
Contents

1. Source of errors 1
1.1. Roundoff error 1
1.2. Truncation error 2
1.3. Termination error 3
1.4. Statistical error 4
1.5. The absolute and relative errors 5
2. Floating point arithmetic 5
2.1. Integers 5
2.2. Floating point numbers and the IEEE standard 6
2.3. Modeling floating point error 7
2.4. Solving quadratic equations 9
2.5. Roundoff and recurrence relationships 10
2.6. Summary 13
2.7. Exceptions: underflow and overflow 13

1. Source of errors

Scientific computing has penetrated to various fields of science, humanities, and even
pure mathematics. Computations play a crucial role in chemical physics, geophysics, plan-
ning of cancer treatment, developing of financial strategies, etc. Computations also became
a tool for proving some theorems in pure mathematics. These are called computer-aided
proofs. Unlike analytical formulas, results of computations almost always involve errors. In
this course, we will learn some basics that will enable us to evaluate the results of numerical
computations: are they sensible or nonsense, if they are sensible, how accurate they are,
etc.

There are four major ways in which error is introduced into a computation:

• Roundoff error due to inexact computer arithmetic;
• Truncation error due to approximate formulas;
• Termination error in iterative methods;
• Statistical error in Monte Carlo methods.

Let us illustrate these kinds of errors.

1.1. Roundoff error. Here is a set of matlab commands for getting
√

2 and accessing the
error of this calculation:

>> format long

>> a = sqrt(2)

a = 1.414213562373095

>> aa = a*a

aa = 2.000000000000000

>> d = aa - 2
1

2

d = 4.440892098500626e-16

We see that there is a discrepancy between 2 and a2 which occurs due to the roundoff. Let
us find the roundoff error of this calculation. The answer a can be written as a =

√
2 + ε

where ε is the roundoff error. Then

a2 − 2 =
(√

2 + ε
)2
− 2 = 2

√
2ε+ ε2 = d.

Since ε is small, approximately 10−16, we neglect ε2 which is approximately 10−32 and find

ε ≈ d

2
√

2
= 1.570092458683775 · 10−16.

For all practical purposed, this estimate of the roundoff error is good enough. However, if
you want to see what happens if you solve the quadratic equation

ε2 + 2
√

2ε− d = 0,

here is the result:

>> roots([1,2*sqrt(2),-d])

ans =

-2.828427124746190

-0.000000000000000

>> fprintf(’%.15e, %.15e\n’,ans(1),ans(2))

-2.828427124746189e+00, 1.570092458683775e-16

There appears a large extra root in this calculation that needs to be eliminated. The other
root matches the previously found result.

1.2. Truncation error. Suppose we need to approximate the first derivative of a function
f at a point x whose values are available only at the grid points x, x± h, x± 2h, etc. We
will approximate it using so called finite differences. The commonly used forward difference
scheme gives the following approximation:

(1) f ′(x) =
f(x+ h)− f(x)

h
.

Let us estimate its error. We assume that the grid step h is small so that h2 � h. Then
we do Taylor expansion of f(x+ h) and get:

1

h
(f(x+ h)− f(x)) =

1

h

(
f(x) + f ′(x)h+

f ′′(x)

2
h2 +

f ′′′(x)

6
h3 +O(h4)− f(x)

)
= f ′(x) +

f ′′(x)

2
h+

f ′′′(x)

6
h2 +O(h4) = f ′(x) +

f ′′(x)

2
h+O(h2).

This calculation shows that the truncation error, i.e., the difference between the exact f ′

and its approximation by the forward difference (2) is 0.5f ′′(x)h plus smaller terms. Since
the largest term in expression for the error is proportional to h, i.e., h to the first power,
we say that this is the this finite difference approximation to f ′ is first order accurate.

3

Another common finite difference approximation for f ′(x) is the central difference:

(2) f ′(x) =
f(x+ h)− f(x− h)

2h
.

Using Taylor expansion we obtain an error formula for it:

1

2h
(f(x+ h)− f(x− h))

=
1

2h

(
f(x) + f ′(x)h+

f ′′(x)

2
h2 +

f ′′′(x)

6
h3 +

f (4)(x)

24
h4 +

f (5)(x)

120
h5+

−f(x) + f ′(x)h− f ′′(x)

2
h2 +

f ′′′(x)

6
h3 − f (4)(x)

24
h4 +

f (5)(x)

120
h5 + . . .

)

=f ′(x) +
f ′′′(x)

3
h2 +O(h4).

Here the truncation error is proportional to h2. Therefore, this central difference approx-
imation for f ′(x) is second order accurate. Imagine that h = 0.01. Then, unless f ′′′(x)
is much larger that f ′′(x), the second order scheme will give two more correct digits in
comparison with the first order scheme.

1.3. Termination error. Iterative schemes are often used in scientific computing. Some
problems can be solved only by iterations. For example, it is a well-known fact that there
is no formula expressing roots of a polynomial of degree 5 or higher via its coefficients.
The corollary of this fact is that there is no formula expressing eigenvalues of a square
matrix of size 5 × 5 or larger via its entries. A practical consequence of this is that, in
general, roots of a polynomial of degree n and the eigenvalues of an n × n matrix can
be found only by iterative methods. Besides, some problems, such as solving large linear
systems of algebraic equations, Ax = b, where the matrix A is sparse, can be solved at
a finite number of steps e.g. by Gaussian elimination, but it might take way too much
time and require prohibitively large storage for matrix entries at the intermediate stages
of Gaussian elimination. In such cases, often iterative schemes for solving Ax = b that
give approximate solution of desirable accuracy are preferable. Moreover, such a solution
is often reached at a rather small number of iterations.

Let us consider an example of iterative scheme called the Babylonian method for finding
square roots. Later we will learn that this is the Newton-Raphson method for solving the
nonlinear equation x2−m = 0. Start with some initial guess for

√
m, for example x0 = m.

Then iterate:

(3) xn+1 =
1

2

(
xn +

m

xn

)
.

Stop when |x2n+1 −m| < ε where ε is the user-prescribed tolerance.

>> m = 2;

>> x = 2;

>> tol = 1e-15;

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method

4

>> while abs(x*x - m) > tol x = 0.5*(x + m/x); fprintf(’x = %.15e\n’,x); end

x = 1.500000000000000e+00

x = 1.416666666666666e+00

x = 1.414215686274509e+00

x = 1.414213562374689e+00

x = 1.414213562373095e+00

The outcome is consistent with the one found by Matlab’s root finder. In this example,
the termination error coincides with the roundoff error because we have picked a stringent
tolerance of 10−15. If we pick tolerance 10−9 we get:

>> tol = 1e-9;

>> x = 2;

>> while abs(x*x - m) > tol x = 0.5*(x + m/x); fprintf(’x = %.15e\n’,x); end

x = 1.500000000000000e+00

x = 1.416666666666666e+00

x = 1.414215686274509e+00

x = 1.414213562374690e+00

Here the error is mainly due to the termination error which can be notably reduced have
we done extra iteration. On the other hand, if we pick the tolerance 10−16 which is smaller
than the machine epsilon

>> eps

ans = 2.220446049250313e-16

(Matlab displays the machine epsilon multiplied by 2 if you type the command eps) the
iterations will never stop because the roundoff error will prevent the further error decay.

Scheme (3) raises the following questions:

(1) Do the iterations converge for any positive real number m and for any initial guess
x0 in exact arithmetic? Apparently it is so for m = x0 = 2.

(2) If the answer to question 1 is ’yes’, do they converge to
√
m?

(3) If the answer to question 1 is ’for all m but not for all x0’, what is the range of
initial guesses for which the convergence will take place?

(4) The example with m = 2, x0 = 2 shows that the iterations converge pretty fast.
In general, how many iterations should we expect to perform in order to get the
termination error approximately equal to the machine epsilon? The answer to this
question is often given using to concept of the rate of convergence.

We will address all these questions in the chapter on solving nonlinear equations.

1.4. Statistical error. In some cases, it is infeasible to solve a problem using determin-
istic methods. Then Monte Carlo methods may come handy. Monte Carlo methods are
those in which random numbers are used to find something nonrandom. For example, cal-
culation of integrals over high-dimensional regions or manifolds by discretizing the domain
of integration may be impossible, however, Monte Carlo methods can give a satisfactory
estimate using little effort. The results of Monte Carlo methods always involve statistical

5

error. If time will remain at the end of the semester, we will discuss some basic Monte
Carlo algorithms.

1.5. The absolute and relative errors.

Definition 1. Let A be the quantity that we want to estimate, and Â be an estimate for
A. Then the absolute error of this estimate is the difference

e = Â−A,

while the relative error is

ε =
Â−A
A

.

Note that then

Â = A+ e = A(1 + ε).

The relative error is often more insightful quantification of error the the absolute error.
For example, Avogadro’s number, the number of constituent particles (usually molecules,
atoms or ions) that are contained in one mole, is

N0 = 6.02214076 · 1023.

It is often approximated by 6 · 1023. The absolute error of this approximation is approx-
imately −2 · 1021 which seems like a huge number while the relative error is about one
third of one percent which is acceptable for many practical purposes. This estimate will
be good enough, for example, if the mass of the substance is known with relative error of
one percent.

2. Floating point arithmetic

References:

• Section 2.2 from D. Bindel’s and J. Goodman’s book “Principles of Scientific Com-
puting”;
• Lectures 7 and 8 in G. W. Stewart “Afternotes on Numerical Analysis”.

In this chapter, we will address a number of issues related to the roundoff error.

2.1. Integers. The basic unit of computer storage is bit, a binary unit, that can be 0 or
1. Bits are organized in 32-bit or 64-bit words. For example, in the Mac OS Catalina, only
64-bit words apps are acceptable. In C language, there are several integer types: char,
short, int, long, etc. Most commonly, char’s range is from −128 to 127, short runs from
−32768 to 32767. The typical range of int is from −231 to 231 − 1, i.e., from −2147483648
to 2147483647. The typical range of long is from −263 to 263 − 1 which is approximately
from −9.22 · 1018 to −9.22 · 1018. Note that if you keep increasing an integer variable in
C and reach the maximal positive integer of this type, the next value will be the largest
negative integer. For this reason, the loop in the C program below never stops:

https://en.wikipedia.org/wiki/Avogadro_constant
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
http://www.cs.umd.edu/~stewart/460/n.ps

6

#include <stdio.h>

int main(void);

int main() {

long j = 0;

int i;

for(i = 0; i < 3e9; i++) {

if(i == 0) printf("i = %i, j = %li\n",i,j);

j++;

};

return 1;

}

This program prints:

mariacameron@Marias-iMac Codes % gcc int_test.c -lm -O3

mariacameron@Marias-iMac Codes % ./a.out

i = 0, j = 0

i = 0, j = 4294967296

i = 0, j = 8589934592

i = 0, j = 12884901888

i = 0, j = 17179869184

i = 0, j = 21474836480

i = 0, j = 25769803776

i = 0, j = 30064771072

^C

mariacameron@Marias-iMac Codes %

I killed this run to terminate it. In Matlab, integers are automatically switched to floating
point numbers if you run out of integer range.

2.2. Floating point numbers and the IEEE standard. Floating point numbers are
data types that approximate real numbers. The typical structure of a floating point number
x is

(4) x = (−1)s · 2e ·m,
where s is the sign that can be 0 or 1, e is its exponent, and m is its mantissa. Double
precision floating point numbers, i.e., the default type in Matlab and type double in C, use
64 bits to store floating point numbers. Out of them, one bit is used for sign, 11 bits for
the exponent ranging from −1022 to 1023, and 52 bits for mantissa. Normalized floating
point numbers always have the first bit of mantissa equal to 1 which does not need to be
stored for this reason. Hence, a normalized floating point number is of the form

x = (−1)s · 2e · (1.b1b2 . . . b52)2
where bi is 0 or 1, and the subscript 2 indicates that the mantissa is a binary number, i.e.,
its value is

(1.b1b2 . . . b52)2 = 1 + b12
−1 + b22

−2 + . . .+ b522
−52.

7

The machine epsilon is usually defined as half-distance between 1 and the next normalized
floating point number. In double precision it is

εm = 2−53 ≈ 1.11 · 10−16.

The machine epsilon gives the upper bound for the relative roundoff error to the nearest
floating point number.

The IEEE floating point standard is a set of conventions for computer representation
and processing of floating point numbers. Modern computers follow these standards for
the most part. The standard has three main goals:

(1) To make floating point arithmetic as accurate as possible.
(2) To produce sensible outcomes in exceptional situations.
(3) To standardize floating point operations across computers.

2.3. Modeling floating point error. There are five arithmetic operations in the floating
point arithmetic: addition, subtraction, multiplication, division, and taking a square root.
The IEEE standard for these operations is that the floating point result is the exact result,
correctly rounded. This means that if x and y are floating point numbers, then the outcomes
of the arithmetic operations with them in the floating point arithmetic are

fl(x+ y) = round(x+ y) = (x+ y)(1 + ε1); fl(x ∗ y) = round(x ∗ y) = (x ∗ y)(1 + ε2);

fl(x− y) = round(x− y) = (x− y)(1 + ε3); fl(x/y) = round(x/y) = (x/y)(1 + ε4);

fl(sqrt(x)) = round(
√
x) =

√
x(1 + ε5),

where round means rounding to the nearest floating point number, and |εi| ≤ εm, the
machine epsilon, i = 1, 2. Note that floating point addition and multiplication are commu-
tative. A sum of more floating point numbers is performed pairwise and and typically left
to right:

fl(x1 + x2 + x3) = round(round(x1 + x2) + x3)

= ((x1 + x2)(1 + ε1) + x3) (1 + ε2)

= (x1 + x2 + x3) + (x1 + x2)ε1 + (x1 + x2 + x3)ε2 + (x1 + x2)ε1ε2.

The last term with the product ε1ε2 can be neglected because it is small relative to the
other two error terms.

2.3.1. Backward error analysis. We can recast the result of fl(x1 + x2 + x3) in a different
manner that will illustrate for us the concept of backward stability. We will neglect terms
with products of more that one ε:

fl(x1 + x2 + x3) = ((x1 + x2)(1 + ε1) + x3) (1 + ε2)

= (x1 + x2 + x3) + (x1 + x2)ε1 + (x1 + x2 + x3)ε2

= x1(1 + ε1 + ε2) + x2(1 + ε1 + ε2) + x3(1 + ε2)

= x1(1 + η1) + x2(1 + η1) + x3(1 + η2),(5)

where |η1| ≤ 2εm, |η2| ≤ 2εm, |η3| ≤ εm. Ansatz (5) shows that the result of the floating
point addition equals to the exact sum of slightly perturbed numbers. The relative backward

8

errors ηi, i = 1, 2, 3, are bounded by small multiples of εm. An algorithm is called backward
stable if backward error bounds are small. Generalizing the above calculation to the sum
of n floating point numbers we get:

(6) fl(x1 + x2 + . . .+ x3) = x1(1 + η1) + x2(1 + η2) + . . .+ xn(1 + ηn),

where

|η1| ≤ (n− 1)εm,

|η2| ≤ (n− 1)εm,

|η3| ≤ (n− 2)εm,

...

|ηn−1| ≤ 2εm,

|ηn| ≤ εm.

It is reasonable to assume that the number of summands n is very small compared to ε−1m

because the addition of 1016 numbers would take really large time. Eq. (6) together with
the expressions for ηi’s show that the addition of floating point numbers is backward stable.

2.3.2. Condition number for floating point sum. Next we will find the condition number of
the addition of n numbers and use it to assess the relative error of the addition of floating
point numbers.

Definition 2. Suppose we want to evaluate a function f depending on input data x. Sup-
pose the relative error in the input data is ε. The condition number of the function f is
defined as the supremum of the ratio of the relative error in f to the relative error in the
input x:

(7) κ := sup
x

|f(x(1 + ε))− f(x)|
|ε||f(x)|

.

Therefore, the relative error in f is bounded by:

f(x(1 + ε))− f(x)

f(x)
≤ κε.

Now we return to the floating point sum of n numbers. The exact sum is

sn = x1 + . . .+ xn.

The floating point sum fl(sn) is given by (6): this is the exact sum of slightly perturbed
input numbers. Let us forget for a moment about the origin of these perturbations and
merely think that we are finding a sum of perturbed numbers. The question that we want
to address is how large is the relative error of the sum of perturbed numbers if the relative
error of the perturbations is bounded by ε? We denote the sum of perturbed numbers by

9

s̃n, and the relative perturbations by µi’s, and do the following calculation:

|s̃n − sn|
sn

=

∣∣∣∣x1(1 + µ1) + x2(1 + µ2) + . . .+ xn(1 + µn)− (x1 + . . .+ xn)

x1 + . . .+ xn

∣∣∣∣
=

∣∣∣∣x1µ1 + x2µ2 + . . .+ xnµn
x1 + . . .+ xn

∣∣∣∣
≤ |x1||µ1|+ |x2||µ1|+ . . .+ |xn||µn|

|x1 + . . .+ xn|

≤ |x1|+ |x2|+ . . .+ |xn|
|x1 + . . .+ xn|

ε.

Therefore, the condition number of the sum of n numbers is

(8) κ =
|x1|+ |x2|+ . . .+ |xn|
|x1 + . . .+ xn|

.

Eq. (8) tells us, in particular, that if two numbers are close in magnitude but have opposite
signs, their addition has large condition number and hence is ill-conditioned. Relative error
in the input number of such addition will be amplified by a large factor. On the other hand,
if all numbers have the same sign, the condition number is 1, i.e., there will be no error
amplification.

As we have established, floating point addition of n numbers gives the exact answer for
slightly perturbed input. The relative error in this input is bounded by (n− 1)εm. Hence,
the relative error of the floating point sum of n numbers is bounded by

|fl(sn)− sn|
|sn|

≤ |x1|+ |x2|+ . . .+ |xn|
|x1 + . . .+ xn|

(n− 1)εm.

2.4. Solving quadratic equations. Let us consider the problem of solving quadratic
equations in floating point arithmetic. Suppose we have an equation of the form

x2 − bx+ c = 0,

where b > 0. Assume that b2−4c > 0, so that the equation has two real roots. The familiar
formula reads:

(9) r1,2 =
b±
√
b2 − 4c

2
.

In order to calculate root r1 we first add b and
√
b2 − 4c and then divide the result by 2.

The condition number for this addition is

κ1 =
|b|+

∣∣∣√b2 − 4c
∣∣∣∣∣∣b+

√
b2 − 4c

∣∣∣ = 1,

10

hence this addition is well-conditioned. To calculate r2, we subtract
√
b2 − 4c from b and

then divide the result by 2. The condition number for this subtraction is

κ2 =
|b|+

∣∣∣−√b2 − 4c
∣∣∣∣∣∣b−√b2 − 4c
∣∣∣ =

b+
√
b2 − 4c∣∣∣b−√b2 − 4c

∣∣∣ .
If |c| � b2 then denominator is approximately equal to∣∣∣b−√b2 − 4c

∣∣∣ =

∣∣∣∣b− b+
2c

b

∣∣∣∣ =

∣∣∣∣2cb
∣∣∣∣ ,

while the enumerator is approximately 2b. This gives an estimate for κ2:

κ2 ≈
∣∣∣∣b2c
∣∣∣∣ ,

which is large. Therefore, the calculation of r2 by formula (9) might lead to significant
amplification of roundoff errors. A remedy for this issue is the use of a different formula
for r2:

(10) r1 =
b+
√
b2 − 4c

2
, r2 =

c

r1
=

2c

b+
√
b2 − 4c

.

The example above with |c| being small compared to b2 shows how a calculation can
be salvaged by formula rewriting. Unfortunately, nothing much can be done to boost up
accuracy when the problem is intrinsically ill-conditioned. This situation, for example
occurs when the discriminant is close to zero, i.e, r1 ≈ r2. In this case, a small variation in
coefficients of size ε will lead to variation in roots approximately proportional to

√
ε which

is much larger. Some variations may lead to disappearance of real roots. We will return to
this issue in the chapter on solving nonlinear equations.

2.5. Roundoff and recurrence relationships. Let us discuss an interesting example
from G. W. Stewart “Afternotes on Numerical Analysis”. Consider the recurrence rela-
tionship

(11) xk+1 = 2.25xk − 0.5xk−1

with initial condition x0 = 1/3, x1 = 1/12. The general solution to (11) is of the form

xk = Ark1 +Brk2

where A and B are arbitrary constants and r1 and r2 are the roots of the characteristic
equation

r2 − 2.25r + 0.5 = 0.

Solving it, we find r1 = 1/4 and r2 = 2. Hence, the solution to the recurrence relationship
is

xk =
A

4k
+B2k.

http://www.cs.umd.edu/~stewart/460/n.ps

11

Plugging in the initial conditions, we find A = 1/3, B = 0. Hence, the solution

xk =
1

3 · 4k
decays to zero. However, the numbers x0 = 1/3, x1 = 1/12 are not represented exactly
using binary numbers. Hence, instead of them we have 1/3(1 + ε1) and 1/12(1 + ε2) where
0 < |ε| < εm, i = 1, 2. Hence, the constant B is likely to turn out to be 0 when (11) is
iterated in the floating point arithmetic. As a result, the solution will eventually blow up.
Here is a C program demonstrating this phenomenon:

#include <stdio.h>

int main(void);

int main() {

double x0 = 1.0/3.0,x1 = 1.0/12.0,x = 0;

int k = 1;

while(x < 1.0) {

x = 2.25*x1 - 0.5*x0;

x0 = x1;

x1 = x;

k++;

printf("x[%i] = %.15e\n",k,x);

}

return 1;

}

Its printout is:

mariacameron@Marias-iMac Codes % gcc recurrence.c -lm -O3

mariacameron@Marias-iMac Codes % ./a.out

x[2] = 2.083333333333334e-02

x[3] = 5.208333333333356e-03

x[4] = 1.302083333333381e-03

x[5] = 3.255208333334285e-04

x[6] = 8.138020833352365e-05

x[7] = 2.034505208371398e-05

x[8] = 5.086263021594628e-06

x[9] = 1.271565756730925e-06

x[10] = 3.178914418472664e-07

x[11] = 7.947286579088713e-08

x[12] = 1.986822710586282e-08

x[13] = 4.967078092747778e-09

x[14] = 1.241812155751090e-09

x[15] = 3.105383040660637e-10

x[16] = 7.780510627309835e-11

x[17] = 1.979233708143944e-11

x[18] = 5.630205296689555e-12

12

x[19] = 2.771793376831781e-12

x[20] = 3.421432449526730e-12

x[21] = 6.312326323019251e-12

x[22] = 1.249201800202995e-11

x[23] = 2.495087734305776e-11

x[24] = 4.989346502086499e-11

x[25] = 9.978485762541735e-11

x[26] = 1.995691971467565e-10

x[27] = 3.991382647674935e-10

x[28] = 7.982764971534822e-10

x[29] = 1.596552986211588e-09

x[30] = 3.193105970399332e-09

x[31] = 6.386211940292704e-09

x[32] = 1.277242388045892e-08

x[33] = 2.554484776088621e-08

x[34] = 5.108969552176451e-08

x[35] = 1.021793910435271e-07

x[36] = 2.043587820870536e-07

x[37] = 4.087175641741071e-07

x[38] = 8.174351283482141e-07

x[39] = 1.634870256696428e-06

x[40] = 3.269740513392857e-06

x[41] = 6.539481026785713e-06

x[42] = 1.307896205357143e-05

x[43] = 2.615792410714285e-05

x[44] = 5.231584821428570e-05

x[45] = 1.046316964285714e-04

x[46] = 2.092633928571428e-04

x[47] = 4.185267857142856e-04

x[48] = 8.370535714285713e-04

x[49] = 1.674107142857143e-03

x[50] = 3.348214285714285e-03

x[51] = 6.696428571428570e-03

x[52] = 1.339285714285714e-02

x[53] = 2.678571428571428e-02

x[54] = 5.357142857142856e-02

x[55] = 1.071428571428571e-01

x[56] = 2.142857142857142e-01

x[57] = 4.285714285714285e-01

x[58] = 8.571428571428570e-01

x[59] = 1.714285714285714e+00

mariacameron@Marias-iMac Codes %

13

Let us use the printout data to estimate the roundoff for 1/3. We have:

x0 = 1/3(4−0 + 2−p),

xk = 1/3(4−k + 2−p+k), k = 1, . . .

The turning point is reached at k = 19, therefore,

4−19 = 219−p. Hence p = 57.

This gives the roundoff error of 2−57 for 1/3.
This example might seem artificial, however, it is very relevant to analysis of linear

multistep ODE solvers. These solvers boil down to iterating recurrence relationships. A
necessary and sufficient condition for their stability is that all characteristic roots satisfy
|r| ≤ 1, and those with |r| = 1 have algebraic multiplicity 1.

2.6. Summary. We have seen three ways in which the roundoff error can manifest itself:

• Slow accumulation line in the sum of n floating point numbers. A notable loss of
accuracy may occur only if the problem is ill-conditioned.
• Roundoff error can reveal itself as a result of cancellation like in the formula for roots

of a quadratic equation. In some cases, this problem can be fixed by rearranging
the formula.
• Roundoff error can be magnified like in the example with the recurrence relation-

ship. An algorithm involving iterations of relationships with characteristic roots
|r| > 1 or roots with |r| = 1 with multiplicity more than 1 is unstable and should
be avoided.

2.7. Exceptions: underflow and overflow. Please read Section 2.2.4 from D. Bindel’s
and J. Goodman’s book “Principles of Scientific Computing”.

https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf

	1. Source of errors
	1.1. Roundoff error
	1.2. Truncation error
	1.3. Termination error
	1.4. Statistical error
	1.5. The absolute and relative errors

	2. Floating point arithmetic
	2.1. Integers
	2.2. Floating point numbers and the IEEE standard
	2.3. Modeling floating point error
	2.4. Solving quadratic equations
	2.5. Roundoff and recurrence relationships
	2.6. Summary
	2.7. Exceptions: underflow and overflow

