
Maria Cameron

Contents

1. Numerical methods for solving nonlinear equations 1
2. Fixed point methods for nonlinear equations 1
3. The order of convergence 4
4. Newton’s method 5
4.1. Examples 6
4.2. Issues with multiple roots 11
5. Need for quasinewton methods 11
6. Secant method 14
References 15

1. Numerical methods for solving nonlinear equations

Reading:

• A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM
2007, Chapter 7, Sections 7.2.1 and 7.2.2.
• G. W. Stewart, Afternotes on Numerical Analysis, Lectures 1–5.

We will be discussing, analyzing, and experimenting with the following list of methods for
solving f(x) = 0 where f is a continuous function and x ∈ R:

• Bisection method
• Newton’s method a.k.a. the Newton-Raphson method
• Secant method
• Hybrid method (of secant and bisection)

2. Fixed point methods for nonlinear equations

The basic idea of fixed point methods consists in finding an iteration function T (x) such
that (i) the zero x∗ of f(x) satisfies

T (x∗) = x∗,

and (ii) T (x) generates successive approximations to the solution

xn+1 = T (xn)

starting from the provided initial approximation x0.
We start with considering linear maps xn+1 = T (xn). the are four different cases leading

to four qualitatively different behaviors of sequences of iterates illustrated in Fig. 1. Such
figures where the sequence of iterates on the plane xnxn+1 are connected with line segments
and the line xn = xn+1 is plotted are called Lamerei’s diagrams. We see that

• if |T ′| < 1 the sequence converges to a fixed point, while if |T ′| > 1 the sequence
diverges;

1

https://epubs.siam.org/doi/book/10.1137/1.9780898717822
https://epubs.siam.org/doi/book/10.1137/1.9780898717822
http://www.cs.umd.edu/~stewart/460/n.ps

2

• If T ′ > 0, the sequence is monotone, while if T ′ < 0 the sequence oscillates.

(a) (b)

(c) (d)

Figure 1. Lamerei’s diagrams for linear mappings xn+1 = T (xn). (a):
Case 0 < T ′ < 1. (b): Case −1 < T ′ < 0. (c): Case T ′ > 1. (d): Case
T ′ < −1.

Fig. 1 suggests that the sequence of iterates xn+1 = T (xn) starting from the initial
approximation x0 converges to x∗ = T (x∗) if the function T is a contraction or a contraction
mapping on some interval containing x0 and x∗.

Definition 1. A function f(x) is contraction on the interval [a, b] if

(1) it maps the interval [a, b] into itself, i.e., f([a, b]) ⊂ [a, b], and

3

(2) there exists a constant 0 ≤M < 1 such that for any x, y ∈ [a, b] we have

|f(x)− f(y)| ≤M |x− y|.
There is a remarkable fact associated with a contraction mapping on any compact set

in Rn called Brouwer’s Fixed Point Theorem. In 1D this theorem is easy-to-prove and we
will do it below. In Rn, its proof is much harder.

Theorem 1. (Brouwer’s fixed point theorem in 1D) Let f(x) be a contraction map-
ping on the interval [a, b]. Then there exists a point c ∈ [a, b] such that f(c) = c.

Proof. Note that since f(x) is a contraction on [a, b] it is continuous on [a, b]. Since
f([a, b]) ⊂ [a, b], we have that

f(a) ∈ [a, b], i.e. a ≤ f(a) ≤ b, hence f(a)− a ≥ 0,

f(b) ∈ [a, b], i.e. a ≤ f(b) ≤ b, hence f(b)− b ≤ 0.

Therefore, the continuous function

g(x) := f(x)− x
has different signs at the ends of the interval [a, b]. Hence by the intermediate value theorem
there is a point c ∈ [a, b] such that g(c) = f(c)− c = 0, i.e. f(c) = c. �

The next theorem shows how the fixed point theorem applies to iterative methods for
solving nonlinear equations.

Theorem 2. Let T (x) be a continuous and differentiable function in [a, b] such that

T ([a, b]) ⊂ [a, b] and |T ′(x)| ≤M < 1, x ∈ [a, b].

Then

• there exists a unique point x∗ ∈ [a, b] such that T (x∗) = x∗;
• and for any x0 ∈ [a, b] the sequence of iterates xn+1 = T (xn), n = 0, 1, 2, . . .,

converges to x∗;
• the error after the n-th iteration is bounded by

|xn − x∗| ≤
Mn

1−M |x1 − x0|.

Proof. (1) T is a contraction. The requirements

T ([a, b]) ⊂ [a, b] and |T ′(x)| ≤M < 1 for all x ∈ [a, b]

guarantee that T (x) is a contraction. Indeed, it follows from the intermediate value
theorem that

T (x)− f(y) = T ′(z)(x− y) for some z ∈ (y, x) ⊂ [a, b].

Since |T ′(z)| ≤M < 1 we have

|T (x)− T (y)| ≤M |x− y|.
Hence T (x) is a contraction.

4

(2) Uniqueness. Suppose there are two fixed points: y = T (y) and z = T (z). Then
applying the mean value theorem we obtain

|y − z| = |T (y)− T (z)| = |T ′(ζ)||y − z| ≤M |y − z| < |y − z|,
a contradiction. Hence there is at most one fixed point in [a, b].

(3) Existence. Let us show that the sequence xn+1 = T (xn) is Cauchy. We have

|xn+k−xn| = |T (xn+k−1)−T (xn−1)| ≤M |xn+k−1−xn−1| ≤ . . . ≤Mn|xk−x0| ≤Mn|b−a|.
Hence this difference can be made arbitrarily small as soon as n is large enough.
Hence this sequence is Cauchy and hence it converges.

(4) Error bound. Let x∗ be the fixed point, i.e., T (x∗) = x∗.

|xn − x∗| = |T (xn−1)− T (x∗)| ≤M |xn−1 − x∗| ≤ . . . ≤Mn|x0 − x∗|.
On the other hand,

|x0 − x∗| ≤ |x0 − x1|+ |x1 − x∗| ≤ |x0 − x1|+M |x0 − x∗|.
Hence,

(1−M)|x0 − x∗| ≤ |x0 − x1|.
Therefore we get the following error bound:

|xn − x∗| ≤Mn|x0 − x∗| ≤
Mn

1−M |x0 − x1|.

�

3. The order of convergence

The performance of any iterative algorithm for solving nonlinear equations is character-
ized by

• its ability to find a solution (global convergence or local convergence), and
• how fast the convergence takes place.

An important quantitative characteristic of such an algorithm is the order of convergence.
We start with the simplest definition.

Definition 2. Let {xn}∞n=0 be a sequence which converges to x∗ and such that xn 6= x∗ for
n ∈ N. We will say that the sequence converges with order p ≥ 1 if there exists a constant
C > 0 such that

(1) lim
n→∞

|en+1|
|en|p

= C,

where en = xn − x∗, n ∈ N. C is called the asymptotic error constant.

Remark Definition 2 accounts for an ideal situation where the limit in (1) exists. This is
often the case when we are dealing with 1D problems as in this course and often not the
case for nonlinear solvers in higher dimensions. Then a relaxed version of the definition of

5

the order of convergence is used: we say that a sequence {xn} converges to x∗ with order
p if for large enough n one can find a constant C such that

‖en+1‖ ≤ C‖en‖p.
Remark Typically, the values of p do not exceed 3.

• p = 1. Then we say that the convergence is linear. Example: the bisection method:
p = 1, C = 1/2.
• p = 2 corresponds to the quadratic convergence as in Newton’s method.
• p = 3 occurs rarely. We call such convergence cubic. One such method is the

Rayleigh iteration for finding eigenpairs for a symmetric matrix.
• p ∈ (1, 2). Then we say that the convergence is superlinear. This is the case for the

secant method: p = (1 +
√

5)/2.

Now we determine the order of convergence for a fixed point method xn+1 = T (xn). Let
us assume that T (x) is smooth, i.e., differentiable as many times as we desire. We define

en := xn − x∗

and consider the Taylor expansion

(2) xn+1 = T (xn) = T (x∗ + en) = T (x∗) + T ′(x∗)en +
1

2
T ′′(x∗)e2n +

Let T (p)(x∗) be the first non-vanishing derivative of T at x∗. Then we subtract x∗ from
both sides of (2) and get:

en+1 =
T (p)(x∗)

p!
epn +O(ep+1

n).

Hence

(3) lim
n→∞

|en+1|
|en|p

=

∣∣∣∣∣
T (p)(x∗)

p!

∣∣∣∣∣ ,

i.e., the order of convergence and the asymptotic error constant are determined by the first
nonvanishing derivative of the contraction mapping T (x) at the fixed point x∗.

4. Newton’s method

For Newton’s method (read G. W. Stewart, Afternotes on Numerical Analysis, Lecture
2),

T (x) = x− f(x)

f ′(x)
.

Differentiating, we obtain

T ′(x) = 1− f ′(x)

f ′(x)
+
f(x)f ′′(x)

[f ′(x)]2
=
f(x)f ′′(x)

[f ′(x)]2
,

T ′′(x) =
f ′′(x)

f ′(x)
+
f(x)f ′′′(x)

[f ′(x)]2
− 2f(x)[f ′′(x)]2

[f ′(x)]3]
.

http://www.cs.umd.edu/~stewart/460/n.ps

6

Since f(x∗) = 0, we have

T ′(x∗) = 0, T ′′(x∗) =
f ′′(x∗)

f ′(x∗)
.

Hence, if f(x) is twice continuously differentiable and f ′(x∗) 6= 0 and f ′′(x∗) 6= 0, New-
ton’s method converges quadratically, and, using Eq. (3), we obtain the asymptotic error
constant

C =

∣∣∣∣
f ′′(x∗)

2f ′(x∗)

∣∣∣∣ .

4.1. Examples.

4.1.1. The Babylonian method for finding square roots. Let a > 0 be a given number.
Consider the fixed point iteration

(4) xn+1 = T (xn), where T (x) =
1

2

(a
x

+ x
)
.

(1) Show that x =
√
a is a fixed point of this iteration (it is the Babylonian method

for computing
√
a).

(2) What is the order of convergence to
√
a?

(3) Find the interval where the map T (x) is a contraction.
(4) What will happen with the iterates if the starting point x0 does not belong to the

interval you have found?

Solution First, we plot the graph of the iteration function T and the line xn+1 = xn in
the (xn, xn+1)-plane (see Fig. 2). The positive branch of the graph of T has a vertical
asymptote x = 0, a slant asymptote xn+1 = xn/2, and a unique extremum, a minimum at
x∗ =

√
a. It is always good to take a few initial values and see how they iterate.

(1)

T (x) =
1

2

(a
x

+ x
)

= x, hence 2x2 − a = 0.

Therefore, x =
√
a and x = −√a are the fixed points of T (x).

(2) In order to determine the order of convergence, we need to find the first nonvan-
ishing derivative of T at x =

√
a.

T ′(x) =
1

2

(
1− a

x2

)
, T (

√
a) = 0.

T ′′(x) =
a

x3
, T (

√
a) =

1√
a
6= 0.

Therefore, the order of convergence is p = 2.

7

(3) We need to find the maximal interval where |T ′(x)| ≤ 1.

1

2

∣∣∣1− a

x2

∣∣∣ ≤ 1

−2 ≤ 1− a

x2
≤ 2

−3 ≤ − a

x2
≤ 1

−1 ≤ a

x2
≤ 3

x2 ≥ a

3

x ≥
√
a

3
, or x ≤ −

√
a

3
.

Hence, T (x) is a contraction on [
√
a/3,∞) and on (−∞,−

√
a/3]. Indeed, for any

x, y ∈ [
√
a/3,∞), x 6= y, we have

|T (x)− T (y)| = |T ′(z)||x− y| < |x− y|, where z ∈ (x, y).

(4) The iterations will converge to
√
a starting from any x0 > 0 (see Fig. 2). Indeed,

note that x∗ is the minimum of T (x) on the positive semiaxis. Hence for all

x0 < x∗ we will have x1 = f(x0) > f(x∗) = x∗ >
x∗√

3
=

√
a

3
.

Therefore, x1 either way will fall to the zone of convergence.
We also can equate |x0 − x∗| = |x1 − x∗| and find that if x0 < 1

3

√
a, then

|x0 −
√
a| < |x1 −

√
a|, i.e., the error will decrease starting from the first iteration.

Remark We have just established that the iteration (4) will converge to
√
a starting from

any positive value x0. Does it mean that we should not care about the choice of the initial
approximation at all? The answer is: we should. Suppose that the initial guess is either
large (� √a) or small. In the latter case, the first iterate will be large. Thus, either way, let
us consider iterations starting from some large value x0. Then x1 ≈ x0/2, ..., xn ≈ x0/2n, i.e.,
the early iterations will be make as fast progress as bisection iterations until xn will become
small enough to make the contribution of a/xn substantial, i.e, until xn ∼ 3

√
a (which

approximately corresponds to a/xn = 0.1xn). Only after then the quadratic convergence
will kick in.

4.1.2. Finding specific roots. Consider the problem of finding N smallest positive roots of
the oscillating function

(5) f(x) = κx sin(x)− cos(x).

The graph of f for κ = 0.9 is shown in Fig. 3 (the oscillating curve). We calculate the
derivative of f :

f ′(x) = (κ+ 1) sin(x)− κx cos(x),

8

0

0

xn

x n
+1

xn+1=T(xn)

xn=xn+1

x⇤
�x⇤ xc

�xc xr

�xr

x⇤ =
p

a

xc =

r
a

3

xr =

p
a

3

Figure 2. The Balylonian method for finding
√
a, the iteration func-

tion and some important points: x∗ = ±√a are the fixed points where
T (x∗ = x∗; ±xc bound the intervals where T (x) is a contraction ((T (x) is
a contraction on (−∞,−xc] and on [xc,+∞)); ±xr bound the intervals of
monotone decay of the absolute value of the error, i.e., if x0 ∈ (xr,+∞) then
|en+1| < |en| for all n and xn →

√
a, if x0 ∈ (−∞,−xr) then |en+1| < |en|

for all n and xn → −
√
a.

and use Newton’s iteration starting from an initial guess for each root. The Matlab code
below sets the problem up and looks for a root of f starting with the initial guess y0 = 7.

function MyZeroFinder()

% Task: find the 10 smallest positive roots

kap = 0.9;

fun = @(x)kap*x.*sin(x) - cos(x);

tol = 1e-14;

9

0 5 10 15 20 25 30 35 40
x

-40

-30

-20

-10

0

10

20

30

40

y

Figure 3. Finding the 10 smallest roots of f(x) = 0.9x sin(x) − cos(x).
The oscillatory curve is the graph of f(x). The rest of the curves are the
graphs of gm(x) = arctan

(
1

0.9x

)
+ πm− x, m = 0, 1, . . . , 9.

x = linspace(1e-10,40,1000);

fx = fun(x);

flag = 0;

if flag == 0

figure(1); clf; hold on; grid;

set(gca,’Fontsize’,20);

xlabel(’x’,’Fontsize’,20);

ylabel(’y’,’Fontsize’,20);

end

plot(x,fx,’Linewidth’,2);

%% Choose approach

approach = 1;

%% Attempt 1: use Newton’s method to solve the problem as it is formulated

if approach == 1

y = 7; % the initial guess

fy = fun(y);

fder = @(x) (kap + 1)*sin(x) + kap*x.*cos(x);

iter = 0;

while abs(fy) > tol

y = y - fy/fder(y);

fy = fun(y);

10

iter = iter + 1;

fprintf(’iter #%d: y = %.15e, fy = %.15e\n’,iter,y,fy);

end

plot(y,fy,’.’,’Markersize’,20);

end

This approach is reasonable provided that we have the graph of f(x) and can give close
enough initial guesses. However, imagine that you need to provide initial guesses without
being able to see the graph.

Let us try to reformulate the problem in order to isolate the roots. We observe finding
positive roots of f(x) = 0 is equivalent to solving a series of nonlinear equations

(6) gm(x) := arctan

(
1

κx

)
+ πm− x, m = 0, 1, 2,

Each of the graphs gm(x) crosses the x-axis exactly once. Moreover, the first two derivatives
of gm(x) are:

g′m(x) = − κ

1 + κ2x2
− 1,

g′′m(x) =
2κx3

(1 + κ2x2)2
.

We see that g′m(x) is approximately −1 for large x, while g′′m(x) is positive and approaches
zero for large x. Hence the initial guesses for the first 10 zeros do need to be chosen close
to actual values – Fig. 3.

Here is a continuation of the Matlab code above implementing this approach.

%% Attempt 2: reformulate the problem and use Newton’s method

if approach == 2

tic

for m = 0 : 9

fprintf(’Find zero #%d\n’,m);

fun = @(x)atan(1.0./(kap*x)) - x + pi*m;

fx = fun(x);

y = 1;

fy = fun(y);

plot(x,fx,’Linewidth’,2);

fder = @(x)-kap./(1 + (kap*x).^2) - 1;

iter = 0;

while abs(fy) > tol

y = y - fy/fder(y);

fy = fun(y);

iter = iter + 1;

fprintf(’iter #%d: y = %.15e, fy = %.15e\n’,iter,y,fy);

end

plot(y,fy,’.’,’Markersize’,20);

11

end

toc

end

4.2. Issues with multiple roots. We have established that Newton’s method converges
quadratically provided that f is twice continuously differentiable in some interval surround-
ing x∗, f ′(x∗) 6= 0, and the initial guess is sufficiently close to x∗. Let us understand what
happens when f ′(x∗) = 0, i.e., the root x∗ is multiple.

Suppose x∗ is a root of multiplicity m, i.e., f(x∗) = 0, f ′(x∗) = 0, ..., f (m−1)(x∗) = 0,

while f (m)(x∗) 6= 0. Then

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

(m− 1)!f (m)(x∗)(x− x∗)m +O((x− x∗)m+1)

m!f (m)(x∗)(x− x∗)(m−1) +O((x− x∗)m+1)
.

Hence

en+1 = en −
en
m

+O(e2n) =

(
1− 1

m

)
en +O(e2n).

This shows that the convergence will be linear, and the larger m, the closer the error
constant to one.

5. Need for quasinewton methods

Suppose we need to solve a nonlinear equation f(x) = 0 where the derivative of f is
unavailable. For example, suppose that we need to find the value of the parameter µ in
the Van der Pol oscillator

ẏ1 = y2,

ẏ2 = µ(1− y21)y2 − y1.(7)

such that the maximal value of y2 in the periodic solution is equal to 10. For each µ ≥ 0,
ODE (7) has a stable and globally attractive periodic solution. The following Matlab
function finds the maximal value of y1 in the periodic solution for a given µ:

function yout = FindPeriodicSolution(mu0)

global mu

mu = mu0;

% First find the periodic solution for the given mu

%% The Van der Pol oscillator

VDPol = @(t,y)[y(2);mu*(1 - y(1).^2).*y(2) - y(1)];

options = odeset(’Reltol’,1e-12,’Abstol’,1e-12,’Events’,@events);

%%

Tmax = 100;

figure(1); hold on; grid;

y0 = [0,1];

tol = 1e-10;

d = 10;

iter = 0;

https://en.wikipedia.org/wiki/Van_der_Pol_oscillator

12

while d > tol

[T,Y] = ode45(VDPol,[0,Tmax],y0,options);

% plot(Y(:,1),Y(:,2),’Linewidth’,2);

% drawnow;

y1 = Y(end,:);

d = norm(y1 - y0);

y0 = y1;

iter = iter + 1;

% fprintf(’iter #%d: d = %d\n’,iter,d);

yout = y0(2);

end

[T,Y] = ode45(VDPol,[0,Tmax],y0,options);

plot(Y(:,1),Y(:,2),’Linewidth’,2);

end

%%

%%

function [position,isterminal,direction] = events(t,y)

global mu

position = mu*(1 - y(1).^2).*y(2) - y(1); % The value that we want to be zero

isterminal = 1; % Halt integration

direction = -1; % The zero can be approached from the negative direction

end

Hence, the function whose root we need to find is given by:

fun = @(x)FindPeriodicSolution(x) - 10;

The Matlab code below fulfills this task in two ways: using the bisection method and
using a quasinewton method where the derivative is approximated by a forward difference.

function SolveNonlinEq()

close all

figure(1); hold on; grid;

% Task: find the value of mu at which the maximal value of

% y(2) in the periodic solution reaches 10

fun = @(x)FindPeriodicSolution(x) - 10;

tol = 1e-12;

method = 2;

%% Use the bisection method

if method == 1

% Bracket the root

a = 1.0;

fa = fun(a);

b = 10;

13

fb = fun(b);

fprintf(’a = %d, fa = %d; b = %d, fb = %d\n’,a,fa,b,fb);

iter = 0;

tic

while abs(fa - fb) > tol

c = 0.5*(a + b);

fc = fun(c);

if fa*fc <= 0

b = c;

fb = fc;

else

a = c;

fa = fc;

end

iter = iter + 1;

fprintf(’iter #%d: a = %d, fa = %d; b = %d, fb = %d\n’,iter,a,fa,b,fb);

end

toc

end

%% Use a quasinewton method

if method == 2

tic

h = 1e-1;

a = 1.0;

fa = fun(a);

b = a + h;

fb = fun(b);

der = (fb - fa)/h;

d = 10;

iter = 0;

while abs(fa) > tol

a = a - fa/der;

fa = fun(a);

b = a + h;

fb = fun(b);

der = (fb - fa)/h;

iter = iter + 1;

fprintf(’iter #%d: a = %d, fa = %d; b = %d, fb = %d\n’,iter,a,fa,b,fb);

end

toc

end

end

14

To satisfy the error tolerance of 10−12, the bisection method requires 44 iterations, while
the quasinewton method achieves the same goal just in 5 iterations.

The drawback of the finite-difference quasinewton method used here is two-fold: First,
it requires an extra function evaluation. Second, it requires the user to provide a value of
h, the finite difference step. Too large or too small values of h will result in an inaccurate
estimate for the derivative and slowdown of convergence.

A better approach is the secant method (read G. W. Stewart, Afternotes on Numerical
Analysis, Lecture 4.

6. Secant method

The secant method is almost as fast as Newton’s but has the advantage that it does
not require an extra function evaluation. The derivative is approximated by the slope a
secant line giving the name for this method. We start with two initial values x0 and x1
and iterate:

(8) xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

Let us establish its order of convergence. We will see that the asymptotic order of conver-
gence is

α =
1 +
√

5

2
≈ 1.6180.

Subtracting x∗ from both sides of (8) we get:

(9) en+1 = en − f(xn)
en − en−1

f(xn)− f(xn−1)
=
f(xn)en−1 − f(xn−1)en

f(xn)− f(xn−1)
.

Assuming en and en+1 are close to zero, we Taylor expand f(xn) and f(xn−1) near x∗.
Recall that f(x∗) = 0. Then

f(xn) = f(x∗ + en) = enf
′(x∗) + e2n

f ′′(x∗)

2
+O(e3n),

f(xn−1) = f(x∗ + en−1) = en−1f
′(x∗) + e2n−1

f ′′(x∗)

2
+O(e3n−1).

Plugging these expressions into (9) we get:

en+1 =
en−1enf

′(x∗) + en−1e
2
n
f ′′(x∗)

2 − enen−1f ′(x∗)− ene2n−1 f
′′(x∗)
2 +O(en−1e

3
n) +O(ene

3
n−1)

enf ′(x∗) + e2n
f ′′(x∗)

2 − en−1f ′(x∗)− e2n−1
f ′′(x∗)

2 +O(e3n) +O(e3n−1)

= enen−1
1/2f ′′(x∗)(en − en−1) +O(e2n) +O(e2n−1)

f ′(x∗)(en − en−1) +O(e21) +O(e2n−1)

Therefore,

(10) lim
n→∞

en+1

enen−1
=

f ′′(x∗)

2f ′(x∗)
.

http://www.cs.umd.edu/~stewart/460/n.ps
http://www.cs.umd.edu/~stewart/460/n.ps

15

We have assumed that f ′(x∗) 6= 0. Now let us find the order of convergence. We wish to
find α such that en+1 ≈ Ceαn where C is some unknown constant, i.e.,

lim
n→∞

en+1

eαn
= C.

Then

lim
n→∞

en+1

enen−1
= lim

n→∞

C
(
Ceαn−1

)α

Ceαn−1en−1
= lim

n→∞
eα

2−α−1
n−1 Cα = Cα,

which happens if and only iff

α2 − α− 1 = 0, i.e. α =
1±
√

5

2
.

We select the positive root that corresponds to decaying error:

α =
1 +
√

5

2
.

References

[1] A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM, 2007
[2] J. Nocedal, S. Wright, Numerical Optimization, Springer, 1999
[3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

	1. Numerical methods for solving nonlinear equations
	2. Fixed point methods for nonlinear equations
	3. The order of convergence
	4. Newton's method
	4.1. Examples
	4.2. Issues with multiple roots

	5. Need for quasinewton methods
	6. Secant method
	References

