i) Q(v)=\lambda$, the corresponding eigenvalue, and $(i i) \nabla Q(v)=0$, i.e., v is a stationary point of $Q(x)$.
(c) ($5 \mathbf{~ p t s}$) In step 1 of the Rayleigh quotient algorithm, we solve the system $(A-\lambda I) w=v$. The matrix $(A-\lambda I)$ is close to singular if λ is close to an actual eigenvalue of A. However, step (1) is not ill-conditioned. Explain why using your knowledge of condition numbers.
(d) (5 pts) Let A be a $N \times N$ matrix of the form

$$
A:=\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \ddots & \ddots & \ddots \\
& & -1 & 2
\end{array}\right]
$$

This matrix often arises in finite difference methods: $h^{-2} A$ ($h=1 / N$ is the step in space) is the approximation to the second derivative operator.

The eigenvalues and eigenvectors of A are well-known: for $k=1,2, \ldots, N$,

$$
\begin{equation*}
\lambda_{k}=-4\left(\sin \frac{\pi k}{2 N+2}\right)^{2}, \quad v_{k}=\left[\sin \left(\frac{\pi k}{N+1}\right), \sin \left(\frac{2 \pi k}{N+1}\right), \ldots, \sin \left(\frac{N \pi k}{N+1}\right)\right]^{\top} . \tag{2}
\end{equation*}
$$

Set $N=100$. This matrix A is set up in Matlab using the commands (see Matlab's help on spdiags if you are not familiar with this command):
$\mathrm{N}=100$;
e = ones($\mathrm{N}, 1$);
A = spdiags([e,-2*e,e],-1:1,N,N);
Pick the initial approximation for an eigenvector:
$\mathrm{x}=\operatorname{linspace}(0,1, \mathrm{~N})$ ';
$\mathrm{v}=\mathrm{x} . *(1-\mathrm{x})$; \% '.*' means that the multiplication is performed entrywise
Implement the Rayleigh quotient algorithm to compute an eigenpair starting from this approximation. Display the found eigenvalue with 15 digits after comma (format $\%$. 15e).
To which eigenvalue of A did the algorithm converge? How many iterations were performed?
Do the same task for $v=x(1-x)(x-1 / 2)$ and $v=x(1-x)(x-1 / 3)(x-2 / 3)$.
Submit your code and its printout.
2. ($\mathbf{1 0} \mathbf{~ p t s) ~ P r o b l e m ~} 1$ in Chapter 5 in BindelGoodman.pdf (page 123) posted on ELMS. Hint: to do (a), count flops in reducing the $n \times(2 n)$ matrix $[A, I]$ to $\left[U, L^{-1}\right]$ using Gaussian elimination.

