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1. Numerical integration: basic rules

References:

• S. D. Conte, Carl de Boor, Elementary Numerical Analysis: an algorithmic ap-
proach, Second Edition, McGraw-Hill Book Company, 1972

The problem of numerical integration, or numerical quadrature, is to estimate

I(f) =

∫ b

a
f(x)dx.

This problem arises when the integration cannot be carried out exactly or when f(x) is
known only at a finite number of points.

Numerical integration is a stable process, i.e., if a function f is perturbed by δf , then
the perturbation of the output of numerical integration over an interval [a, b] is perturbed
by at most (b − a) max[a,b] |δf |, i.e., the error in the output is bounded by the maximal
error in input times the length of the interval of integration.

1.1. General formulas for the error on numerical quadrature. We will derive a
collection of basic quadrature rules. We assume that the integrand f(x) is sufficiently
smooth on some interval [c, d] containing [a, b] so that we can write

f(x) = pk(x) + f [x0, . . . , xk, x]πk+1(x)
1
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where πk+1(x) = (x− x0) . . . (x− xk) is the nodal polynomial. We estimate I(f) by I(pk).
Then the error of this estimate is

(1) E(f) = I(f)− I(pk) =

∫ b

a
f [x0, . . . , fk, x]πk+1(x)dx.

The divided difference f [x0, . . . , fk, x] is continuous and hence integrable function of x. In
the chapter on interpolation we have learned that

(2) f [x0, . . . , fk, x] =
f (k+1)(ζ)

(k + 1)!
, ζ ∈ (a, b).

where ζ ∈ (a, b) is some point depending on x.
We consider two cases in which the integral in the right-hand side of (1) can be simplified.
Case 1: πk+1(x) is of one sign. The first such case is where the nodal polynomial

πk+1(x) is of one sign. Then by the mean value theorem

(3)

∫ b

a
f [x0, . . . , xk, x]πk(x)dx = f [x0, . . . , xk, ξ]

∫ b

a
πk+1(x)dx for some ξ ∈ (a, b).

Exercise Think of a simple example showing that if g(x) is not of one side then∫ b

a
f(x)g(x)dx 6= f(ξ)

∫ b

a
g(x)dx for any ξ ∈ (a, b).

If f(x) is k + 1 times continuously differentiable then, putting together (2) and (3), we
obtain the integration error:

(4) E(f) =
f (k+1)(η)

(k + 1)!

∫ b

a
πk+1(x)dx.

Case 2:

(5)

∫ b

a
πk+1(x)dx = 0 and πk+2(x) := (x− xk1)πk+1(x) is of one sign.

Then we can make use of the identity

(6) f [x0, . . . , xk, x] = f [x0, . . . , xk, xk+1] + f [x0, . . . , xk+1, x](x− xk+1)

which is valid for an arbitrary xk+1. This identity comes from the definition of the di-
vided difference and the fact that divided differences are symmetric with respect to their
arguments:

f [x0, . . . , xk+1, x] =
f [x0, . . . , xk, x]− f [x0, . . . , xk, xk+1]

(x− xk+1)
.

Exercise Show that the divided difference f [x0, . . . , xk] is a symmetric function of its argu-
ments, i.e., for an arbitrary permutation σ of {0, . . . , k}, f [x0, . . . , xk] = f [xσ(0), . . . , xσ(k)].
Hint: Think of the leading coefficient of Newton’s interpolant.
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Using itentity (36) we get

E(f) =

∫ b

a
f [x0, . . . , xk, x]πk+1(x)dx

=

∫ b

a
f [x0, . . . , xk, xk+1]πk+1(x)dx+

∫ b

a
f [x0, . . . , xk+1, x](x− xk+1)πk+1(x)dx.

Note that f [x0, . . . , xk, xk+1] is independent of x. Hence we can take it outside the integral

and use the fact that
∫ b
a πk+1(x)dx = 0 by assumption. Then we get the following expression

for the integration error:

E(f) =

∫ b

a
f [x0, . . . , xk+1, x](x− xk+1)πk+1(x)dx.

Now, if we choose xk+1 in such a way that

πk+2(x) ≡ (x− xk+1)πk+1(x)

is of one sign on (a, b), and if f(x) is k+ 2 times continuously differentiable, then it follows
that

(7) E(f) =
f (k+2)(η)

(k + 2)!

∫ b

a
πk+2(x)dx.

1.2. Particular cases. Now we go over some particular values of k and the corresponding
quadrature rules.

1.2.1. Rectangle rules. We set k = 0. Then

f(x) = f(x0) + f [x0, x](x− x0).

Hence

I(p0) = (b− a)f(x0).

• If x0 = a, we have the left-hand rule. Noting that the nodal polynomial is of one
sign we obtain

(8) I(f) ≈ L = (b− a)f(a), EL = f ′(η)

∫ b

a
(x− a)dx =

1

2
f ′(η)(b− a)2.

• If x0 = b, we have the right-hand rule. Noting that the nodal polynomial is of
one sign we obtain

(9) I(f) ≈ R = (b− a)f(b), ER = f ′(η)

∫ b

a
(x− b)dx = −1

2
f ′(η)(b− a)2.
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1.2.2. Midpoint rule. We set k = 0 and pick x0 = a+b
2 . Then π1(x) is not of one sign but∫ b

a π1(x)dx =
∫ b
a (x − x0)dx = 0, while

∫ b
a (x − x0)2dx is of one sign. Hence the error in

I(p0) can be computed by Eq. (7) with x1 = x0. This leads to the midpoint rule

(10) I(f) ≈M = (b− a)f

(
a+ b

2

)
, EM =

1

24
f ′′(η)(b− a)3.

1.2.3. Trapezoid rule. We set k = 1. Then

f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x]π2(x).

Let x0 = a and x1 = b. Then π2(x) = (x− a)(x− b) is of one sign on (a, b). Hence

I(f) =

∫ b

a
{f(a) + f [a, b](x− a)}dx+ 1

2f
′′(η)

∫ b

a
(x− a)(x− b)dx.

Then we get the trapezoid rule

(11) I(f) ≈ T =
f(a) + f(b)

2
(b− a), ET = − 1

12
f ′′(η)(b− a)3.

1.2.4. Simpson’s rule. Let us choose k = 2. Then

f(x) = p2(x) + f [x0, x1, x2, x]π3(x).

Set x0 = a, x1 = 1
2(a+ b), x2 = b. Then∫ b

a
π3(x)dx = 0.

If we pick x3 = x1 = a+b
2 , then π4 is of one sign and the error can be found by (7). As a

result, we obtain Simpson’s rule

(12) I(f) ≈ S =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
,

(13) ES = − 1

90
f (iv)(η)

(
b− a

2

)5

.

1.2.5. Corrected trapezoid rule. Now we set k = 3. In this case we have

f(x) = p3(x) + f [x0, x1, x2, x3]π4(x).

In order to make π4(x) of one sign on [a, b] we set x0 = x1 = a and x2 = x3 = b. Then

E(f) =
1

4!
f (iv)(η)

∫ b

a
(x− a)2(x− b)2dx =

1

720
f (iv)(η)(b− a)5.
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Since p
(iv)
3 (x) = 0, we can use the Simpson rule to evaluate I(p3) exactly. One can find

p3(a) = f(a), p3(b) = b, and

p3

(
a+ b

2

)
= 1

2 [f(a) + f(b)] +
b− a

8
[f ′(a)− f ′(b)].

Hence

(14) I(f) ≈ CT =
b− a

2
[f(a) + f(b)] +

(b− a)2

12
[f ′(a)− f ′(b)],

(15) ECT =
1

720
f (iv)(η)(b− a)5.

This rule is called the corrected trapezoidal rule.

Exercise Work out the details of the derivation of the basic integration rules, Eqs. (9),
(10), (11), (12) and (13), and (14) and (15).

2. A birds’-eye view on interpolatory quadrature rules

Reference:

• A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM,
2007(available online via UMD library). See Chapter 5.

Now let us take a more general look at the quadrature rules. All quadrature rules discussed
in Section 1.2 except for the corrected trapezoid rule are of the form

(16)

∫ b

a
f(x)dx ≈ Q(f) =

n∑
i=0

wif(xi).

The numbers wi are called the weights and the values xi are called the nodes. All of
those rules are interpolatory.

Definition 1. We call a quadrature rule interpolatory if f(x) is approximated by an n-th
degree interpolating polynomial, and the rule is set up as below:∫ b

a
f(x)dx ≈

∫ b

a
pn(x)dx =

∫ b

a

n∑
i=0

f(xi)Li(x)dx =

n∑
i=0

wif(xi),

where

wi =

∫ b

a
Li(x)dx ≡

∫ b

a

n∏
k=0
k 6=i

x− xk
xi − xk

dx.

Definition 2. The Newton-Cotes quadrature rules are the interpolatory quadrature rules
with equispaced interpolation nodes (a. k. a. abscissas).

https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871


6

For n = 1 the Newton-Cotes rule is the trapezoidal rule. For n = 2 the Newton-Cotes
rule is Simpson’s rule. Considering Newton-Cotes rules for a high number of nodes is
not very practical. Recall the Runge phenomenon, i.e., the fact that the interpolation
polynomial with equispaced nodes does not necessarily converge to the function in the
sense of the maximum norm as the number of nodes tends to infinity!

If the goal is to design a quadrature rule for fixed n that is exact for the highest degree
polynomials, the Gaussian quadrature is the best choice. If one wants to reduce the error
of integration, the better options are composite rules and Romberg integration.

Definition 3. A quadrature rule has degree of exactness m if it renders exact results when
f(x) is any polynomial of degree not larger than m but it is not exact for at least one
polynomial of degree m+ 1.

The degree of exactness of an n-point Newton-Cotes rule is at least n − 1. For the
trapezoidal rule (n = 2) and the Simpson rule (n = 3), the degrees of exactness are 1
and 3 respectively. As we will see later, the degree of exactness of an n-point Gaussian
quadrature is 2n− 1.

3. Composite rules

Reference:

• A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM,
2007(available online via UMD library). See Chapter 5 for the basic facts and
Chapter 11 for details on Bernoulli numbers and the Euler-Maclaren summation
formula.

3.1. Composite trapezoidal rule. Let us consider an equally spaced partition of the
interval [a, b]:

a = x0 < x1 < . . . < xn = b, xk = a+ kh, h =
b− a
n

.

If we apply the trapezoidal rule to each subinterval, we obtain∫ b

a
f(x)dx =

n−1∑
i=0

∫ xi+1

xi

f(x)dx ≈ Tn(x) =
h

2
(f0 + fn) + h

n−1∑
i=1

f(xi).

Theorem 1. Let f(x) ∈ C2[a, b] and let a = x0 < x1 < . . . < xn = b, xk = a + kh,
h = b−a

n , be an equally spaced partition of [a, b]. Then

(17)

∫ b

a
f(x)dx =

h

2
(f0 + fn) + h

n−1∑
i=1

f(xi) + ETn ,

where fi = f(xi) and there is τ ∈ [a, b] such that

(18) ETn = −(b− a)h2

12
f ′′(τ).

https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
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Proof. It immediately follows from the trapezoidal rule that

ETn = −h
2

12

n∑
i=1

f ′′(ηi) = −(b− a)h2

12

1

n

n∑
i=1

f ′′(ηi),

where ηi ∈ [xi−1, xi], i = 1, 2, . . . , n. Observing that

min
[a,b]

f ′′(x) ≤ 1

n

n∑
i=1

f ′′(ηi) ≤ max
[a,b]

f ′′(x)

and applying the intermediate value theorem, we obtain that there is τ ∈ [a, b] such that
f ′′(τ) = 1

n

∑n
i=1 f

′′(ηi). Then the result follows. �

One can check that the composite corrected trapezoidal rule is given by∫ b

a
f(x)dx = CTn(f) + ECTn (f)

=
h

2
(f0 + fn) + h

n−1∑
i=1

f(xi) +
h2

12
[f ′(a)− f ′(b)] +

b− a
720

h4f (iv)(η).(19)

Comparing equations (17)–(18) and (19) we conclude that the major contribution to the
error of the composite trapezoidal rule is

ETn (f) ≈ h2

12
[f ′(a)− f ′(b)].

Therefore, if
f ∈ C4([a, b]) and f ′(a) = f ′(b)

then the error of integration by the composite trapezoid rule decays as O(h4) rather than
O(h2)!

Example The Bessel function J0(x) is defined by

(20) πJ0(x) =

∫ π

0
cos(x sin(t))dt = h+ h

n−1∑
j=1

cos(x sin(hj)) + ETn h = π/n.

The relative errors of integration by the composite trapezoid rule are given in Table 1. We

Table 1. The relative errors using the composite trapezoidal rule for Eq.
(20) for x = 5.

n ETn
4 -0.12e-0
8 -0.48e-6
16 -0.11e-21
32 -0.13e-62
64 -0.13e-163
128 -0.53e-404
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observe that the error is much smaller than we have expected taking into account the fact
that f ′(0) = f ′(π).

This example suggests that the composite trapezoidal rule can do much better than
expected for certain types of integrals. The crucial result to understand this behavior is
the Euler-Maclaurin formula (equation (21) below).

Theorem 2. Let f(x) ∈ C2m+2[x0, xn]. Then∫ xn

x0

f(x)dx = Tn(f) +Rn(f)

where the truncation error Rn admits the expansion

Rn(f) =
m∑
l=1

B2l

(2l)!
h2l
(
f (2l−1)(x0)− f (2l−1)(xn)

)
− B2m+2

(2m+ 2)!
(xn − x0)h2m+2f (2m+2)(ζ)(21)

where ζ ∈ [x0, xn] and Bk are the Bernoulli numbers.

The blue text explains what are the Bernoulli numbers and where they come from. All
what is important for us is that they are bounded – se the last line of the blue text.

The Bernoulli polynomials are defined by the generating function

(22)
zexz

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn, |z| < 2π.

The Bernoulli numbers, also denoted by Bn but with no argument, are the values of the
Bernoulli polynomials at x = 0. This means that they can be found from the equality
obtained from Eq. (22) by plugging in x = 0:

(23)
z

ez − 1
=

∞∑
n=0

Bn
n!
zn, |z| < 2π.

Observing that

z

ez − 1
=

1

1 + z
2 + z2

6 + z3

24 + . . .+ zk

(k+1)! + . . .

= 1−

( ∞∑
k=1

zk

(k + 1)!

)
+

( ∞∑
k=1

zk

(k + 1)!

)2

−

( ∞∑
k=1

zk

(k + 1)!

)3

+ . . .

= 1− z

2
+
z2

12
+ . . .

= B0 +B1z +B2
z2

2
+B3

z3

6
+ . . . ,
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we find B0 = 1, B1 = −1
2 , B2 = 1

6 , . . .. Check that

z

ez − 1
− 1 + 1

2z

is even. Therefore, we have

B2n+1 = 0, n = 1, 2, 3, . . . .

The first nonvanishing numbers are

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , . . . .

Theorem 2 has a very important implication of the convergence of the composite trapezoid
rule.

Corollary 3. If f ∈ Ck(R) is periodic and the integral is taken over the full period, then

|Rn| = O(n−k), k →∞.

If the function is infinitely differentiable on [a, b] and either periodic with period (b−a),
or if the function vanishes at a and b together with all of its derivatives then the integration
error of the composite trapezoid rule decays faster that any negative power of n where n
is the number of nodes. In this case we say that the error decays exponentially.

4. The Romberg integration

The Romberg integration is Richardson’s extrapolation applied to integration. We will
show that composite Simpson’s rule is the result of one step of Richardson extrapolation
applied to the composite trapezoid rule. First de discuss composite Simpson’s rule.

4.1. Composite Simpson’s rule. Composite Simpson’s rule is obtained and analyzed in
a similar manner as the composite trapezoid rule.

Theorem 4. Let f(x) ∈ C4[a, b] and let a = x0 < x1 < . . . < xn = b, xi = x0 + jh,
i = 0, 1, 2, . . . , n = 2m, h = (b− a)/n. Then

(24)

∫ b

a
f(x)dx = Sn(f) + ESn (f),

where

(25) Sn(f) =
1

3
h(f0 + fn) +

2

3
h

m−1∑
j=1

f2j +
4

3
h

m∑
j=1

f2j−1,

where fj = f(xj) and there is τ ∈ [a, b] such that

(26) ESn (f) = −(b− a)h4

180
f (iv)(τ).
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Remark The error can be estimated for large n as

ESn (f) ≈ ÊSn (f) =
h4

180

(
f ′′′(a)− f ′′′(b)

)
in the sense that if f ′′′(a) 6= f ′′′(b) then

lim
n→∞

ÊSn (f)

ESn (f)
= 1.

4.2. Obtaining composite Simpson’s rule by Richardson extrapolation. Let f(x)
be a smooth function. Then for the composite trapezoid rule with step h we have:

(27) Th(f) ≡ 1
2h[f(a) + f(b)] + h

n−1∑
j=1

fj =

∫ b

a
f(x)dx+ c1h

2 + c2h
4 +O(h6),

where the coefficients c1 and c2 can be extracted from the Euler-Maclaurin summation
formula:

c1 = − 1
12(f ′(b)− f ′(a)), c2 = 1

720(f ′′′(b)− f ′′′(a)).

Suppose h = (b − a)/n where n is even, i.e., n = 2m. Then for the composite trapezoid
rule with step 2h we have

(28) T2h(f) ≡ 1
22h[f(a) + f(b)] + 2h

m−1∑
j=1

f2j =

∫ b

a
f(x)dx+ c1(2h)2 + c2(2h)4 +O(h6),

Therefore, we oftain the following system of equations

Th(f) = I(f) + c1h
2 + c2h

4 +O(h6),

T2h(f) = I(f) + 4c1h
2 + 16c2h

4 +O(h6),

Multiplying the first equation by 4 and subtracting the second one from it we get

4Th(f)− T2h(f) = 3I(f)− 12c2h
4 +O(h6).

Hence
I(f) = 4

3Th(f)− 1
3T2h(f) + 4c2h

4 +O(h6).

Plugging in the expressions for the trapezoid rule and the coefficient c2 we obtain

I(f) =
3

4

1
2h[f(a) + f(b)] + h

m−1∑
j=1

f2j + h
m∑
j=1

f2j−1


− 1

3

h[f(a) + f(b)] + 2h

m−1∑
j=1

f2j

+
h4

180
(f ′′′(b)− f ′′′(a)) +O(h6)

=
h

3
[f(a) + f(b)] +

2h

3

m−1∑
j=1

f2j +
4h

3

m∑
j=1

f2j−1 +
1

180
h6(f ′′′(b)− f ′′′(a)) +O(h6).(29)

The last expression coincides with composite Simpson’s rule.
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The fact that composite Simpson’s rule is obtained from the composite trapezoid rule by
Richardson’s extrapolation proves that composite Simpson’s rule also has an asymptotic
error expansion, and its coefficients can be obtained from the Euler-Maclaurin formula.
This means that all corollaries that we have drawn from the Euler-Maclaurin formula for
the composite trapezoid rule are also valid for composite Simpson’s rule.

5. Adaptive Simpson’s rule

Reference:

• Wiki: Adaptive Simpson’s method

Adaptive Simpson’s method, also called adaptive Simpson’s rule, is a method of numer-
ical integration proposed by G.F. Kuncir in 1962. Adaptive Simpson’s method uses an
estimate of the error we get from calculating a definite integral using Simpson’s rule. If the
error exceeds a user-specified tolerance, the algorithm subdivides the interval of integration
in two and applies adaptive Simpson’s method to each subinterval in a recursive manner.
The technique is usually much more efficient than composite Simpson’s rule since it uses
fewer function evaluations in places where the function is well-approximated by a cubic
function. A criterion for determining when to stop subdividing an interval, suggested by
J.N. Lyness, is

(30)
1

15
|S(a, c) + S(c, b)− S(a, b)| < ε,

where [a, b] is an interval with midpoint c, S(a, b), S(a, c), and S(c, b) are the estimates
given by Simpson’s rule on the corresponding intervals and ε is the desired tolerance for
the interval.

Simpson’s rule is an interpolatory quadrature rule with three points: the endpoints a and
b, and the midpoint c. Subdividing [a, b] to two equal subintervals [a, c] and c, b] and using
one step of Richardson extrapolation, we obtain a more accurate five-point quadrature rule.
Using Richardson extrapolation, a more accurate estimate for the integral I(f) involving
five function values is combined with a less accurate estimate for three function values by
applying the correction (see Fig. 1). Simpson’s rule is exact for polynomials of degree ≤ 3.
The resulting five-point rule is exact for polynomials of degree ≤ 5.

Figure 1. The interval [a, b], [a, c] and [c, b] and their midpoints for adap-
tive Simpson’s rule.

Now we derive the criterion (30) and justify the the statement about exactness for the
polynomials of degree ≤ 5. Indeed, since the Simpson rule is obtained from the trapezoidal
rule by one step of Richardson extrapolation, it has error expansion of the form

(31) I(f) :=

∫ b

a
f(x)dx = S(a, b) + α4h

4 + α6h
6 + . . . ,

https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
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where h = b− a,

S(a, b) = 1
6h[f(a) + 4f(c) + f(b)],

and the coefficients αn are of the form

αn = γn(f (n)(a)− f (n)(b)).
Making the step twice as small we get

(32) I(f) :=

∫ b

a
f(x)dx = S(a, c) + S(c, b) + α4

h4

16 + α6
h6

64 + . . . .

Multiplying Eq. (37) by 16 and subtracting Eq. (36) from it we obtain

15I(f) = 15[S(a, c) + S(c, b)] + [S(a, c) + S(c, b)− S(a, b)] + α̂6h
6 + . . . .

Therefore

(33) I(f) = S(a, c) + S(c, b) +
1

15
[S(a, c) + S(c, b)− S(a, b)] + β6h

6 + . . . .

Comparing Eqs. (37) and (43) we see that the error in Eq. (37) is approximately given by
1
15 [S(a, c) + S(c, b)− S(a, b)]. Therefore, Eq. (30) is justified. Furthermore, the coefficient
βn is of the form

βn = δn(f (n)(a)− f (n)(b)).
Hence, the five point integration rule given by

(34) Q(f) = S(a, c) + S(c, b) +
1

15
[S(a, c) + S(c, b)− S(a, b)]

is exact on all polynomials of degree ≤ 5.
The program AdaptiveSimpson.m (see below) implements adaptive Simpson’s method.

This is a recursive algorithm refining intervals whenever the error tolerance is not satisfied.
To avoid infinite recursion, the maximal recursion depth is introduced. Integration nodes
of f(x) = sin(1− 30x2) over the interval [0, 1] with the tolerance tol=1.0e-4 is shown in
Fig. 2. There is a total of 109 nodes. They are shown both on the graph and on the x-axis.

% This program integrates the function that you define in myf(x)

% using the adaptive Simpson rule.

%

function AdaptiveSimpson()

clear all

global count nodes

a = -5; b = 5; % the endpoints of the interval

tol = 1.0e-4; % tolerance

maxRecursionDepth = 40; % Maximal depth of recursion

nodes(1) = a;

nodes(2) = b;

count = 2; % count of the number of nodes

c = (a + b)/2;
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Figure 2. Adaptive Simpson’s method applied to integrate f(x) = sin(1−
30x2) over the interval [0, 1].

h = b - a;

fa = myf(a);

fb = myf(b);

fc = myf(c);

S = (h/6)*(fa + 4*fc + fb);

count=count+1;

nodes(count) = c;

I = adaptiveSimpsonsAux( a, b, tol, S, fa, fb, fc, maxRecursionDepth );

fprintf(’I = %.16e\n’,I); % print the result

fprintf(’# of nodes = %i\n’,count);

%% plot the graph

figure;

hold on;

grid;

x = linspace(a,b,1000);

y = myf(x);

plot(x,y,’LineWidth’,2);

plot(nodes,myf(nodes),’o’,’MarkerEdgeColor’,’k’,...

’MarkerSize’,9,’MarkerFaceColor’,’r’)

plot(nodes,zeros(size(nodes)),’o’,’MarkerEdgeColor’,’k’,...

’MarkerSize’,9,’MarkerFaceColor’,’b’)

set(gca,’FontSize’,16);
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end

%% Recursive auxiliary function adaptiveSimpsonsAux

function I = adaptiveSimpsonsAux(a, b, tol, S, fa, fb, fc, bottom)

global count nodes

c = (a + b)/2;

h = b - a;

d = (a + c)/2;

e = (c + b)/2;

fd = myf(d);

fe = myf(e);

% fprintf(’%.12e\n%.12e\n’,d,e);

count = count + 1;

nodes(count) = d;

count = count + 1;

nodes(count) = e;

Sleft = (h/12)*(fa + 4*fd + fc);

Sright = (h/12)*(fc + 4*fe + fb);

S2 = Sleft + Sright;

if bottom <= 0 |abs(S2 - S) <= 15*tol

if( bottom <= 0 )

fprintf(’bottom is reached\n’);

end

I = S2 + (S2 - S)/15;

else

I = adaptiveSimpsonsAux( a, c, tol/2, Sleft, fa, fc, fd, bottom-1) + ...

adaptiveSimpsonsAux( c, b, tol/2, Sright, fc, fb, fe, bottom-1);

end

end

%% The function to be integrated

function y = myf(x)

y = 1./(x.^2+1);

end

6. Gaussian quadrature

Reference:

• A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, SIAM,
2007(available online via UMD library). See Chapter 5 starting from Section 5.3.

https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
https://umaryland.on.worldcat.org/search?databaseList=638&queryString=Numerical+Methods+for+Special+Functions%2C+SIAM%2C+2007#/oclc/137222871
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Gaussian quadrature is designed for computing integrals of the form

(35) I(f) =

∫ b

a
f(x)w(x)dx,

where w(x) is a weight function on [a, b] (a = −∞ and b =∞ are accepted) which means
that it is positive in any open interval in [a, b] and∫ b

a
w(x)|x|ndx <∞, n = 0, 1, 2, . . . .

Note that if w(x) ≡ 1, integral (35) is reduced to the one considered in the previous
sections. Integrals of the form (35) with nontrivial w(x) arise in various applications
involving special functions. See, for example, Gamma function. The key idea behind the
Gaussian quadrature is a clever choice of interpolation nodes in [a, b] that maximizes the
degree of exactness of the quadrature rule.

6.1. Maximizing the degree of exactness. In Gaussian quadrature, the endpoints a
and b are often not chosen as interpolation nodes. For this reason, we will start the
enumeration of interpolation nodes from 1 rather than from 0. As soon as the interpolation
nodes x1 < x2 < . . . < xn, xj ∈ [a, b], j = 1, 2, . . . , n, are picked, one can approximate the
integral using the standard recipe for interpolating quadrature rules:

(36) I(f) =

∫ b

a
f(x)w(x)dx ≈ Q(f) =

∫ b

a
w(x)

n∑
j=1

f(xj)Lj(x) =
n∑
j=1

wjf(xj)

where

(37) wj =

∫ b

a
Lj(x)w(x)dx, Lj(x) =

n∏
k=1
k 6=j

(x− xk)
(xj − xk)

.

Independent of the choice of nodes, such a rule is exact for polynomials of degree ≤ n− 1.

Definition 4. We say a quadrature rule of the form of Eq. (36) has degree of exactness
m if it is exact for all polynomials f(x) of degree ≤ m but not exact for all polynomials
of degree m+ 1.

The quadrature rule of the form (36) has 2n parameters: n nodes and n weights. Hence
we can hope to make it exact for all polynomials of degree 2n−1 as they have 2n coefficients.
The nodes and weights for such a rule will be a solution to the system of 2n− 1 equations

n∑
j=1

wjx
k
j =

∫ b

a
xkw(x)dx, k = 0, 1, . . . , 2n− 1.

Unfortunately, this system is hard to solve. It is nonlinear and ill-conditioned. Therefore,
this approach is not practical. A much better idea is to generate a set of orthogonal
polynomials {pk(x)}nk=0 on [a, b] with respect to the inner product with the weight function
w(x) using the three-term recurrence relations (TTRR). Then the nodes coinciding with

https://en.wikipedia.org/wiki/Gamma_function
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the zeros of the polynomial pn(x) for an interpolatory quadrature rule will render it exact
for all polynomials of degree up to 2n− 1.

6.2. Orthogonal polynomials. We consider a series of polynomials orthogonal with re-
spect to the inner product of the form

(38) (f, g) =

∫ b

a
f(x)g(x)w(x)dx.

The interval [a, b] can be finite or infinite. The weight function w(x) is satisfies the following
requirements.

Definition 5. We say that w(x) is a weight function on [a, b] if it is positive in any open
interval in [a, b] and

(39)

∫ b

a
|x|nw(x)dx <∞, n = 1, 2, . . . .

For any given inner product of the form (38) one can obtain a series of orthogonal
polynomials e.g. using the Gram-Schmidt orthogonalization procedure. Let {qk}Nk=0 be a

basis in PN , the space of polynomials of degree less or equal to N . For example, qk(x) = xk,
k = 0, 1, . . ..

Algorithm 1: Gram-Schmidt orthogonalization

Input : a basis {qk}Nk=0 in PN .

Output: an orthogonal basis {pk}Nk=0 and an orthonormal basis {p̃k}Nk=0.
p0 = q0;

p̃0 = q0
‖q0‖ ;

for k = 1, . . . , N do

pk = qk −
∑k−1

j=0(qk, p̃j)p̃j ;

p̃k = pk
‖pk‖ ;

end

Remark The Gram-Schmidt orthogonalization is good for theoretical purposes but not for
numerical ones. When it is used for computing orthogonal vectors, the generated vectors
quickly become non-orthogonal due to the accumulation of roundoff errors. A somewhat
better algorithm is the modified Gram-Schmidt procedure.

Further we will denote by {pk}Nk=0 the set of monic orthogonal polynomials (with the

leading coefficient equal to one, i.e., pk(x) = xk+. . .) and by {p̃k}Nk=0 the set of orthonormal
polynomials. Any polynomial of degree m, hm(x) can be written uniquely as a linear
combination of the set of orthonormal polynomials {p̃k}mk=0 in the following way

hm(x) =
m∑
k=0

(hm, p̃k)p̃k(x).

In addition,
(hm, pn) = 0 for any n > m.
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Now we establish the following fundamental result in the theory of orthogonal polyno-
mials.

Theorem 5. (1) Given w(x), a weight function on [a, b], there exists a unique family
of monic polynomials {pk}, k being the degree of polynomials, such that

(40)

∫ b

a
pm(x)pn(x)w(x)dx 6= 0 iff m = n,

and we say that {pk}n∈N is the family of monic polynomials corresponding to the
weight function w(x).

(2) Furthermore, pn is the only n-th degree monic polynomial which is orthogonal to
all polynomials of degree smaller than n.

(3) All zeros of the polynomials of this family are real and lie in (a, b).

Proof. (1) The existence of the family of monic orthogonal polynomials follows from the
Gram-Schmidt orthogonalization procedure. Let us prove its uniqueness. Suppose
that there are two families of monic orthogonal polynomials {pk} and {qk}. Since
the polynomials are monic, p0 = q0 = 1. Let m be the smallest integer such that
pm 6= qm. Then qm can be written as

qm =
m∑
k=0

(qm, pk)

(pk, pk)
pk.

Since qk = pk for k < m we have

qm =

m−1∑
k=0

(qm, qk)

(qk, qk)
qk +

(pm, qm)

(pm, pm)
pm =

(pm, qm)

(pm, pm)
pm

due to orthogonality. Therefore, qm is proportional to pm. Since qm and pm are
monic, the coefficient of proportionality must be 1. Hence pm = qm which contra-
dicts to the hypothesis that pm 6= qm.

(2) Any polynomial hm of degree m < n can be written as

hm(x) =
m∑
k=0

(hm, pk)

(pk, pk)
pk(x).

Hence (hm, pn) = 0 for any n > m. Suppose another monic polynomial qn of
degree n is orthogonal to all smaller degree polynomials. Then qn is orthogonal to
{pk}n−1k=0 . Then using the argument from the proof of uniqueness we can show that
qn coincides with pn.

(3) Since (pn, p0) = 0, n ≥ 1 we have∫ b

a
pn(x)w(x)dx = 0.

Hence pn(x) changes sign in (a, b) at least once. Suppose that pn(x) changes sign
in (a, b) k times at the points x1 < x2 < . . . xk. Consider a polynomial qk =
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(x− x1)(x− x2) . . . (x− xk). By construction, pnqk > 0 on (a, b), hence∫ b

a
pn(x)qk(x)w(x)dx > 0.

On the other hand, (pn, qk) = 0 if k < n. Hence k ≥ n. But an n-th degree
polynomial changes sign at most n times. Hence k = n.

�

6.3. Three Term Recurrence Relationships. The next question is how to generate or-
thogonal polynomials efficiently. The Gram-Schmidt orthogonalization procedure requires
a lot of numerical integration and hence leads to integration errors apart from its stability
issues. A better way to generate a family of orthogonal polynomials involves three-term
recurrence relations (TTRRs).

Theorem 6. The monic orthonormal polynomials {pk} associated with the weight function
w(x) on the interval [a, b] satisfy the recurrence relation

p1(x) = (x−B0)p0(x),

pk+1(x) = (x−Bk)pk(x)−Akpk−1(x), k = 1, 2, . . . ,

where

Ak =
‖pk‖2

‖pk−1‖2
, k ≥ 1, Bk =

(xpk, pk)

‖pk‖2
, k ≥ 0.

Proof. Consider the polynomial pk+1 − xpk. It is at most of degree k. Therefore,

pk+1 − xpk =

k∑
i=0

ξipi(x).

Taking the inner product with pj ’s we get

−(xpk, pj) = ξj‖pj‖2.

If j ≤ k − 2 we have

(xpk, pj) = (pk, xpj) = 0.

Hence only ξk and ξk−1 can be nonzero. Therefore

pk+1 − xpk = ξkpk + ξk−1pk−1,

where

Bk = −ξk =
(xpk, pk)

‖pk‖2
.

and

Ak = −ξk−1 =
(xpk, pk−1)

‖pk−1‖2
=

(pk, xpk−1)

‖pk−1‖2
=
‖pk‖2

‖pk−1‖2
.
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The last equality comes from the fact that xpk−1 is a monic polynomial of degree k and
hence

xpk−1(x) = pk +
k−1∑
j=0

ηjpj(x).

�

6.3.1. Orthonormal polynomials.

Exercise Show that the orthonormal set of polynomials {p̃n} also satisfy a TTRR of the
form

xp̃0 = α1p̃1 + β0p̃0,

xp̃k = αk+1p̃k+1 + βkp̃k + αkp̃k−1, k = 1, 2, . . . ,(41)

where αk =
√
Ak = ‖pk‖/‖pk−1‖ and βk = Bk.

Hint: Observe that pk = λkp̃k, where λk = ‖pk‖.

The coefficients Ak and Bk can be hard to find. However, there are some special cases
(called classic cases) for which the recursion coefficients can be given in an explicit analytical
form. The three main families correspond to Jacobi, Hermite, and the generalized Laguerre
polynomials. The standard definitions of the polynomials in these families correspond to
neither monic nor orthonormal series.

6.3.2. Jacobi Polynomials. Notation: P
(α,β)
n (x).

Interval: [−1, 1].
Weight function: w(x) = (1− x)α(1 + x)β, α, β > −1.
Important particular cases:

• Chebyshev polynomials: α = β = −1/2, w(x) = (1− x2)−1/2.
• Legendre polynomials: α = β = 0, w(x) = 1.

TTRR:

a0P1(x) + b0P0(x) = xP0(x),

anPn+1(x) + bnPn(x) + cnPn−1(x) = xPn(x),



20

where

a0 =
2

α+ β + 2
, b0 =

β − α
α+ β + 2

,

an =
2(n+ 1)(n+ α+ β + 1)

(Ln + 1)(Ln + 2)
,

bn =
β2 − α2

Ln(Ln + 2)
,

cn =
2(n+ α)(n+ β)

Ln(Ln + 1)
, n ≥ 1,

Ln = 2n+ α+ β.

6.3.3. Generalized Laguerre polynomials. Notation: L
(α)
n (x).

Interval: [0,∞).
Weight function: w(x) = xαe−x, α > −1.
TTRR:

−L(α)
1 (x) + (α+ 1)L

(α)
0 (x) = xL

(α)
0 (x),

−(n+ 1)L
(α)
n+1(x) + (2n+ α+ 1)L(α)

n (x)− (n+ α)L
(α)
n−1(x) = xL(α)

n (x).

Remark Laguerre polynomials: α = 0, w(x) = e−x.

6.3.4. Hermite polynomials. Notation: Hn(x).
Interval: (−∞,∞).

Weight function: w(x) = e−x
2
.

TTRR:

1
2H1(x) = xH0(x),

1
2Hn+1(x) + nHn−1(x) = xHn(x).

6.4. The exactness of Gaussian quadrature.

Theorem 7. Let {pk(x)}nk=0 be a set of monic orthogonal polynomials on [a, b] with respect
to the inner product

(f, g) =

∫ b

a
f(x)g(x)w(x)dx.

Let xj, j = 1, 2, . . . , n, be zeros of the polynomial pn(x). Then the quadrature rule given by

(42) Q(f) =

n∑
j=1

wjf(xj), wj =

∫ b

a

n∏
k=1
k 6=j

(x− xk)
(xj − xk)

w(x)dx

has degree of exactness 2n− 1.
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Proof. The key idea is the use of the division with residual of the polynomial f(x) by the
polynomial pn(x). Let f(x) be a polynomial of degree ≤ 2n− 1. Then

f(x) = pn(x)q(x) + r(x), where q(x), r(x) ∈ Pn−1,

i.e, q(x) and r(x) are polynomials of degree ≤ n− 1. Since the rule (42) is interpolatory,
it is exact for all polynomials of degree ≤ n− 1, in particular, for r(x). Then we have:

I(f) = I(qpn + r) =

∫ b

a
q(x)pn(x)w(x)dx+

∫ b

a
r(x)w(x)dx =

∫ b

a
r(x)w(x)dx

The last equality is due to the fact that the polynomial pn(x) is orthogonal to all polyno-
mials of degree ≤ n− 1, in particular, to q(x). We continue:

I(f) =

∫ b

a
r(x)w(x)dx = I(r) = Q(r),

because the quadrature rule is exact for all polynomials of degree ≤ n− 1, hence for r(x).
Next, since xj ’s are zeros of pn, we write:

I(f) = Q(r) =
n∑
j=1

wjr(xj) =
n∑
j=1

wj(pn(xj)q(xj) + r(xj)) = Q(f),

which shows that the quadrature rule is exact for all polynomials of degree ≤ (2n− 1).
It remains to prove that the rule (42) is not exact for all polynomials of degree 2n. Let

f(x) be a polynomial of degree 2n. Then q(x) is of degree n and r(x) is of degree ≤ n− 1.
On one hand,

I(f) = I(qpn + r) =

∫ b

a
q(x)pn(x)w(x)dx+

∫ b

a
r(x)w(x)dx = Q(r) + (q, pn).

Let us show that (q, pn) 6= 0. Indeed, expanding q(x) = anx
n + . . . + a0 via the monic

orthogonal polynomials pk, we obtain:

q(x) = anpn +

n−1∑
k=0

ckpk(x).

Hence

(q, pn) = an‖pn‖2 6= 0,

as an 6= 0 and ‖pn‖ 6= 0. On the other hand,

Q(f) = Q(pnq + r) = Q(r),

as xj ’s are the zeros of pn(x). Hence I(f) 6= Q(f) for all polynomials f of degree 2n. �
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6.5. Error estimate. Next we obtain an error estimate for the Gaussian quadrature.

Theorem 8. Let w(x) be a weight function and pn(x) be the monic polynomial of degree n
orthogonal to all polynomials of smaller degrees. Let xj, j = 1, 2, . . . , n, be zeros of pn(x).
Let Q(f) be the quadrature rule defined in Eqs. (36) and (37). Suppose f ∈ C2n[a, b].
Then one can find λ ∈ (a, b) such that

(43)

∫ b

a
f(x)w(x)dx = Q(f) + γn

f (2n)(λ)

(2n)!
, where γn =

∫ b

a
p2n(x)w(x)dx.

Proof. We use the Hermite interpolation to prove the error estimate. There exists a unique
polynomial h2n−1(x) of degree 2n− 1 such that

h2n−1(xj) = f(xj) and h′2n−1(xj) = f ′(xj).

In addition, there exists ζ ∈ (a, b) depending of x such that

f(x) = h2n−1(x) +
f (2n)(ζ)

(2n)!
(x− x1)2 . . . (x− xn)2.

Note that (x − x1) . . . (x − xn) = pn(x) as pn is monic and xj , j = 1, . . . , n, are its roots.
Therefore, ∫ b

a
f(x)w(x)dx =

∫ b

a
h2n−1(x)w(x)dx+

∫ b

a

f (2n)(ζ)

(2n)!
p2n(x)w(x)dx.

Since the quadrature is exact for polynomials of degree 2n − 1, it is exact for h2n−1(x).
Hence ∫ b

a
h2n−1(x)w(x)dx = Q(h2n−1) =

n∑
j=1

h2n−1(xj)wj =

n∑
j=1

f(xj)wj = Q(f).

On the other hand, because p2n(x)w(x) ≥ 0 on [a, b], we can apply the mean value theorem
and get ∫ b

a

f (2n)(ζ)

(2n)!
p2n(x)dx =

f (2n)(λ)

(2n)!

∫ b

a
p2n(x)w(x)dx

for some λ ∈ (a, b). This completes the proof. �

6.6. Example: Gauss-Chebyshev quadrature. For the Gauss-Chebyshev quadrature,
[a, b] = [−1, 1], the weight function is

w(x) :=
1√

1− x2
,

and the nodes are zeros of the Chebyshev polynomial Tn(x):

xj = cos

(
π(j − 1

2)

n

)
, j = 1, . . . , n.

and the weights wn are all equal to π/n. Below we show how one can find the weights wn.
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As we know, the n− 1-st degree Chebyshev interpolant of f(x) is

f(x) ≈ fn−1 =
c0
2

+

n−1∑
i=1

ciTi(x),

where

ci =
2

n

n∑
k=1

f(xk)Ti(xk), xk = cos

(
π(k − 1

2)

n

)
, i = 1, . . . , n.

The Gauss-Chebyshev rule consists in the approximation

I(f) =

∫ 1

−1

f(x)√
1− x2

dx ≈ Q(f) =

∫ 1

−1

fn−1(x)√
1− x2

dx ≡ (fn−1, T0),

as T0(x) ≡ 1. Recall that

(T0, T0) =

∫ 1

−1
(1− x2)−1/2dx =

∫ 1

−1
d(arcsin(x)) = arcsin(1)− arcsin(−1) = π.

Plugging in the expression for fn−1(x) and using the facts that (Ti, Tk) = 0 for i 6= k, we
get

Q(f) =

∫ 1

−1

1√
1− x2

(
c0
2

+
n−1∑
i=1

ciTi(x)

)
dx =

c0
2

(T0, T0) +
n−1∑
i=1

ci(T0, Ti) =
πc0
2
.

Now, using the expression for c0 we obtain

Q(f) =
πc0
2

=
π

2

2

n

n∑
k=1

f(xk) =
π

n

n∑
k=1

f(xk).

Therefore, the weights for the Gauss-Chebyshev quadrature are all equal to π/n:

wi =
π

n
, i = 1, . . . , n.

6.7. A naive way for finding nodes and weights. If the number of nodes n is small,
one can find the nodes as the roots of pn and calculate the weights directly by setting the
rule to be exact for 1, ..., xn−1.

Problem Consider quadrature rules for evaluating integrals on the interval [0,+∞) of the
form

I(f) :=

∫ ∞
0

f(x)e−xdx ≈ Q(f) :=
n∑
j=1

wjf(xj) .

Suppose you wish to find such a rule that is exact for all cubic polynomials.

(1) Show that it suffices to devise a two-point rule: Q(f) = w1f(x1) + w2f(x2).
(2) Find wj and xj , j = 1, 2, for this rule.
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Hint: the Laguerre polynomials orthogonal with respect to the inner product

(f, g) =

∫ ∞
0

f(x)g(x)e−xdx

can be found from the recurrence relationship

L0(x) = 1, L1(x) = 1− x, Lk+1 = 1
k+1 [(2k + 1− x)Lk(x)− kLk−1(x)].

Solution (1) Set x1 and x2 to be the roots of L2(x). Let p(x) be a polynomial of
at most 3-rd degree. Then p(x) = L2(x)q(x) + r(x) where the degrees of the
polynomials q(x) and r(x) do not exceed 1. Then we have

I(p) = I(L2(x)q(x) + r(x)) = I(L2(x)q(x)) + I(r(x))

= I(r) = Q(r) = Q(L2(x)q(x) + r(x)) = Q(p).

We note that I(L2(x)q(x)) = 0 due to orthogonality of L2(x) to all of the poly-
nomials of smaller degrees, I(r) = Q(r) due to exactness of the quadrature for
all polynomials of degree less than 2 by construction, and Q(L2(x)q(x)) = 0 by
construction.

(2) Nodes x1 = 2−
√

2 and x2 = 2 +
√

2 are the roots of the polynomial

L2(x) = 1
2(x2 − 4x+ 2).

To find the weights, we set the following system of equations:

I(1) =

∫ ∞
0

e−xdx = 1 = Q(1) = 1 · w1 + 1 · w2,

I(x) =

∫ ∞
0

xe−xdx = 1 = Q(x) = x1w1 + x2w2.

Solving it we get

w1 =
1 +
√

2

2
√

2
, w2 =

√
2− 1

2
√

2
.

The resulting quadrature rule is

Q(f) =
1 +
√

2

2
√

2
f
(

2−
√

2
)

+

√
2− 1

2
√

2
f
(

2 +
√

2
)
.

6.8. Golub-Welsch algorithm for finding nodes and weights. When n is not so
small, there is a better way to compute the nodes and weights using the TTRRs. It is
known as the Golub-Welsch algorithm.
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6.8.1. Orthonormal polynomials. The TTRRs for the three families of orthogonal polyno-
mials in Sections 6.3.2–6.3.4 are traditionally given in the form

(44) xpk(x) = akpk+1 + bkpk(x) + ckpk−1(x), c0p−1(x) = 0.

The norms of the polynomials obtained from these relationships are different from 1. We
need to convert TTRR (44) to the TTRR for the orthonormal family. Since the orthonormal
polynomials p̃k(x) and the orthogonal polynomials pk(x) relate via

pj(x) = λj p̃j(x),

we have:

(45) xλkp̃k(x) = akλk+1p̃k+1 + bkλkp̃k(x) + ckλk−1p̃k−1(x).

Hence

αk+1 = ak
λk+1

λk
, βk = bk, αk = ck

λk−1
λk

.

Therefore,

αk = ak−1
λk
λk−1

= ck
λk−1
λk

=
√
ak−1ck,

In summary, we obtain αk’s and βk’s for orthonormal families from ak’s, bk’s, and ck’s for
the non-orthonormal ones according to:

(46) αk =
√
ak−1ck, βk = bk.

6.8.2. Derivation of the Golub-Welsh algorithm. The starting point for computing nodes
and weights of a Gaussian n-point rule is the TTRR for the orthonormal polynomials (see
Section 6.8.1 above). Let xj be the one of the nodes, i.e., roots of p̃n(x). Then

α1p̃1(xj) + β0p̃0(xj) = xj p̃0(xj)

α2p̃2(xj) + β1p̃1(xj) + α1p̃0(xj) = xj p̃1(xj)

...(47)

βn−1p̃n−1(xj) + αn−1p̃n−2(xj) = xj p̃n−1(xj).

In the matrix form Eq. (47) is

(48)


β0 α1 0 . . . 0
α1 β1 α2

0 α2 β2
...
0 . . . 0 αn−1 βn−1




p̃0(xj)
p̃1(xj)
p̃2(xj)

...
p̃n−1(xj)

 = xj


p̃0(xj)
p̃1(xj)
p̃2(xj)

...
p̃n−1(xj)

 ,
or

(49) JP (xj) = xjP (xj),

where P (xj) = [p̃0(xj), . . . , p̃n−1(xj)]
>. Therefore, the nodes that we need for the n-point

Gaussian quadrature are the eigenvalues of the matrix J !
Now we need to find a way to obtain the weights. We will use the facts that
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• the Gaussian quadrature is exact for p̃0, p̃1, ..., p̃n−1,
• P (xj) is the eigenvector with the eigenvalue xj , and
• p̃0 is constant and we can easily find it and set the proper scaling for the rest of

the entries of P .

Since

(p̃i, p̃k) =

∫ b

a
p̃i(x)p̃k(x)w(x)dx = δik, 0 ≤ i, k ≤ n− 1,

and the Gaussian quadrature is exact on these polynomials, we have

δik = (p̃i, p̃k) =
n∑
j=1

p̃i(xj)p̃k(xj)wj .

In the matrix form this expression is p̃0(x1) . . . p̃0(xn)
...

...
p̃n−1(x1) . . . p̃n−1(xn)


 w1

. . .

wn


 p̃0(x1) . . . p̃n−1(x1)

...
...

p̃0(xn) . . . p̃n−1(xn)


=

 1
. . .

1

 ,
or, more compactly,

(50) PWP> = I,

where W = diag(w1, w2, . . . , wn) and P = [P (x1), P (x2), . . . , P (xn)], i.e., P is the matrix
whose columns are the properly scaled eigenvectors of J .

It follows from Eq. (50) that P is invertible, hence

W = P−1P−> = (P>P )−1.

Thus,
W−1 = P>P,

which means that

(51)
1

wj
=

n−1∑
k=0

(p̃k(xj))
2 = ‖P (xj)‖2,

where ‖ · ‖ is the Euclidean norm.

On the other hand, given an eigenvector v(j) = [v
(j)
1 , . . . , v

(j)
n ]> of the matrix J , there

exists a constant C such that

v(j) = CP (xj) = C[p̃0(xj), p̃1(xj), . . . , p̃n−1(xj)]
>.

The value of C can be obtained by considering

1 = (p̃0, p̃0) = p̃20

∫ b

a
w(x)dx = p̃20µ0.
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It follows that

p̃0 =
1
√
µ0
.

Hence

v
(j)
1 = Cp̃0 =

C
√
µ0
.

Then
C = v

(j)
1

√
µ0.

Therefore,

P (xj) =
1

C
v(j) =

1

v
(j)
1
√
µ0
v(j).

Finally, we obtain the weight wj associated with the node xj :

(52) wj =
1

‖P (xj)‖2
= µ0

(v
(j)
1 )2

‖v(j)‖2
.

6.8.3. The Golub-Welsch algorithm. Input: µ0 =
∫ b
a w(x)dx

Output: x1, . . ., xn; w1, . . ., wn.

• Build J from α1, ..., αn−1, β0, ..., βn−1.
• Compute eigenvalues ρ1, ..., ρn and eigenvectors v1, ..., vn of J .
• for i = 1 : n
xi = ρi,

wi = µ0
vi(1)

2

‖vi‖2 .

end

The following subroutine implements the Golub-Welsch algorithm in matlab for com-
puting the Gamma function. It tests that for d ∈ N,

Γ(d+ 1) =

∫ ∞
0

xde−xdx = d!

function golubwelsch()

global deg

deg = 7;

n=ceil((deg + 1)/2); % the number of nodes

b=zeros(n,1);

a=zeros(n,1);

b(1)=1;

for j=2:n

k=j-1;

b(j)=b(k)+2;

a(j)=k;

end

mu0=1;

%% form J
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J=zeros(n);

J(1,1)=b(1);

J(1,2)=a(2);

for j=2:n-1

J(j,j)=b(j);

J(j,j-1)=a(j);

J(j,j+1)=a(j+1);

end

J(n,n)=b(n);

J(n,n-1)=a(n);

%% find eigenvalues and eigenvectors

[V E]=eig(J);

%% find weigths

x=zeros(n,1);

w=zeros(n,1);

for j=1:n

x(j)=E(j,j);

w(j)=mu0*V(1,j)^2/norm(V(:,j))^2;

end

%% compute integral

I=sum(myf(x).*w);

Iexact = factorial(deg);

fprintf(’n = %d, I = %d, Iexact = %d, I - Iexact = %d\n’,...

n, I,Iexact,I-Iexact);

end

%%

function y=myf(x)

global deg

p=zeros(deg + 1,1);

p(1)=1;

y=polyval(p,x);

end
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