
Contents

1. Introduction 1
2. Polynomial interpolation 1
2.1. Lagrangian interpolation 1
2.2. The Newton interpolation polynomial 3
2.3. Hermite interpolation 5
2.4. Runge phenomenon 10
3. Chebyshev polynomials 12
3.1. Properties of the Chebyshev polynomials 12
4. Chebyshev interpolation 16
4.1. Chebyshev polynomials shifted to the interval [a, b] 16
4.2. Computing coefficients for Chebyshev interpolant 17
4.3. Evaluating Chebyshev interpolant 17
5. Interpolation by spline functions 19
5.1. Theoretical foundations 20
5.2. Setting up a system of equations for a cubic spline 21
5.3. A fast solver for tridiagonal matrices 24
5.4. Convergence properties of cubic spline functions 24
5.5. Spline interpolation in Matlab 27

1. Introduction

Interpolation is widely used in various fields of applied math, engineering, and computer
science. It is a typical case that data are available only at a discrete set of points, while
we would like to have them an an arbitrary point of a region containing this discrete set.
The task of interpolation is to define a function in the whole region so that it coincides
with the data at this discrete set. Various methods for interpolation are based on different
assumptions regarding the function. Linear interpolation results at a continuous function
while bicubic interpolation will make the function smooth. Take a look at the figures here.

Interpolation techniques are building blocks for various methods in computational math-
ematics, in particular, for

• quadrature rules,
• linear multistep ODE solvers with variable time step and order,
• finite element methods for solving partial differential equations.

We will discuss polynomial interpolation and spline interpolation in 1D.

2. Polynomial interpolation

2.1. Lagrangian interpolation. Suppose a continuous function f(x) defined on the in-
terval [a, b] is given at a finite number of points xj , j = 0, 1, 2, . . . , n, n+ 1 points in total.
We will denote f(xj by fj . The task of interpolation is to find a polynomial of degree at
most n passing through all these points. Lagrange’s approach to this task is to construct

1

https://en.wikipedia.org/wiki/Bicubic_interpolation

2

n + 1 polynomials Lj(x) of degree n such that each Lj(x) is 1 at xj and zero at ll other
xk’s. Then the linear combination

P (x) = f0L0(x) + f1L1(x) + . . .+ fn(x)Ln(x)

is a polynomial of degree at most n, and P (xj) = fj for all j = 0, 1, . . . , n. The polynomial
P (x) written in the form above is called the Lagrange interpolation polynomial. The
polynomials Lj(x) are easily constructed. The error of interpolation can also be found.
These results are summarized in the following theorem.

Theorem 1. Given a function f that is defined at n+ 1 points x0 < x1 < . . . < xn ∈ [a, b]
there exists a unique polynomial of degree ≤ n such that

Pn(xj) = f(xj), j = 0, 1, 2, . . . , n.

This polynomial is given by

Pn(x) =

n∑
j=0

f(xj)Lj(x),

where Lj(x) is defined by

Lj(x) =
πn+1(x)

(x− xj)π′n+1(xj)
=

∏n
k=0,k 6=j(x− xk)∏n
k=0,k 6=j(xj − xk)

,

πn+1(x) being the nodal polynomial

πn+1(x) =
n∏
k=0

(x− xk).

Additionally, if f is n+ 1 times continuously differentiable in (a, b), then for any x ∈ [a, b]
there exists a value ζx ∈ (a, b) depending on x, such that

(1) En(x) = f(x)− Pn(x) =
f (n+1)(ζx)

(n+ 1)!
πn+1(x).

Proof. (1) Existence By construction, Pn is a polynomial of degree n passing through
xj , j = 0, 1, 2, . . . , n.

(2) Uniqueness Suppose that there are two such polynomials, Pn(x) and Qn(x). Then
the polynomial d(x) := Pn(x)−Qn(x) is at most of degree n. On the other hand,
it has at least n + 1 roots xj , j = 0, 1, 2, . . . , n. Therefore, it must be identically
zero.

(3) Error formula Consider the function

F (z) = f(z)− Pn(z)− [f(x)− Pn(x)]
πn+1(z)

πn+1(x)
.

This function has n+ 2 zeros at z = xj , j = 0, 1, 2, . . . , n, and z = x. Recall Rolle’s
theorem that says that if a function f(z) is continuously differentiable on [a, b] and

3

f(a) = f(b) then there is c ∈ (a, b) such that f ′(c) = 0. Therefore, if we apply
Rolle’s theorem n+ 1 times we get that the function

F (n+1)(z) = f (n+1)(z)− P (n+1)
n (z)− [f(x)− Pn(x)]

(n+ 1)!

πn+1(x)

has at least one zero in (x0, xn). We denote this zero by ζx. Therefore, taking into

account that P
(n+1)
n (z) ≡ 0, we get

0 = f (n+1)(ζx)− [f(x)− Pn(x)]
(n+ 1)!

πn+1(x)
,

and Eq. (1) follows.
�

Example Let us find the Lagrange interpolant p(x) passing through the points (0, f0),
(1, f1), and (2, f2). The polynomial p(x) is of the form

p(x) = f0
(x− 1)(x− 2)

(0− 1)(0− 2)
+ f1

(x− 0)(x− 2)

(1− 0)(1− 2)
+ f2

(x− 0)(x− 1)

(2− 0)(2− 1)

= 1
2f0(x2 − 3x+ 2)− f1(x2 − 2x) + 1

2f2(x2 − x)

= f0 + 1
2(−3f0 + 4f1 − f2)x+ 1

2(f0 − 2f1 + f2)x2.(2)

2.2. The Newton interpolation polynomial. Lagrangian interpolation is convenient
because it gives an explicit formula for the interpolant. However, it does not provide a con-
venient way to modify the polynomial to accommodate additional interpolation points. An
alternative form of the interpolation polynomial, the Newton form, gives such a way. The
Newton interpolation formula is used, for example, for deriving linear multistep methods
with varying time step for solving ODE’s. The Newton interpolation formula is defined via
the divided differences. We set

f [x0] = f(x0),

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
,

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
,

. . .

f [x0, x1, . . . , xk] =
f [x1, . . . , xk]− f [x0, x1, . . . , xk−1]

xk − x0
,

. . . .

Theorem 2. The polynomial interpolating f(x) at xj, j = 0, 1, 2, . . . , n is given by

Pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + . . .

+ f [x0, x1, . . . , xn](x− x0)(x− x1) . . . (x− xn−1).(3)

4

Example Let us find the Newton interpolant p(x) passing through the points (0, f0),
(1, f1), and (2, f2). The polynomial p(x) is of the form

(4) p(x) = f [0] + f [0, 1](x− 0) + f [0, 1, 2](x− 0)(x− 1),

where

f [0] = f0, f [0, 1] =
f1 − f0

1− 0
= f1 − f0, f [1, 2] =

f2 − f1

2− 1
= f2 − f1,

f [0, 1, 2] =
f [1, 2]− f [0, 1]

2− 0
=

1

2
(f2 − f1 − (f1 + f0)) =

1

2
(f0 − 2f1 + f2).

Plugging these coefficients into Eq. (4) we get

p(x) = f0 + (f1 − f0)x+ 1
2(f0 − 2f1 + f2)x(x− 1)

= f0 + 1
2 (−3f0 + 4f1 − f2)x+ 1

2(f0 − 2f1 + f2)x2.(5)

The polynomial p(x) in Eq. (5) coincides with the one in Eq. (2) as it should.

Proof. We will proceed by induction. For n = 1 Eq. (3) holds. Suppose the polynomials
P [x0, . . . , xn−1](x) and P [x1, . . . , xn](x) of the form of Eq. (3) interpolate f at the points
x0, . . . , xn−1 and x1, . . . , xn respectively. Note that both of them are of degree n−1. Hence
they differ by a polynomial of degree at most n − 1, and this polynomial has zeros at x1,
..., xn−1. Therefore,

P [x1, . . . , xn](x)− P [x0, . . . , xn−1](x) = a(x− x1) . . . (x− xn−1)

where a is a number. Obviously, a is the difference of the leading coefficients of the
polynomials P [x0, . . . , xn−1](x) and P [x1, . . . , xn](x), i.e.,

a = f [x1, . . . , xn]− f [x0, x1, . . . , xn−1].

At the same time,

a =
P [x1, . . . , xn](x)− P [x0, . . . , xn−1](x)

(x− x1) . . . (x− xn−1)
.

Now consider the polynomial

(6) P [x0, x1, . . . , xn](x) = P [x0, . . . , xn−1](x) +
a

xn − x0
(x− x0)(x− x1) . . . (x− xn−1).

The last term of this polynomial is chosen so that it is zero at x0, . . . , xn−1, and the coeffi-
cient a/(xn−x0) is our guess that we will verify below. By construction, P [x0, x1, . . . , xn](x)
interpolates f at x0, . . . , xn−1. Let us verify that it also does so at x = xn. We evaluate

5

P [x0, x1, . . . , xn](x) at xn and obtain:

P [x0, x1, . . . , xn](xn)

=P [x0, . . . , xn−1](xn) +
a

xn − x0
(xn − x0)(xn − x1) . . . (xn − xn−1)

=P [x0, . . . , xn−1](xn)

+
P [x1, . . . , xn](xn)− P [x0, . . . , xn−1](xn)

(xn − x0)(xn − x1) . . . (xn − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)

=P [x1, . . . , xn](xn) = f(xn).

Therefore, the polynomial given by Eq. (6) interpolates f at xj , j = 0, 1, 2, . . . , n. �

Remark The function f [x0, . . . , xn] is a symmetric function of its arguments i.e., it does
not change if we permute x0, ..., xn. This is because the interpolation polynomial is
independent of the order of nodes.

2.3. Hermite interpolation. We have learned how to construct a polynomial of degree
at most n matching with f at n + 1 points x0, x1, ..., xn. Now suppose that we want to
construct a polynomial such that its values and its derivatives match with those of f at
given points. For example, suppose we want to find a minimal degree polynomial H on
the interval [0, 1] such that H(0) = u0, H′(0) = u′0, H(1) = u1, H′(1) = u′1. Following
Lagrange’s idea, we design a polynomial p0(x) such that

p0(0) = 1, p′0(0) = 0, p0(1) = 0, p′0(1) = 0.

Note that then the polynomial p1(x) := p0(1− x) satisfies:

p1(0) = 0, p′1(0) = 0, p1(1) = 1, p′1(1) = 0.

We also need to design a polynomial g0(x) such that

g0(0) = 0, g′0(0) = 1, g0(1) = 0, g′0(1) = 0.

Then the polynomial g1(x) := −g0(1− x) satisfies

g1(0) = 0, g′1(0) = 0, g1(1) = 0, g′1(1) = 1.

For each polynomial p0(x) and g0(x) we have four conditions to meet. Hence they should
have four coefficients which means that they should be cubic. We can find p0(x) by setting
it to

p0(x) = a0 + a1x+ a2x
2 + a3x

3, and, respectively, p′0(x) = a1 + 2a2x+ 3a3x
2,

and solving the system of four linear equations:

p0(0) = a0 = 1,

p′0(0) = a1 = 0,

p0(1) = a0 + a1 + a2 + a3 = 0,

p′0(1) = a1 + 2a2 + 3a3 = 0.

6

We find:
p0(x) = 1− 3x2 + 2x3.

Similarly, we find
g0(x) = x(1− x)2.

Now we write out the desired interpolating polynomial:

(7) H(x) = u0p0(x) + u1p0(1− x) + u′0g0(x)− u′1g0(1− x).

The problem that we have just solved can be generalized to an arbitrary number of points
xj and arbitrary numbers of matching derivatives of f and the interpolation polynomial at
each. The existence, uniqueness , and error estimate for such an interpolant are stated in
the theorem below.

Theorem 3. Let f be n times continuously differentiable in [a, b] and n+ 1 times contin-
uously differentiable in (a, b). Let x0 < x1 < . . . < xk ∈ [a, b], and let ni ∈ N be such that
n0 + n1 + . . .+ nk = n+ 1. Then there exists a unique polynomial Pn of degree ≤ n such
that

P (j)
n (xi) = f (j)(xi), j = 0, 1, . . . , ni − 1, i = 0, 1, . . . , k.

Furthermore, given x ∈ [a, b], there exists a value ζx ∈ (a, b) such that

f(x) = Pn(x) +
f (n+1)(ζx)

(n+ 1)!
πn+1(x),

where πn+1(x) is the nodal polynomial

πn+1(x) = (x− x0)n0 . . . (x− xk)nk .

Remark If all of the nodes coincide, i.e., k = 0 and n0 = n then the polynomial Pn is
the Taylor polynomial and the error term is the error term for the Taylor series in the
Lagrange form.

An explicit formula for such a polynomial exists but it is not as simple as for the Lagrangian
interpolant. As in the case of distinct nodes, it is more convenient to calculate the Hermite
interpolant using divided differences. However, we will need to generalize them.

Theorem 4. Let
t0 ≤ t1 ≤ . . . ≤ tn,

where
t0 = . . . = tn0 = x0, tn0+1 = . . . = tn0+n1+1 = x1,

The points tj are called the generalized abscissas.
The generalized divided differences are defined as follows. If ti = . . . = ti+p = xl then

f [ti, ti+1, . . . , ti+p] =
1

p!
f

(p)
l .

If ti < ti+p then

f [ti, ti+1, . . . , ti+p] =
f [ti+1, ti+2, . . . , ti+p]− f [ti, ti+1, . . . , ti+p−1]

ti+p − ti
.

7

The interpolation polynomial is given by

(8) Pn(x) = f [t0] + f [t0, t1](x− t0) + . . .+ f [t0, . . . , tn](x− t0) . . . (x− tn−1).

Proof. The proof is by induction. The statement holds for n = 0. Suppose it holds for
n− 1. Then the polynomials P [t0, . . . , tn−1](x) and P [t1, . . . , tn](x) of the form of Eq. (8)
interpolate f at the abscissas t0 ≤ . . . ≤ tn−1 and t1 ≤ . . . ≤ tn respectively. The difference
between them is a polynomial Q(x) of degree n − 1 with zeros at t1, ..., tn−1. Hence it is
of the form

Q(x) = a(x− t1) . . . (x− tn−1).

The coefficient a is equal, on one hand, to the difference between the leading coefficients
of P [t1, . . . , tn](x) and P [t0, . . . , tn−1](x), i.e.,

a = f [t1, . . . , tn]− f [t0, . . . , tn−1],

on the other hand, it is equal to

a =
P [t1, . . . , tn](x)− P [t0, . . . , tn−1](x)

(x− t1) . . . (x− tn−1)
.

Consider the polynomial

P [t0, . . . , tn](x) = P [t0, . . . , tn−1](x) + b(x− t0) . . . (x− tn−1).

We will distinguish two cases.
Case 1: tn = tn−1 = . . . = tn−nk

. By construction, it interpolates f at the abscissas t0,
..., tn−1. Indeed,

(x− t0) . . . (x− tn−1) = (x− x0)n0 . . . (x− xk)nk−1,

and it vanishes together with its ni derivatives at x0, ..., xk−1 and together with its nk − 1
derivatives at xk. We set b = 1

nk!f
(nk). Then

P [t0, . . . , tn](nk)(xk) = bnk! = f (nk).

Case 2: tn > tn−1. We set

b =
a

tn − t0
and proceed as in the proof of the Newton interpolant formula. This completes the proof.

�

Example Suppose we are given f(x0) = f0, f(x1) = f1, f ′(x1) = f ′1, and f ′′(x1) = f ′′1 . We

need to write the interpolation polynomial P (x) such that P (x0) = f0, P (k)(x1) = f (k)(x1),

8

k = 0, 1, 2. We calculate the generalized divided differences:

t0 = x0 f [t0] = f0

f [t0, t1] = f1−f0
x1−x0

t1 = x1 f [t1] = f1 f [t0, t1, t2] =
f ′1−

f1−f0
x1−x0

x1−x0

f [t1, t2] = 1
1!f
′
1 f [t0, t1, t2, t3] =

1
2
f ′′1 −

f ′1−
f1−f0
x1−x0

x1−x0
x1−x0

t2 = x1 f [t2] = f1 f [t1, t2, t3] = 1
2f
′′
1

f [t2, t3] = 1
1!f
′
1

t3 = x1 f [t3] = f1

The interpolation polynomial is given by

P (x) = f0 + f1(x− x0) +
f ′1 −

f1−f0
x1−x0

x1 − x0
(x− x0)(x− x1) +

1
2f
′′
1 −

f ′1−
f1−f0
x1−x0

x1−x0
x1 − x0

(x− x0)(x− x1)2.

The error is given by

E(x) ≡ f(x)− P (x) =
f (4)(ζ)

24
(x− x0)(x− x1)3 for some ζ ∈ (x0, x1).

Example Let f(x) = (1 + x2)−1. This function is called the ”Witch of Agnesi”. It is
a well-known example demonstrating the fault of high degree polynomial interpolation
with equispaced points on a large interval. This will be discussed in Section 2.4. Here
we take the interval [0, 1] where the interpolation works pretty nicely and compare two
interpolation polynomials: Newton’s interpolant with four equispaced points, and the Her-
mite interpolant with the abscissas 0, 0, 1, 1. The Matlab program below computes these
interpolants and generates Fig. 1.

function CompareInterpolants()

% Compares two cubic interpolating polynomials for 1/(x^2 + 1) on [0,1]:

% Newton’s interpolant with four equispaced points and

% Hermite interpolant with abscissas 0, 0, 1, 1.

x = [0,1/3,2/3,1]’; % four equispaced points

t = linspace(0,1,100);

f = @(x)1./(x.^2 + 1); % Witch of Agnesi

fx = f(x);

ft = f(t);

figure;

hold on; grid;

plot(x,fx,’.’,’Markersize’,30);

plot(t,ft,’Linewidth’,1)

%% Newton’s interpolation.

% compute divided differences

dd = zeros(4);

dd(:,1) = fx;

https://en.wikipedia.org/wiki/Witch_of_Agnesi

9

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1
Data
f(x)
p[0,1/3,2/3,1]
p[0,0,1,1]

0.9 0.92 0.94 0.96 0.98 1
0.5

0.52

0.54

0.56

Figure 1. Comparison of two cubic interpolation polynomials: Newton’s
polynomial with four equispaced points p[0, 1/3, 2/3, 1], and the Hermite poly-
nomial with abscissas t0 = t1 = 0, t2 = t3 = 1: p[0, 0, 1, 1].

dd(1:3,2) = (dd(2:4,1) - dd(1:3,1))./(x(2:4)-x(1:3));

dd(1:2,3) = (dd(2:3,2) - dd(1:2,2))./(x(3:4)-x(1:2));

dd(1,4) = (dd(2,3) - dd(1,3))./(x(4)-x(1));

% define Newton’s interpolant

p = @(t) dd(1,1) + dd(1,2)*(t-x(1)) + dd(1,3)*(t-x(1)).*(t-x(2))...

+ dd(1,4)*(t-x(1)).*(t-x(2)).*(t-x(3));

pt = p(t);

plot(t,pt,’Linewidth’,1);

%% Hermite interpolation

fp = @(x)-2*x./(1+x.^2).^2; % derivative of f(x)

p0 = @(x)1-3*x.^2 + 2*x.^3; % p0(0) = 1, p0’(0) = p0(1) = p0’(1) = 0

g0 = @(x)x.*(1-x).^2; % g0(0) = g0(1) = g0’(1) = 0; g0’(0) = 1

% define Hermite interpolant

H = @(t)f(0)*p0(t) + fp(0)*g0(t) + f(1)*p0(1-t) - fp(1)*g0(1-t);

Ht = H(t);

plot(t,Ht,’Linewidth’,1)

set(gca,’Fontsize’,20);

legend(’Data’,’f(x)’,’p[0,1/3,2/3,1]’,’p[0,0,1,1]’);

%% zoom in near x = 1

ti = linspace(0.9,1,20);

10

ax2 = axes(’Position’,[.2 .2 .3 .3]);

hold(ax2,’on’);

hold on; grid;

plot(x(4),fx(4),’.’,’Markersize’,30);

plot(ti,f(ti),’Linewidth’,1)

plot(ti,p(ti),’Linewidth’,1)

plot(ti,H(ti),’Linewidth’,1)

end

2.4. Runge phenomenon. In this section, we address the question whether the inter-
polation polynomial approaches f in the uniform norm as the number of nodes tends to
infinity. The answer is negative in general.

Exercise (1) Build interpolation polynomials with n equispaced interpolation points
in the interval x ∈ [−1, 1] for f(x) = |x| and show that the sequence with equally
spaced nodes diverges as n→∞.

(2) Do the same for the function the “Witch of Agnesi”

(9) f(x) =
1

1 + x2
, x ∈ [−5, 5].

The graph of the Witch of Agnesi and its polynomial interpolants with equispaced points
of degrees 3, 6, 9, and 12 on the interval [−5, 5] are shown in Fig. 2. We see that as we
increase the degree of the interpolation polynomial, the interpolation error blows up. Fig.
2 was generated by the following Matlab code:

function RungePhenomenon()

% Demonstrates the Runge phenomenon on 1/(x^2 + 1) on [-5,5]:

a = -5; b = 5;

figure;

hold on; grid;

f = @(x)1./(x.^2 + 1); % Witch of Agnesi

t = linspace(a,b,400);

plot(t,f(t),’Linewidth’,1)

set(gca,’Fontsize’,20);

legend(’f(x) = (1+x^2)^{-1}’);

% build Newton’s interpolants with equispaced points

for n = 3 : 3 : 12

x = linspace(a,b,n + 1)’; % n+1 equispaced points

fx = f(x);

%% Newton’s interpolation.

% compute divided differences

dd = zeros(n + 1);

dd(:,1) = fx;

for k = 2 : n + 1

11

-5 0 5
-4

-3

-2

-1

0

1

f(x) = (1+x2)-1

n = 3
n = 6
n = 9
n = 12

Figure 2. A demonstration of the Runge phenomenon. Polynomial in-
terpolants with equispaced points of degrees 3, 6, 9, and 12 for f(x) =
(1 + x2)−1 on the interval [−5, 5] .

dd(1:n-k+2,k) = (dd(2:n-k+3,k-1)-dd(1:n-k+2,k-1))./(x(k:n+1)-x(1:n-k+2));

end

% evaluate Newton’s interpolant

pt = dd(1,n+1);

for k = n : -1 : 1

pt = pt.*(t - x(k)) + dd(1,k);

end

plot(t,pt,’Linewidth’,1,’DisplayName’,sprintf(’n = %d’,n));

end

end

The lack of convergence in the first example is less surprising then in the second one,
because the function in Eq. (9) is infinitely differentiable. This phenomenon was studied
by Runge and is known as the Runge phenomenon.

The analysis explaining the Runge phenomenon uses theory of functions of complex
variable.

Let us look at the error formula (1). There are two factors that can be large: the fraction
f (n+1)

(n+1)! and the nodal polynomial πn+1(x).

12

The fraction f (n+1)

(n+1)! does not need to decay as n → ∞. The estimate comes from the

Cauchy integral formula

(10) f (n+1)(ζ) =
(n+ 1)!

2πi

∫
CR

f(z)

(z − ζ)n+2
dz,

where CR = {z ∈ C | |z − ζ| = R}. Therefore,

maxx∈[ζ−R,ζ+R] |f (n+1)(x)|
(n+ 1)!

≤ maxz∈CR
|f(z)|

2πRn+1
.

Hence, what matters is not smoothness of f but its analyticity. Note that the Witch of
Agnesi has poles at z = ±i (i.e. discontinuities of the form a/(z − b)). Therefore, the

formula right above gives the upper bound for f (n+1)

(n+1)! equal to infinity.

The nodal polynomial πn+1(x) is highly oscillatory for equally spaced nodes. It can be
shown that for large n it takes values approximately 2n times larger near the endpoints
than in the middle. However, if we pick the nodes nonuniformly, we can make the nodal
polynomial deviate from zero as little as possible. The optimal choice of nodes is Cheby-
chev’s. A very nice explanation for these phenomena is found in L. N. Trefethen’s book
Spectral Methods in Matlab – read the beginning of Chapter 5.

In this connection, it becomes even surprising that the polynomial interpolants with
equispaced nodes converge to the Witch of Agnesi on an interval much larger than [−1, 1]:
on [−a, a] where a ≈ 3.63.

3. Chebyshev polynomials

We will study the Chebyshev polynomials in more details as they lead to a number of
remarkable numerical tools:

• Chebyshev interpolation, where the Runge phenomenon is eliminated. Ref.: A.
Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM, 2007
available online via UMD library;
• Chebyshev least squares approximation which is close to the minimax one;
• Chebyshev spectral methods for solving PDEs with non-periodic boundary condi-

tions – L. N. Trefethen’s book Spectral Methods in Matlab.

Chebyshev polynomials are defined as follows:

(11) Tn(x) = cos [n arccos(x)] , x ∈ [−1, 1], n = 0, 1, 2,

It follows from the definition that

(12) Tn(cos θ) = cos(nθ), θ ∈ [0, π], n = 0, 1, 2,

3.1. Properties of the Chebyshev polynomials.

(A) The Chebyshev polynomials satisfy the following three-term recurrence relation-
ships (TTRR):

(13) Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x, n = 0, 1, 2,

https://www.mobt3ath.com/uplode/book/book-50111.pdf
https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
https://www.mobt3ath.com/uplode/book/book-50111.pdf

13

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

T
0
(x)

T
1
(x)

T
2
(x)

T
3
(x)

T
4
(x)

T
5
(x)

T
6
(x)

Figure 3. Graphs of the Chebyshev polynomials T0(x), T1(x), ..., T6(x).

This TTRR immediately follows from Eq. (43) and the trigonometric formula

cos(a) + cos(b) = 2 cos
a+ b

2
cos

a− b
2

,

where we set a = (n+ 1)θ and b = (n− 1)θ.
(B) The leading coefficient of Tn(x) is 2n−1. This follows from Eq. (13).
(C)

Tn(−x) = (−1)nTn(x).

This follows from the formulas

arccos(−x) = π − arccos(x) and cos(πn− x) = (−1)n cosx.

(D) Zeros of Tn(x) are

(14) xk = cos

(
k + 1

2

n
π

)
, k = 0, 1, . . . , n− 1.

Extrema of Tn(x) are

(15) x′k = cos

(
πk

n

)
, k = 0, 1, . . . , n.

Tn(x′k) = (−1)k.

(E) The deviation of 2−nTn+1(x) from zero on [−1, 1] is minimal possible among all
polynomials with leading coefficient 1 of degree n + 1. The theorem establishing
this fact is below.

14

Theorem 5. Let

xk = cos

(
k + 1

2

n+ 1
π

)
, k = 0, 1, . . . , n.

Then the monic polynomial (i.e., its leading coefficient is 1)

T̂n+1 =
n∏
k=0

(x− xk)

of degree n + 1 has the smallest possible uniform (maximum) norm 2−n in [−1, 1]
among all polynomials of degree n+ 1. I.e.,

2−n = max
x∈[−1,1]

|T̂n+1(x)| = min
p∈Pn+1

p=xn+1+...

max
x∈[−1,1]

|p(x)|.

Proof. Suppose there is a monic polynomial p(x) of degree n+ 1 such that |p(x)| <
2−n for all x ∈ [−1, 1]. Let x′k, k = 0, 1, . . . , n + 1 be the abscissas of the extreme
values of Chebyshev polynomials of degree n+ 1. Hence we have

p(x′0) < 2−nTn+1(x′0),

p(x′1) > 2−nTn+1(x′1),

p(x′2) < 2−nTn+1(x′2),

. . . .

Therefore the polynomial

Q(x) = p(x)− 2−nTn+1

changes sign between each two consecutive extrema of Tn+1. Tn+1(x) has n + 2
extrema on [−1, 1]. Hence Q(x) has n+ 1 zeros. But Q(x) is of degree ≤ n. Thus
we have arrived to a contradiction. Hence there is no such monic polynomial p of
degree n+ 1 such that |p(x)| < 2−n for x ∈ [−1, 1]. �

(F) Relations with derivatives.

T0(x) = T ′1(x),(16)

T1(x) =
1

4
T ′2(x),(17)

Tn(x) =
1

2

(
T ′n+1(x)

n+ 1
−
T ′n−1(x)

n− 1

)
, n ≥ 2.(18)

The first two equalities are easy -to-check. The last one can be proven from the
following observation:

T ′n(x) =
n sin(nθ)

sin θ
, where x = cos θ.

Exercise Prove Eq. (18).

15

(G) Multiplication relationship:

(19) 2Tr(x)Tq(x) = Tr+q(x) + T|r−q|(x).

Exercise Prove Eq. (19).

(H) Orthogonality relationship:

(20)

∫ 1

−1

Tr(x)Ts(x)√
1− x2

dx =

0, r 6= s

π, r = s = 0,
π
2 , r = s 6= 0.

Let us prove it. We make a variable change x = cos θ. Then dx = − sin θdθ,
Tr(x) = cos(rθ), Ts(x) = cos(sθ), and the integration limits are changed to: −1 7→
π, 1 7→ 0. Therefore, using the formula

cos a cos b = 1/2 cos(a+ b) + 1/2 cos(a− b)

we get:∫ 1

−1

Tr(x)Ts(x)√
1− x2

dx =

∫ π

0
cos(rθ) cos(sθ)dθ =

1

2

∫ π

0
[cos(r + s)θ + cos(r − s)θ] dθ

=
1

2

[

sin(r+s)θ
r+s + sin(r−s)θ

r−s

]π
0
, r 6= s

2π, r = s = 0,

π +
[

sin(2rθ)
2r

]π
0
, r = s 6= 0.

=

0, r 6= s

π, r = s = 0,
π
2 , r = s 6= 0.

(I) Discrete orthogonality relationship: Take the points

xj = cos

(
π(j + 1

2)

n+ 1

)
, j = 0, 1, . . . , n

that are the zeros of Tn+1(x). Then for all 0 ≤ r, s ≤ n we have

(21)
n∑
j=0

Tr(xj)Ts(xj) =

0, r 6= s

n+ 1, r = s = 0,
n+1

2 , r = s 6= 0,

j = 0, 1, . . . , n.

Exercise Prove Eq. (25).

16

4. Chebyshev interpolation

Properties of the Chebyshev polynomials offer a nice way for computing the Chebyshev
interpolant of degree n. Fix some integer n and consider the zeros of Tn+1(x). They are

xj = cos

(
π(j + 1

2)

n+ 1

)
, j = 0, 1, . . . , n.

For a given function f(x) on the interval [−1, 1], the polynomial pn of degree n interpolating
f(x) at the Chebyshev points xj , j = 0, 1, . . . , n, is given by

pn(x) =

n∑
k=0

′ckTk(x) ≡ c0

2
+

n∑
k=1

ckTk(x).

The symbol ′ indicates that the first term in the sum should be divided by two. The
coefficients ck are found from the requirement that pn(xj) = f(xj), j = 1, 2, . . . , n, i.e.,

f(xj) =

n∑
k=0

′ckTk(xj).

Then we have
n∑
j=0

f(xj)Tm(xj) =
n∑
k=0

′ck

n∑
j=0

Tk(xj)Tm(xj) =
n∑
k=0

′ck
n+ 1

2
δmk = 1

2(n+ 1)ck.

Hence the coefficients are given by

(22) ck =
2

n+ 1

n∑
j=0

f(xj)Tk(xj), xj = cos

(
π(j + 1

2)

n+ 1

)
.

To summarize, the Chebyshev interplant of f(x) is given by

(23) pn(x) =
c0

2
+

n∑
k=1

ckTk(x),

where the coefficients ck are given by Eq. (22).

4.1. Chebyshev polynomials shifted to the interval [a, b]. Suppose we need to find
the Chebyshev interpolant for f(x) on the interval [a, b] rather than on [−1, 1]. Then
we need to shift Chebyshev polynomials to this interval using a linear transformation
l : [a, b]→ [−1, 1] such that l(a) = −1 and l(b) = 1. If x ∈ [a, b] and y ∈ [−1, 1] then

y = l(x) =
x− a+b

2
b−a

2

=
2x− a− b
b− a

.

Then the shifted Chebyshev polynomials to the interval [a, b] T
[a,b]
k (x) are defined by

(24) T
[a,b]
k (x) = Tk(y) ≡ Tk

(
2x− a− b
b− a

)
.

17

Exercise Show that the shifted Chebyshev polynomials satisfy the following orthogonality
relationships

(25)

∫ b

a

T
[a,b]
r (x)T

[a,b]
s (x)√

1−
(

2x−a−b
b−a

)2
dx =

0, r 6= s
b−a

2 π, r = s = 0,
(b−a)π

4 , r = s 6= 0.

The inverse linear transformation for l is l−1:

l−1(y) = 1
2(y(b− a) + b+ a).

4.2. Computing coefficients for Chebyshev interpolant. Suppose first that x ∈
[−1, 1]. In order to compute the coefficients given by Eq. (22), it is convenient to in-
troduce angles

θj =
π(j + 1

2)

n+ 1
, , j = 0, 1, . . . , n.

Then, recalling that Tk(x) ≡ Tk(cos θ) = cos(kθ), we get

(26) ck =
2

n+ 1

n∑
j=0

f(cos θj) cos(kθj).

If x ∈ [a, b], we need to evaluate f in Eq. (26) at the points

xj = l−1(yj) = 1
2(yj(b− a) + b+ a) = 1

2(cos(θj)(b− a) + b+ a).

In this case we get

(27) ck =
2

n+ 1

n∑
j=0

f(xj) cos(kθj), where xj = 1
2(cos(θj)(b− a) + b+ a).

4.3. Evaluating Chebyshev interpolant. Chebyshev interpolant can be evaluated at
the point x ∈ [a, b] directly from Eq. (23)

(28) pn(x) =
c0

2
+

n∑
k=1

ck cos(k arccos(y)), where y =
2x− a− b
b− a

.

This formula has a shortcoming that it requires evaluation of cos and arccos which are
typically built-in functions, but their evaluation is time-consuming in comparison with
basic floating point operations.

An elegant way for evaluation of Chebyshev interpolant that avoids calculations of cos
and arccos was proposed by Clenshaw (1955). A detailed description of Clenshaw’s algo-
rithm is given in Chapter 3 “Chebyshev Expansions” from “Numerical Methods for Special
Functions” by Amparo Gil, Javier Segura, and Nico Temme (see pages 75-76). Here we
show how one can implement it in Matlab.

https://www.siam.org/books/ot99/OT99SampleChapter.pdf
https://www.siam.org/books/ot99/OT99SampleChapter.pdf

18

Suppose we need to evaluate the sum

pn(x) =
c0

2
+

n∑
k=1

ckTk(y), where y =
2x− a− b
b− a

.

We rewrite this sum in the vector form:

pn(x) = c>t− c0

2
,

where c := [c0, c1, . . . , cn]>, t := [T0(y), T1(y), . . . , Tn(y)]>. Recall that the Chebyshev
polynomials satisfy TTRR (13) that can be written in the matrix form as

1
−2y 1

1 −2y 1
1 −2y 1

. . .
. . .

. . .

1 −2y 1

T0(y)
T1(y)
T2(y)

...
Tn(y)

 =

1
−y
0
...
0

 ≡ At = d.

Let b be a vector such that

(29) b>A = c>, or A>b = c.

Note that b is readily found starting from bn as A> is upper-triangular. Then

pn(x) = c>t− c0

2
= b>At− c0

2

=b>d− c0

2
= b0 − b1y −

c0

2
.

From (29) we find
c0 = b0 − 2yb1 + b2.

Therefore,

(30) pn(x) = b0 − b1y −
c0

2
= b0 − b1y −

1

2
(b0 − 2yb1 + b2) =

1

2
(b0 − b2).

A Matlab code computing Chebyshev’s coefficients and evaluating Chebyshev’s sum for
f(x) = (1 + x2)−1, x ∈ [−5, 5] is given below.

function ChebClenshaw()

% Compute Chebyshev coefficients and evaluate Chebyshev sum using

% Clenshaw’s method

a = -5;

b = 5;

nt = 200;

t = linspace(a,b,nt);

f = @(x)1./(x.^2 + 1); % Witch of Agnesi

ft = f(t);

%% Chebyshev grid

n = 30;

19

g = [0:n]’;

theta = pi*(g + 0.5)/(n + 1) % angles theta

y = cos(theta); % grid on [-1,1]

x = 0.5*(y*(b-a) + a + b); % grid on [a,b]

%% compute Chebyshev coefficients

c = zeros(n+1,1);

fx = f(x);

for k = 0 : n

c(k + 1) = sum(fx.*cos(k*theta));

end

c = 2*c/(n + 1);

fprintf(’c = [\n’);

fprintf(’%d\n’,c);

fprintf(’]\n’);

%% evaluate Chebyshev sum at points t using Clenshaw’s method

e = ones(n+1,1);

pp = zeros(nt,1);

tt = (2*t - a - b)/(b - a);

for j = 1 : nt

A = spdiags([e,-tt(j)*2*e,e],-2:0,n+1,n+1);

bb = A’\c;

pp(j) = 0.5*(bb(1) - bb(3));

end

figure;

hold on; grid;

plot(t,ft,’Linewidth’,1,’Displayname’,’f(x)’)

plot(x,fx,’.’,’Markersize’,30,’Displayname’,’Chebyshev data’);

plot(t,pp,’Linewidth’,1,’Displayname’,’Chebyshev interpolant’);

set(gca,’Fontsize’,16)

legend

end

5. Interpolation by spline functions

Reference:

• J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third Edition, Springer,
2002

Splines are widely used, for example, in

• applications in graphics,
• numerical methods (e.g., for BVP),
• signal processing.

The simplest splines are the cubic splines. We will restrict ourselves to them. Spline
functions yield smooth interpolation curves that are less likely to exhibit large oscillations

https://www.springer.com/gp/book/9780387954523
https://www.springer.com/gp/book/9780387954523

20

than high degree polynomials. We will prove that a cubic spline interpolant converges to a
given function together with its first three derivatives as soon as the function is four times
continuously differentiable and the set of interpolation points has some minimal quality
(this will be specified further in this section). Recall that this is not true for polynomial
interpolation in general.

5.1. Theoretical foundations. Let

∆ := {a = x0 < x1 < . . . < xn = b}
be a partition of the interval [a, b]. The points xj are called knots.

Definition 1. A cubic spline S∆ on ∆ is a function S∆ : [a, b]→ R such that:

(1) S∆ ∈ C2[a, b], i.e., is twice continuously differentiable,
(2) S∆ coincides on every subinterval [xj , xj+1], j = 0, 1, . . . , n − 1 with a polynomial

of degree at most 3.

Therefore, a cubic spline consists of cubic polynomials glued in such a manner that their
values together with the values of their first two derivatives coincide at the interior knots
xj , j = 1, 2, . . . , n− 1.

Suppose a function f is given at the knots xj , j = 0, 1, . . . , n, i.e.,

f(xj) = fj , j = 0, 1, . . . , n− 1.

We denote the vector {f0, . . . , fn} by F , and a spline function that interpolates f at these
points by

S∆(F ; ·).
Note that S∆(F, ·) is not uniquely defined by the vector F . Indeed, we have 4n coefficients
of the cubic polynomials (n subintervals, and the cubic polynomial on each subinterval has
4 coefficients) and n+ 1 + 3(n− 1) = 4n− 2 conditions to satisfy.

• At each interior knot xj , j = 1, . . . , n − 1, the values and the first two derivatives
of the cubic polynomials on the left and on the right must coincide. This gives
3(n− 1) conditions.
• At each knot xj , j = 0, 1, . . . , n, the value of the spline must be fj leading to n+ 1

more conditions.

Hence we a free to assign two additional conditions that would allow us to determine
S∆(F ; ·) uniquely. Typically, one of the following options is used:

(1) The second derivatives are zero at the end knots: S′′∆(F ; a) = S′′∆(F ; b) = 0.
(2) Periodic: S′∆(F ; a) = S′∆(F ; b), S′′∆(F ; a) = S′′∆(F ; b). Prerequisite: f0 = fn.
(3) The first derivatives are assigned at the end knots: S′∆(F ; a) = f ′0, S′∆(F ; b) = f ′n.
(4) Not-a-knot conditions: forcing third derivative continuity across the second and

penultimate knots of the spline. What does this mean? Since the third derivative
of a cubic is a constant function, if that third derivative is continuous, then, in
effect, there is no break at all between those two segments at those knots. You can
think of it as if those knots are really not knots at all, therein the name “not-a-knot”
end conditions.

21

5.2. Setting up a system of equations for a cubic spline. Throughout this section,
we will fix a partition ∆ := {a = x0 < x1 < . . . < xn = b} and a vector of values
F = {f0, . . . , fn}. We will use the following notations for the intervals between the knots
and their lengths:

Ij := [xj , xj+1], j = 0, 1, . . . , n− 1, and

hj+1 := xj+1 − xj .
The second derivatives of cubic splines at the knots are called moments and denoted by

Mj := S′′∆(F, xj), j = 0, 1, . . . , n.

We will show that the spline function S∆(F ;x) is completely characterized by its moments,
and the moments are found by solving a system of linear equations.

The second derivative of a S∆(F ;x) coincides with a linear function on each subinterval,
and these linear functions can be described in terms of the moments Mj :

(31) S′′∆(F ;x) = Mj
xj+1 − x
hj+1

+Mj+1
x− xj
hj+1

x ∈ Ij ≡ [xj , xj+1].

Integrating Eq. (31) we obtain that for each x ∈ Ij , j = 0, 1, . . . , n,

(32) S′∆(F ;x) = −Mj
(xj+1 − x)2

2hj+1
+Mj+1

(x− xj)2

2hj+1
+Aj ,

(33) S∆(F ;x) = Mj
(xj+1 − x)3

6hj+1
+Mj+1

(x− xj)3

6hj+1
+Aj(x− xj) +Bj ,

where Aj and Bj are constants of integration. From the equalities

S∆(F ;xj) = fj and S∆(F ;xj+1) = fj+1

we obtain the following equations for Aj and Bj :

Mj

h2
j+1

6
+Bj = fj ,

Mj+1

h2
j+1

6
+Ajhj+1 +Bj = fj+1.

Hence

Bj = fj −Mj

h2
j+1

6
,(34)

Aj =
fj+1 − fj
hj+1

− hj+1

6
(Mj+1 −Mj).(35)

This yields the following representation of the spline function in terms of its moments:

(36) S∆(F ;x) = αj + βj(x− xj) + γj(x− xj)2 + δj(x− xj)3 for x ∈ Ij ,

22

where

αj = fj ,(37)

γj =
Mj

2
,(38)

βj = S′∆(F ;xj) = −Mj
hj+1

2
+Aj =

fj+1 − fj
hj+1

− hj+1

6
(Mj+1 + 2Mj),(39)

δj =
S′′′∆(F, x+

j)

6
=
Mj+1 −Mj

6hj+1
.(40)

Now we need to calculate the moments Mj . The continuity of S′∆(F ;x) at the interior
knots yields n− 1 equations for the moments Mj . Using Eqs. (33) and (35) we obtain

S′∆(F ;x) = −Mj
(xj+1 − x)2

2hj+1
+Mj+1

(x− xj)2

2hj+1

+
fj+1 − fj
hj+1

− hj+1

6
(Mj+1 −Mj).

Therefore, for j = 1, 2, . . . , n− 1 we have

S′∆(F ;x−j) =
fj − fj−1

hj
+
hj
3
Mj +

hj
6
Mj−1,

S′∆(F ;x+
j) =

fj+1 − fj
hj+1

− hj+1

3
Mj −

hj+1

6
Mj+1.

Since S′∆(F ;x+
j) = S′∆(F ;x−j), we have

(41)
hj
6
Mj−1 +

hj + hj+1

3
Mj +

hj+1

6
Mj+1 =

fj+1 − fj
hj+1

− fj − fj−1

hj

for j = 1, 2, . . . , n − 1. These are n − 1 equations for n + 1 unknown moments. The
remaining two equations can be gained from the boundary conditions. In the first case,
S′′∆(F ; a) = S′′∆(F ; b) = 0 we set M0 = Mn = 0. In the periodic case we set M0 = Mn and

hn
6
Mn−1 +

hn + h1

3
Mn +

h1

6
M1 =

f1 − fn
h1

− fn − fn−1

hn
.

Exercise Obtain additional two conditions for the case of assigned first derivatives at the
end points:

h1

3
M0 +

h1

6
M1 =

f1 − f0

h1
− f ′0,(42)

hn
6
Mn−1 +

hn
3
Mn = f ′n −

fn − fn−1

hn
.(43)

Eqs. (41), (42) and (43) can be written in the common format

µjMj−1 + 2Mj + λjMj+1 = dj , j = 1, 2, . . . , n− 1,

23

where

λj :=
hj+1

hj + hj+1
,(44)

µj := 1− λj =
hj

hj + hj+1
,(45)

dj :=
6

hj + hj+1

{
fj+1 − fj
hj+1

− fj − fj−1

hj

}
.(46)

In the case M0 = Mn = 0 we set

λ0 = 0, d0 = 0, µn = 0, dn = 0.

As a result, weobtain the following system of equations

(47)

2 λ0 0
µ1 2 λ1

µ2 · ·
· · ·
· 2 λn−1

0 µn 2

M0

M1

·
·
·
Mn

 =

d0

d1

·
·
·
dn

 .

Exercise Write out the system of equations for the momenta for the periodic case and for
the case of assigned first derivatives at the endpoints.

Theorem 6. The matrix in Eq. (47) is nonsingular for any partition ∆ of [a, b].

Proof. We will denote the Matrix in Eq. (47) by A. If follows from the definitions of λj
and µj that µj + λj = 1, µj ≥ 0, λj ≥ 0. Therefore, the matrix A is strictly diagonal
dominant. Therefore, for any vector z

(48) max
j
|zj | ≤ max

j
|Azj |.

(Check this!) Hence Az = 0 if and only if z = 0. �

24

5.3. A fast solver for tridiagonal matrices. The matrix in Eq. (47) is tridiagonal.
There is a fast solver for such kind of systems that involves O(n) flops.

q0 = −λ0

2
; u0 =

d0

2
; λn = 0;

for k = 1 : n

pk = µkqk−1 + 2;

qk = −λk
pk

;

uk =
dk − µkuk−1

pk
;

end for

Mn = un;

for k = n− 1 : 0

Mk = qkMk+1 + uk;

end for

In the first for-cycle, we successively express Mj = Mj+1qj + uj . Then we find Mn = un
as λn = 0. In the second for-cycle we successively find Mn−1, Mn−2, ..., M0 using the
relationships Mj = Mj+1qj + uj created by the first for-cycle.

5.4. Convergence properties of cubic spline functions.

Definition 2. The fineness of the given partition is

‖∆‖ := max
j
hj .

Recall that interpolating polynomials do not necessarily converge to f even for smooth
f as the fineness of the partition tends to zero (the Runge phenomenon!). In contrast, the
spline interpolants do converge to f together with their first three derivatives under mild
conditions.

First we will introduce some notations. We will denote by F ′′ the vector of the second
derivatives of f at the knots. The vector of moments M satisfies Eq. (47). We will write

AM = d.

The residual r is defined as

r := d−AF ′′ = A(M − F ′′).

Theorem 7. Suppose the first derivatives of f at the end knots are assigned. If f ∈ C4[a, b]

and |f (4)(x)| ≤ L for x ∈ [a, b], then

‖M − F ′′‖ ≤ ‖r‖ ≤ 3

4
L‖∆‖2.

25

Proof. By definition of the residual we have

rj = dj − µjf ′′(xj−1)− 2f ′′(xj)− λjf ′′(xj+1)

=
6

hj + hj+1

{
fj+1 − fj
hj+1

− fj − fj−1

hj

}
− hj
hj + hj+1

f ′′(xj−1)− 2f ′′(xj)−
hj+1

hj + hj+1
f ′′(xj+1).

Using Taylor’s expansion around xj we obtain

rj =
6

hj + hj+1
(f ′ +

hj+1

2
f ′′ +

h2
j+1

6
f ′′′ +

h3
j+1

24
f ′′′′(τ1)

− f ′ + hj
2
f ′′ −

h2
j

6
f ′′′ +

h3
j

24
f ′′′′(τ2))

− hj
hj + hj+1

[
f ′′ − hjf ′′′ +

h2
j

2
f ′′′′(τ3)

]
− 2f ′′−

− hj+1

hj + hj+1

[
f ′′ + hj+1f

′′′ +
h2
j+1

2
f ′′′′(τ4)

]

=
1

hj + hj+1

[
h3
j+1

4
f ′′′′(τ1) +

h3
j

4
f ′′′′(τ2)−

h3
j

2
f ′′′′(τ3)− hj+1

2
f ′′′′(τ4)

]
.

Here all omitted arguments are xj and τj ∈ [xj−1, xj+1]. Therefore, for j = 1, 2, . . . , n− 1

|rj | ≤
3

4
L
h3
j+1 + h3

j

hj+1 + hj
=

3

4
L(h2

j − hjhj+1 + h2
j+1) ≤ 3

4
L‖∆‖2.

The first and the last intervals are handled in a similar manner. For them we have

|r0| ≤
3

4
L‖∆‖2 and |rn| ≤

3

4
L‖∆‖2.

Since r = A(M − F ′′) and A has the property given by Eq. (48) we get

‖M − F ′′‖ ≤ ‖r‖ ≤ 3

4
L‖∆‖2.

�

Theorem 8. Suppose f ∈ C4[a, b] and |f (4)(x)| ≤ L for x ∈ [a, b]. Let ∆ be a partition of
the interval [a, b] and K be a constant such that

‖∆‖
hj+1

≤ K, j = 0, 1, . . . , n− 1.

If S∆ is the spline function which interpolates the values of f at the knots of the partition
∆ and satisfies

S′∆(a) = f ′(a) and S′∆(b) = f ′(b),

26

then there exist constants ck ≤ 2 independent of the partition ∆, such that for x ∈ [a, b]

|f(x)− S∆(x)| ≤ c0L‖∆‖4,(49)

|f ′(x)− S′∆(x)| ≤ c1L‖∆‖3,(50)

|f ′′(x)− S′′∆(x)| ≤ c2L‖∆‖2,(51)

|f ′′′(x)− S′′′∆(x)| ≤ c3LK‖∆‖.(52)

Proof. First we prove Eq. (52). For x ∈ [xj−1, xj],

S′′′∆(x)− f ′′′(x) =
Mj −Mj−1

hj
− f ′′′(x)

=
Mj − f ′′(xj)

hj
− Mj−1 − f ′′(xj−1)

hj

+
f ′′(xj)− f ′′(x)− [f ′′(xj−1)− f ′′(x)]

hj
− f ′′′(x).

Using the previous theorem and the Taylor expansion at x we get

|S′′′∆(x)− f ′′′(x)| ≤ 3

2
L
‖∆‖2

hj
+

1

hj
|(xj − x)f ′′′ +

(xj − x)2

2
f ′′′′(η1)

− (xj−1 − x)f ′′′ − (xj−1 − x)

2
f ′′′′(η2)− hjf ′′′|

≤ 3

2
L
‖∆‖2

hj
+
L

2

‖∆‖2

hj
= 2L

‖∆‖2

hj

≤ 2LK‖∆‖.

Here η1, η2 ∈ [xj−1, xj].
To prove Eq. (51) we observe that for every x ∈ (a, b) there is a closes knot xj = xj(x).

Assume without loss of generality that x ≤ xj(x) so that x ∈ [xj−1, xj] and |xj(x)− x| ≤
hj/2 ≤ ‖∆‖/2. Then

|f ′′(x)− S′′∆(x)| = |f ′′(xj)− S′′∆(xj) +

∫ x

xj(x)
(f ′′′(t)− S′′′∆(t))dt|

≤ 3

4
L‖∆‖2 +

hj
2

2L
‖∆‖2

hj
≤ 7

4
L‖∆‖2, x ∈ (a, b).

Next we prove Eq. (50). In addition to the boundary points ξ0 := a and ξn+1 := b there
exist by Rolle’s theorem n points ξj ∈ (xj−1, xj) such that

f ′(ξj) = S′∆(ξj).

for any x ∈ (a, b) there exists a closest one ξj = ξj(x), and

|x− ξj(x)| < ‖∆‖.

27

Therefore,

|f ′(x)− S′∆(x)| = |
∫ x

ξ(x)
(f ′′(t)− S′′∆(t))dt|

≤ ‖∆‖7

4
L‖∆‖2 =

7

4
L‖∆‖3.

Finally we prove Eq. (49). We have

|f(x)− S∆(x)‖ = |
∫ x

xj(x)
(f ′(t)− S′∆(t))dt|

≤ ‖∆‖
2

7

4
L‖∆‖3 =

7

8
L‖∆‖4, x ∈ [a, b].

�

5.5. Spline interpolation in Matlab. Matlab has several tools for computing cubic
splines. Functions spline and interp1 are regular matlab functions. Function spline

is designed for computing cubic splines. The boundary conditions can be chosen to be
either ’Not-a-Knot’ or ’Complete’ (i.e., the values of the first derivatives are prescribed at
the endpoints). Function interp1 offers different kinds of interpolation. If its argument
’Method’ is set to ’spline’, it produces a cubic spline with the ’Not-a-Knot’ boundary
conditions.

The Matlab code below demonstrates the use of piecewise-linear interpolant and two
cubic splines, with ’Not-a-Knot’ and ’Complete’ boundary conditions on the function
f(x) = (1+x2)−1. Newton’s interpolant is also plotted for comparison. Fig. 4 is generated
by this code.

function CompareSplines()

n = 6;

a = -5; b = 5;

x = linspace(a,b,n + 1)’; % n+1 equispaced points

t = linspace(a,b,200);

f = @(x)1./(x.^2 + 1); % Witch of Agnesi

fx = f(x);

ft = f(t);

figure;

hold on; grid;

plot(x,fx,’.’,’Markersize’,30,’Displayname’,’Data F’);

plot(t,ft,’Linewidth’,1,’Displayname’,’f(x)’)

%% Newton’s interpolation.

% compute divided differences

dd = zeros(n + 1);

dd(:,1) = fx;

for k = 2 : n + 1

dd(1:n-k+2,k) = (dd(2:n-k+3,k-1)-dd(1:n-k+2,k-1))./(x(k:n+1)-x(1:n-k+2));

28

end

% evaluate Newton’s interpolant

pt = dd(1,n+1);

for k = n : -1 : 1

pt = pt.*(t - x(k)) + dd(1,k);

end

plot(t,pt,’Linewidth’,1,’DisplayName’,’Newton interpolant’);

%% Piecewise-linear interpolant

pl = interp1(x,fx,t);

plot(t,pl,’Linewidth’,1,’Displayname’,’Piecewise-linear’);

%% Cubic spline, not-a-knot condition

pc = interp1(x,fx,t,’spline’);

plot(t,pc,’Linewidth’,1,’Displayname’,’Cubic spline, not-a-knot’);

%% Cubic spline, first derivaties at the end knots

fp = @(x) -2*x./((x.^2 + 1).^2);

pp = spline(x,[fp(a);fx;fp(b)]);

pc1 = ppval(pp,t);

plot(t,pc1,’Linewidth’,1,’Displayname’,’Cubic spline, 1st ders’);

set(gca,’Fontsize’,16)

legend

end

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1
Data F
f(x)
Newton interpolant
Piecewise-linear
Cubic spline, not-a-knot
Cubic spline, 1st ders

Figure 4. Comparison of Newton’s intepolant with 7 equispaced knots,
piecewise linear interpolant, and two cubic splines for f(x) = (1 + x2)−1 on
[−5, 5]

	1. Introduction
	2. Polynomial interpolation
	2.1. Lagrangian interpolation
	2.2. The Newton interpolation polynomial
	2.3. Hermite interpolation
	2.4. Runge phenomenon

	3. Chebyshev polynomials
	3.1. Properties of the Chebyshev polynomials

	4. Chebyshev interpolation
	4.1. Chebyshev polynomials shifted to the interval [a,b]
	4.2. Computing coefficients for Chebyshev interpolant
	4.3. Evaluating Chebyshev interpolant

	5. Interpolation by spline functions
	5.1. Theoretical foundations
	5.2. Setting up a system of equations for a cubic spline
	5.3. A fast solver for tridiagonal matrices
	5.4. Convergence properties of cubic spline functions
	5.5. Spline interpolation in Matlab

