Homework Assignment 8. Due Thursday April 16.

1. ($5 \mathbf{~ p t s}$) Let $f(x)$ be an arc of the unit circle centered at $(0,-1 / 2)$ of angle $2 \pi / 3$:

$$
f(x)=\sqrt{1-x^{2}}-1 / 2, \quad[-\sqrt{3} / 2, \sqrt{3} / 2] .
$$

The graph of $f(x)$ is shown in the figure below.

(a) Calculate and write out explicitly the Hermite interpolation polynomial $p_{5}(x)$ with the abscissas $t_{0}=t_{1}=-\sqrt{3} / 2, t_{2}=0, t_{3}=t_{4}=\sqrt{3} / 2$.
(b) Plot the graphs of $f(x)$ and $p_{5}(x)$ in the same figure. Find the exact maximal interpolation error. Hint: you can use Matlab's function fzero or whatever you find appropriate for finding the point at which the difference between $f(x)$ and $p_{5}(x)$ is maximal in absolute value.
2. ($5 \mathbf{p t s}$) Take the function "Witch of Agnesi" $f(x)=\left(1+x^{2}\right)^{-1}$ on the interval $[-5,5]$, take the Chebyshev-Gauss-Lobatto nodes

$$
x_{k}=5 \cos \left(\frac{\pi k}{n}\right), \quad k=0,1, \ldots, n,
$$

and write a program computing Newton's interpolation polynomial for $n=4,8,12,16$. Plot the graph of $f(x)$ together with the interpolants in the same figure. For each n, estimate the maximal interpolation error. Hint: mimic the program in Section 2.4 of interpolation.pdf.
3. (8 pts) Prove properties (A), (B), (F), and (G) of Chebyshev's polynomials in Section 3.1 of interpolation.pdf.

