## Homework Assignment 7. Due Thursday April 9.

1. Let $A$ be a real $n \times n$ matrix. A matrix $H$ is called a principal submatrix of $A$ if $H$ is formed by taking an intersection of columns $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{k}}$ of $A$ and rows $r_{i_{1}}, r_{i_{2}}, \ldots, r_{i_{k}}$ (with the same indices) of $A$, where $1 \leq k \leq n$ and the indices $i_{1}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ are all distinct.
(a) (2 pts) Let $P$ be a permutation matrix, i.e., its rows are $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ where $\sigma$ is a permutation of $(1,2, \ldots, n)$, and $e_{\sigma(j)}$ 's are the unit vectors with entry 1 at position $\sigma(j)$ and zeros everywhere else. Prove that $P^{-1}=P^{\top}$, i.e, $P$ is an orthogonal matrix.
(b) (2 pts) Let $A$ be $n \times n$ with rows $r_{1}, \ldots, r_{n}$ and columns $c_{1}, c_{2}, \ldots, c_{n}$ i.e.,

$$
A=\left[\begin{array}{cc}
r_{1} & \rightarrow \\
r_{2} & \rightarrow \\
\vdots & \\
r_{n} & \rightarrow
\end{array}\right]=\left[\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]
$$

Calculate $P A$ and write the answer in terms of rows of the matrix $A$. Calculate $A P^{\top}$ and write the answer in terms of columns of $A$.
(c) ( 2 pts ) Let $A$ be symmetric positive definite (SPD) matrix (i.e., $A=A^{\top}$, and for any $\left.x \in \mathbb{R}^{n}, x \neq 0, x^{\top} A x>0\right)$. Prove that any its principal submatrix $H$ formed by the intersection of the first $k$ rows and the first $k$ columns of $A$ is SPD. (In the Matlab language, $\mathrm{H}=\mathrm{A}(1: \mathrm{k}, 1: \mathrm{k})$.)
(d) (2 pts) Let $H$ be a principal submatrix of $A$ formed by the intersections of rows and columns of $A$ with indices $i_{1}, \ldots, i_{k}$. Find a permutation matrix $P$ such that $P A P^{\top}$ has $H$ at its top left corner.
(e) (2 pts) Prove that $A$ is symmetric positive definite $\Longleftrightarrow$ any its principal submatrix is symmetric positive definite. Hint: The $\Longleftarrow$ part is straightforward. Use the fact that $A$ is SPD if and only if $X A X^{\top}$ is SPD for any invertible matrix $X$ (Theorem in LectureMarch31.pdf available on ELMS/AMSC466/ZoomLectures), and the previous items to prove $\Longrightarrow$.
2. ( $5 \mathbf{p t s}$ ) Program the PLU algorithm for solving linear systems of algebraic equations from LectureMarch31.pdf available on ELMS/AMSC466/ZoomLectures. Apply it to 10 random matrices $\mathrm{A}=\operatorname{rand}(10)$ and 10 random right-hand sides $\mathrm{b}=\operatorname{rand}(10,1)$. Compare your results with the ones obtained using Matlab's backslash operator $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$. Comment on what you observe.
3. (5 pts) Write the polynomial interpolating the function $f(x)=\exp (-x)$ at $x_{0}=-1, x_{1}=0$, and $x_{2}=1$ (a) in Lagrange's form, (b) in Newton's form. Check that these polynomials coincide.

