Final Exam. Solutions.

1. (20 pts) Consider the following iteration:

$$
\begin{aligned}
& e_{1}^{k+1}=e_{1}^{k}+\lambda\left(-2 e_{1}^{k}+e_{2}^{k}\right), \\
& e_{2}^{k+1}=e_{2}^{k}+\lambda\left(e_{1}^{k}-2 e_{2}^{k}\right),
\end{aligned}
$$

where λ is a positive parameter. For each level k, look at the two-norm $\left\|e^{k}\right\|=\sqrt{\left(e_{1}^{k}\right)^{2}+\left(e_{2}^{k}\right)^{2}}$. Find analytically the exact range of positive values of λ such that, starting from any initial vector $\left[e_{1}^{0}, e_{2}^{0}\right]$, the norm $\left\|e^{k}\right\|$ remains bounded for all $k \in \mathbb{N}$ as a result of this iteration. Hint: rewrite the iteration in the matrix form $e^{k+1}=A e^{k}$. Use your knowledge of linear algebra.

Submit a pdf file with your solution.

2. (20 pts) Let $f(x)$ be a function $(N+1)$-times continuously differentiable on $\left[x_{0}, x_{1}\right], x_{0}<$ $x_{1}<\ldots<x_{N}$ be a set of distinct nodes, and $p_{N}(x)$ be the unique interpolation polynomial for f of degree $\leq N$ in these nodes.
(a) Prove that $p_{N}^{\prime}(x)$ interpolates $f^{\prime}(x)$ at some nodes $y_{0}<y_{1}<\ldots<y_{N-1}$ where $y_{j} \in$ $\left(x_{j}, x_{j+1}\right)$. Hint: use the identity

$$
g\left(x_{j+1}\right)=g\left(x_{j}\right)+\int_{x_{j}}^{x_{j+1}} g^{\prime}(t) d t \quad \text { for any differentiable function } g .
$$

(b) Let $v_{j}:=p_{N}\left(x_{j}\right)=f\left(x_{j}\right)$, and $w_{j}:=p_{n}^{\prime}\left(x_{j}\right), j=0,1, \ldots, N$. Prove that then

$$
w=D v,
$$

where $v=\left[v_{0}, \ldots, v_{N}\right]^{\top}, w=\left[w_{0}, \ldots, w_{N}\right]^{\top}$, and D is the $(N+1) \times(N+1)$ differentiation matrix whose entries are given by:

$$
\begin{aligned}
D_{i j}=\frac{a_{i}}{a_{j}\left(x_{i}-x_{j}\right)}, \quad i \neq j, \quad D_{j j}=\sum_{\substack{k=0 \\
k \neq j}}^{N} \frac{1}{\left(x_{j}-x_{k}\right)}, \\
a_{j}:=\prod_{\substack{k=0 \\
k \neq j}}^{N}\left(x_{j}-x_{k}\right) .
\end{aligned}
$$

Hint: write out the polynomial p_{N} in the Lagrange form and see Exercise 6.1 (p. 58) in L. N. Trefethen "Spectral Methods in Matlab".
(c) What is the null space of the matrix D ? Prove your answer.

Submit a pdf file with your solution.

3. (20 pts) Design a quadrature rule with minimal number of nodes that evaluates exactly the integral

$$
I=\int_{0}^{\infty} e^{-x / 2}\left(\frac{1}{x^{1 / 2}}-x^{3 / 2}+x^{5 / 2}\right) d x
$$

- Use this quadrature to evaluate this integral. Provide an answer with fourteen digits.
- Check your answer using a linear combination of some known values of Gamma function.
- Also estimate this integral using any appropriate general-purpose quadrature rule of your choice (e.g. adaptive Simpson's rule, composite trapezoid rule, etc.). For the latter, use a finite interval $[a, b]$ where a is very close to zero and b is reasonably large. It suffices if you get a few first digits correctly.

Hint: you will likely need Chapter 5 in Gil, Segura, Temme, "Numerical Methods for Special Functions" and this and this Wiki articles.

Submit a pdf file with your solution and your code pasted into it.

