Homework Assignment 9. Due Thursday April 23.

1. (5 pts) Prove the discrete orthogonality relationships for the Chebyshev polynomials: Let

$$
x_{j}=\cos \left(\frac{\pi\left(j+\frac{1}{2}\right)}{n+1}\right), \quad j=0,1, \ldots, n
$$

be the zeros of $T_{n+1}(x)$. Then for all $0 \leq r, s \leq n$ we have

$$
\sum_{j=0}^{n} T_{r}\left(x_{j}\right) T_{s}\left(x_{j}\right)= \begin{cases}0, & r \neq s \tag{1}\\ n+1, & r=s=0, \quad j=0,1, \ldots, n . \\ \frac{n+1}{2}, & r=s \neq 0\end{cases}
$$

Hint: There are several ways to proceed. One of them involves the formulas $\cos (a) \cos (b)=$ $1 / 2(\cos (a+b)+\cos (a-b))$ and $\cos (a)=(1 / 2)\left(e^{i a}+e^{-i a}\right)$.
2. ($\mathbf{5} \mathbf{~ p t s}$) Read Section 5.2 "Setting up a system of equations for a cubic spline" in interpolation.pdf. Derive the additional two conditions for the case of assigned first derivatives at the end knots:

$$
\frac{h_{1}}{3} M_{0}+\frac{h_{1}}{6} M_{1}=\frac{f_{1}-f_{0}}{h_{1}}-f_{0}^{\prime}, \quad \frac{h_{n}}{6} M_{n-1}+\frac{h_{n}}{3} M_{n}=f_{n}^{\prime}-\frac{f_{n}-f_{n-1}}{h_{n}} .
$$

3. (5 pts) Find explicit formulas for a cubic spline for the data $\left(x=0, f_{0}=1\right),\left(x=1, f_{0}=-1\right)$, and $\left(x=2, f_{0}=1\right)$ and boundary conditions $f^{\prime}(0)=0, f^{\prime}(2)=0$. You can do it elegantly using the symmetry of the data and the boundary conditions. Proceed as follows.
(a) Let $s(x)$ be the cubic polynomial satisfying

$$
s(0)=1, \quad s^{\prime}(0)=0, \quad s(1)=-1, \quad s^{\prime}(1)=0 .
$$

Define the spline function $S(x)$ by

$$
S(x)= \begin{cases}s(x), & x \in[0,1] \\ s(2-x), & x \in(1,2]\end{cases}
$$

Check that S is continuous at $x=1$ together with its first two derivatives.
(b) Find coefficients of $s(x)$ and then write an explicit expression for the spline function $S(x)$ on $[0,2]$.

