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Homework 1. Due Wednesday, Sept. 6.

1. (4 pts) (Problem 7 from Section 2.10 in D. Bindel’s and J. Goodman’s book “Prin-
ciples of Scientific Computing”) Starting with the declarations

float x, y, z, w;

const float oneThird = 1/ (float) 3;

const float oneHalf = 1/ (float) 2;

// const means these never are reassigned

we do lots of arithmetic on the variables x, y, z, w. In each case below, determine
whether the two arithmetic expressions result in the same floating point number
(down to the last bit) as long as no NaN or inf values or denormalized numbers are
produced.

(a)

( x * y ) + ( z - w )

( z - w ) + ( y * x )

(b)

( x + y ) + z

x + ( y + z )

(c)

x * oneHalf + y * oneHalf

( x + y ) * oneHalf

(d) x * oneThird + y * oneThird

( x + y ) * oneThird

2. (10 pts) The tent map of the interval [0, 1] onto itself is defined as

f(x) =

(
2x, x 2 [0, 1/2),

2� 2x, x 2 [1/2, 1].
(1)

Consider the iteration xn+1 = f(xn), n = 0, 1, 2, . . ..

(a) What are the fixed points of this iteration, i.e. the points x⇤ such that x⇤ =
f(x⇤)? Show that these fixed points are unstable, i.e., if you start iteration at
x⇤ + � for any � small enough then the next iterate will be farther away from
x⇤ then x⇤ + �.

(b) Prove that if x0 is rational, then the sequence of iterates generated starting from
x0 is periodic.
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(c) Show that for any period length p, one can find a rational number x0 such that
the sequence of iterates generated starting from x0 is periodic of period p.

(d) Generate several long enough sequences of iterates on a computer using any
suitable language (Matlab, Python, C, etc.) starting from a pseudorandom x0
uniformly distributed on [0, 1) to observe a pattern. I checked in Python and C
that 100 iterates are enough. Report what you observe. If possible, experiment
with single precision and double precision.

(e) Explain the observed behavior of the generated sequences of iterates.
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Homework 2. Due Wednesday, Sept. 13.

1. (6 pts) Consider the polynomial space Pn(x), x 2 [�1, 1]. Let Tk, k = 0, 1, . . . , n, be
the Chebyshev basis in it. The Chebyshev polynomials are defined via

Tk = cos(k arccosx).

(a) Use the trigonometric formula

cos(a) + cos(b) = 2 cos

✓
a+ b

2

◆
cos

✓
a� b

2

◆

to derive the three-term recurrence relationship for the Chebyshev polynomials

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)� Tk�1(x), k = 1, 2, . . . . (1)

(b) Consider the di↵erentiation map

d

dx
: Pn ! Pn�1.

Write the matrix of the di↵erentiation map with respect to the Chebyshev bases
in Pn and Pn�1 for n = 7. Hint: you might find helpful properties of Cheby-

shev polynomials presented in Section 3.3.1 of Gil, Segure, Temme, ”Numerical

Methods For Special Functions”. Chapter 3 of this book is added to Files/Refs

on ELMS.

2. (6 pts) Let A = (aij) be an m⇥ n matrix.

(a) Prove that the l1-norm of A is

kAk1 = max
j

X

i

|aij |,

i.e., the maximal column sum of absolute values. Find the maximizing vector.

(b) Prove that the max-norm or l1-norm of A

kAkmax = max
i

X

j

|aij |,

i.e., the maximal row sum of absolute values. Find the maximizing vector.

3. (6 pts) Consider the matrix

A =


1 10
0 1

�
. (2)

(a) Find the Jordan form of A.

(b) Find the 2-norm of A.

https://epubs.siam.org/doi/book/10.1137/1.9780898717822
https://epubs.siam.org/doi/book/10.1137/1.9780898717822
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Homework 3. Due Wednesday, Sept. 20.

1. (4 pts) Let A be an n ⇥ n matrix. The Rayleigh quotient Q(x) is the following
function defined on all x 2 Rn:

Q(x) :=
x>Ax

x>x
.

(a) Let A be symmetric. Prove that rQ(x) = 0 if and only if x is an eigenvector of
A.

(b) Let A be asymmetric. What are the vectors x at which rQ = 0?

2. (8 pts) The goal of this exercise is to understand how one can compute a QR de-
composition using Householder reflections.

(a) Let u be a unit vector in Rn, i.e., kuk2 = 1. Let P = I � 2uu>. This matrix
performs reflection with respect to the hyperplane orthogonal to the vector u.
Show that P = P> and P 2 = I.

(b) Let x 2 Rn be any vector, x = [x1, . . . , xn]>. Let u be defined as follows:

ũ :=

2

6664

x1 + sign(x1)kxk2
x2
...
xn

3

7775
⌘ x+ sign(x1)kxk2e1, u =

ũ

kũk2
, (1)

where e1 = [1, 0, . . . , 0]>. The matrix with the vector u constructed according
to (1) will be denoted House(x):

P = I � 2uu> ⌘ I � 2
ũũ>

ũ>ũ
⌘ House(x).

Calculate Px.

(c) Let A be an m⇥ n matrix, m � n, with columns aj , j = 1 . . . , n. Let A0 = A.
Let P1 = House(a1). Then A1 := P1A0 has the first column with the first entry
nonzero and the other entries being zero. Next, we define P2 as

P2 =


1 0
0 P̃2

�
.

where the matrix P̃2 = House (A1(2 : m, 2)) . The notation A1(2 : m, 2) is
Matlab’s syntax indicating this is the vector formed by entries 2 through m of
the 2nd column on A1. Then we set A2 = P2A1. And so on.
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This algorithm can be described as follows. Let A0 = A. Then for j = 1, 2, . . . , n
we set

Pj =


I(j�1)⇥(j�1) 0

0 P̃j

�
; P̃j = House (Aj�1(j : m, j)) , Aj = PjAj�1.

Check that the resulting matrix An is upper triangular, its entries (An)ij are all
zeros for i > j. Propose an if-statement in this algorithm that will guarantee
that An has positive entries (An)jj , 1  j  n.

(d) Extract the QR decomposition of A given the matrices Pj , 1  j  n, and An.

3. (6 pts) Prove items (1)–(6) of Theorem 3 on page 14 of LinearAlgebra.pdf.

4. (4 pts) Let A be an m⇥ n matrix where m < n and rows of A are linearly indepen-
dent. Then the system of linear equations Ax = b is underdetermined, i.e., infinitely
many solutions. Among them, we want to find the one that has the minimum 2-norm.
Check that the minimum 2-norm solution is given by

x⇤ = A>(AA>)�1b.

Hint. One way to solve this problem is the following. Check that x⇤ is a solution to
Ax = b. Show that is x⇤ + y is also a solution of Ax = b then Ay = 0. Then check
that the 2-norm of x⇤ + y is minimal if y = 0.

5. (3 pts) Let A be a 3⇥ 3 matrix, and let T be its Schur form, i.e., there is a unitary
matrix Q (i.e., Q⇤Q = QQ⇤ = I where Q⇤ denotes the transpose and complex
conjugate of Q) such that

A = QTQ⇤, where T =

2

4
�1 t12 t13
0 �2 t23
0 0 �3

3

5 .

Assume that �j , j = 1, 2, 3 are all distinct.

(a) Show that if v is an eigenvector of T then Qv is the eigenvector of A correspond-
ing to the same eigenvalue.

(b) Find eigenvectors of T . Hint: Check that v1 = [1, 0, 0]>. Look for v2 of the form
v2 = [a, 1, 0]>, and then for v3 of the form v3 = [b, c, 1]>, where a, b, c are to be
expressed via the entries of the matrix T .

(c) Write out eigenvectors of A in terms of the found eigenvectors of T and the
columns of Q: Q = [q1, q2, q3].
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Homework 4. Due Wednesday, Sept. 27.

1. (5 pts) Read Sections 4.1–4.3 on Ky-Fan norms and low-rank approximations based

on SVD in LinearAlgebra.pdf. Prove the Eckart-Young-Mirsky theorem for any

Ky-Fan norm.

Theorem 1. Let A = U⌃V > be an SVD of A and M be any matrix of the size of A
such that rank(M)  k. Then

kA�Mk � kA� Uk⌃kV
>
k k for any Ky-Fan norm k · k,

where Uk and Vk consist of the first k columns of U and V , respectively, and ⌃k =

diag{�1, . . . ,�k}.

You can use Lemma 1 in Section 4.3 in LinearAlgebra.pdf.

2. (5 pts) Find an upper bound for the condition number for eigenvector rj of a non-

symmetric matrix A assuming that all its eigenvalues are distinct. In what case will

this condition number be large?

3. Consider the Rayleigh Quotient Iteration, a very e�cient algorithm for finding an

eigenpair of a given matrix

Input: x0 6= 0 is the initial guess for an eigenvector

v = x0/kx0k
for k = 0, 1, 2, ...

µk = vTAv
Solve (A� µkI)w = v for w
v = w/kwk.

end for

Here is Matlab program implementing the Rayleigh Quotient Iteration for finding an

eigenpair of a random n⇥ n symmetric matrix starting from a random initial guess:

function RayleighQuotient()

n = 100;

A = rand(n);

A = A’ + A;

v = rand(n,1);

v = v/norm(v);

k = 1;

mu(k) = v’*A*v;

tol = 1e-12;

I = eye(n);
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res = abs(norm(A*v - mu(k)*v)/mu(k));

fprintf(’k = %d: lam = %d\tres = %d\n’,k,mu(k),res);

while res > tol

w = (A - mu(k)*I)\v;

k = k + 1;

v = w/norm(w);

mu(k) = v’*A*v;

res = abs(norm(A*v - mu(k)*v)/mu(k));

fprintf(’k = %d: lam = %d\tres = %d\n’,k,mu(k),res);

end

end

(a) (2 pts)Let A be a symmetric matrix with all distinct eigenvalues. Let µ be not

an eigenvalue of A. Show that if (�, v) is an eigenpair of A then ((�� µ)�1, v)
is an eigenpair of (A� µI)�1

.

(b) (4 pts)The Rayleigh Quotient iteration involves solving the system (A�µkI)w =

v for w. The matrix (A� µkI) is closed to singular. Nevertheless, this problem

is well-conditioned (in exact arithmetic). Explain this phenomenon. Proceed

as follows. Without the loss of generality assume that v is an approximation

for the eigenvector v1 of A, and µ is an approximation to the corresponding

eigenvalue �1. Let kvk = 1. Write v as

v =

 
1�

nX

i=2

�2i

!1/2

v1 +
nX

i=2

�ivi,

where �i, i = 2, . . . , n, are small. Show that the condition number ((A �
µI)�1, v) (see page 88 in [1]) is approximately

�
1�

Pn
i=2 �

2
i

��1/2
which is close

to 1 provided that �i are small.

(c) (4 pts) It is known that the Rayleigh Quotient iteration converges cubically,

which means that the error ek := |�� µk| decays with k so that the limit

lim
k!1

ek+1

e3k
= C 2 (0,1).

This means, that the number of correct digits in µk triples with each iteration.

Try to check this fact experimentally and report your findings. Proceed as

follows. Run the program. Treat the final µk as the exact eigenvalue. Define

ej := |µj�µk| for j = 1, . . . , k�1. Etc. Pick several values of n and make several

runs for each n. Note that you might not observe the cubic rate of convergence

due to too few iterations and floating point arithmetic.
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References

[1] Bindel and Goodman, Principles of scientific computing

http://math.nyu.edu/faculty/shelley/Classes/SciComp/BindelGoodman.pdf
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Homework 5. Due Wednesday, Oct. 4.

1. (5 pts)

(a) Consider the set L of all n⇥ n lower-triangular matrices with positive diagonal

entries.

i. Prove that the product of any two matrices in L is also in L.
ii. Prove that the inverse of any matrix in L is also in L.

This means that the set of all n ⇥ n lower-triangular matrices with positive

diagonal entries forms a group with respect to matrix multiplication.

(b) Prove that the Cholesky decomposition for any n ⇥ n symmetric positive def-

inite matrix is unique. Hint. Proceed from converse. Assume that there are

two Cholesky decompositions A = LL>
and A = MM>

. Show that then

M�1LL>M�>
= I. Conclude that M�1L must be orthogonal. Then use item

(a) of this problem to complete the argument.

2. (5 pts) The Cholesky algorithm is the cheapest way to check if a symmetric matrix

is positive definite.

(a) Program the Cholesky algorithm. If any Ljj turns out to be either complex or

zero, make it terminate with a message: “The matrix is not positive definite”.

(b) Generate a symmetric 100 ⇥ 100 matrix as follows: generate a matrix Ã with

entries being random numbers uniformly distributed in (0, 1) and define A :=

Ã+Ã>
. Use the Cholesky algorithm to check if A is symmetric positive definite.

Compute the eigenvalues of A using a standard command (e.g. eig in MAT-

LAB), find minimal eigenvalue, and check if the conclusion of your Cholesky-

based test for positive definiteness is correct. If A is positive definite, compute

its Cholesky factor using a standard command (e.g. see this help page for MAT-

LAB) and print the norm of the di↵erence o the Cholesky factors computed by

your routine and by the standard one.

(c) Repeat item (b) with A defined by A = Ã>Ã. The point of this task is to check

that your Cholesky routine works correctly.

3. (4 pts) An n⇥ n matrix is called tridiagonal if it is of the form

A =

2

666664

b1 c1 0 . . . 0

a2 b2 c2 0

0 a3 b3 c3
. . .

. . .
. . .

0 . . . 0 an bn

3

777775
.

https://www.mathworks.com/help/matlab/ref/chol.html
https://www.mathworks.com/help/matlab/ref/chol.html


Fall 2023 AMSC660/CMSC660

There is a fast algorithm for solving linear systems Ay = f with invertible and strictly

diagonally dominant (i.e., |bi| > |ai| + |ci| 8i) tridiagonal matrices A. Sometimes it

is referred to as the Thomas algorithm:

function TridiagSolver(a,b,c,f)

n = length(f);

v = zeros(n,1);

y = v;

w = b(1);

y(1) = f(1)/w;

for i=2:n

v(i-1) = c(i-1)/w;

w = b(i) - a(i)*v(i-1);

y(i) = ( f(i) - a(i)*y(i-1) )/w;

end

for j=n-1:-1:1

y(j) = y(j) - v(j)*y(j+1);

end

end

Calculate the number of flops for the Thomas algorithm.

4. (4 pts) Calculate (approximately) the number of flops for the modified Gram-

Schmidt algorithm for computing the QR factorization of an n ⇥ n matrix A. Here

is a vectorized Matlab code implementing the modified Gram-Schmidt.

A = rand(n);

Q = zeros(n); R = zeros(n);

for i = 1 : n

Q(:,i) = A(:,i);

for j = 1 : i-1

R(j,i) = Q(:,j)’*Q(:,i);

Q(:,i) = Q(:,i) - R(j,i)*Q(:,j);

end

R(i,i) = norm(Q(:,i));

Q(:,i) = Q(:,i)/R(i,i);

end

Hint: The command Q(:,j)’*Q(:,i) means
Pn

k=1QkjQki.

The command Q(:,i) = Q(:,i) - R(j,i)*Q(:,j) means the for-loop
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for k = 1 : n

Q(k,i) = Q(k,i) - R(j,i)*Q(k,j);

end

5. (6 pts)

(a) Prove the cyclic property of the trace:

trace(ABC) = trace(BCA) = trace(CAB) (1)

for all A, B , C such that their product is defined and is a square matrix.

(b) Prove that

kAk2F =

dX

i=1

�2
i . (2)

Hint: use the full SVD of A and the cyclic property of trace.

(c) Prove that

kA+Bk2F = kAk2F + kBk2F + 2hA,BiF , (3)

where hA,BiF is the Frobenius inner product. The Frobenius inner product is

defined as

hA,BiF :=

X

i,j

aijbij = trace(A>B) = trace(B>A). (4)
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Homework 6. Due Wednesday, Oct. 11.

Dataset: An incomplete spreadsheet of movie ratings. Data file: MovieRankingData.csv.
If you haven’t done it, please feel free to manually add your own row there. Format: CSV
(can be opened and edited e.g. using Numbers (Mac OS), Excel (Windows)).

Programming: Pick any language you wish. High-level language, e.g. Matlab or
Python, is preferable. All requested algorithms should be programmed from scratch. Please
use standard functions for SVD.

1. (10 pts) Do matrix completion in two ways:

(a) Use the low-rank factorization model A ⇡ XY
> and the objective function of

the form

F (X,Y ) =
1

2
kP⌦(A�XY

>)k2F +
�

2

�
kXk2F + kY k2F

�
.

Try values of � 0.1, 1, and 10, and rank(X) = rank(Y ) = k, k = 1, 2, . . . , 7. Find
X and Y using alternating iteration

X
m+1 = argmin

X
F (X,Y

m), (1)

Y
m+1 = argmin

Y
F (Xm+1

, Y ). (2)

Each of these steps can be further decomposed into a collection of small linear
least squares problems. For example, at each substep of (1), we solve the linear
least squares problem to compute the row i of X:

x>
i = argmin

x

1

2

���x>
Y

>
⌦i

� a⌦i

���
2

2
+

�

2
kxk2, (3)

where ⌦i := {j | (i, j) 2 ⌦}, Y >
⌦i

is the set of columns of Y > with indices in ⌦i,
and a⌦i is the set of known entries of A in its row i. A similar problem can be
set up for each column of Y . Work out solutions to these problems in a manner
similar to the one in Sections 5.3.1 and 5.3.2 of LinearAlgebra.pdf except that
there will be no constraint requiring the entries to be positive. Implement the
resulting algorithm. Comment on how the value of � and the choice of rank
a↵ects the result. Which values of the rank and � seem the most reasonable to
you? You can judge by your own row.

(b) Use the approach of penalizing the nuclear norm in Section 6.3 of LinearAlgebra.pdf
and the iteration

M
j+1 = S�(M

j + P⌦(A�M
j))

Experiment with di↵erent values of �.
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Compare these two approaches for matrix completion. Which one gives more sensible
results? Which one is easier to use? Which one do you find more e�cient?

2. (10 pts) Extract a complete submatrix from the dataset MovieRankingData.csv

by visual inspection with as many columns as you can find. This reduced dataset is
needed for practicing algorithms for nonnegative matrix factorization (NMF).

Compute the NMF A ⇡ WH where W has k columns using

(a) Projected gradient descend.

(b) Lee-Seung scheme.

Plot the Frobenius norm squared vs. iteration number for each solver. Which one
do you find to be the most e�cient?
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Homework 7. Due Wednesday, Oct. 18.

Reference: [NW] J. Nocedal and S. Wright, “Numerical Optimization”, Second Edition,
Springer, 2006 (available online e.g. via UMD library).

1. (5 pts) Prove that for the sequence of iterates of the conjugate gradient algorithm,
the preliminary version (Algorithm 5.1, page 108 in [NW]), the residuals are orthog-
onal, i.e.,

r>k ri = 0, i = 0, 1, . . . , k � 1,

You can use facts proven in class:

span{p0, . . . , pk} = span{r0, . . . , rk} = span{r0, Ar0, . . . , Akr0} = K(r0; k),

p>k Api = 0, i = 0, 1, . . . , k � 1,

and Theorem 5.2 from [NW].

2. (5 pts) Prove that the conjugate gradient algorithm, the preliminary version (Al-
gorithm 5.1, page 108 in [NW]), is equivalent to Algorithm 5.2 (CG) (page 112 in
[NW]), i.e., that

↵k =
r>k rk
p>k Apk

and

�k+1 =
r>k+1rk+1

r>k rk
.

3. (5 pts) Let A be an n⇥ n matrix. A subspace spanned by the columns of an n⇥ k
matrix B is an invariant subspace of A if A maps it into itself, i.e., if AB ⇢ span(B).
This means that there is a k ⇥ k matrix C such that AB = BC.

Prove that if a vector r 2 Rn lies in the k-dimensional subspace spanned by the
columns of B, i.e., if r = By for some y 2 Rk (r is a linear combination of columns
of B with coe�cients y1, ..., yk) then the Krylov subspaces generated by r spot
expanding at degree k � 1, i.e,

span{r, Ar, . . . , Apr} = span{r, Ar, . . . , Ak�1r} 8p � k.

4. (5 pts) Prove Theorem 5.5 from [NW], page 115. Here are the steps that you need
to work out.

(a) Construct a polynomial Q(�) of degree k + 1 with roots �n, �n�1, ..., �n�k+1,
and 1

2(�1 + �n�k) such that Q(0) = 1.
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(b) Argue that P (�) defined as

P (�) =
Q(�)� 1

�

is a polynomial, not a rational function, by referring to the theorem about
factoring polynomials. Cite that theorem.

(c) Use the ansatz

kxk+1 � x⇤k2A  min
P2Pk

max
1in

[1 + �iPk(�i)]
2kx0 � x⇤k2A

Argue that

kxk+1 � x⇤k2A  max
1in

Q2(�i)kx0 � x⇤k2A.

(d) Show that

max
�2[�1,�n�k]

[Q(�)]2  max
�2[�1,�n�k]

�����
�� 1

2(�1 + �n�k)
1
2(�1 + �n�k)

�����

2

.

(e) Find the maximum of the function in the right-hand side of the last equation in
the interval [�1,�n�k].

(f) Finish the proof of the theorem.

5. (5 pts) The goal of this problem is to practice the conjugate gradient algorithm (CG)
with and without preconditioning on a meaningful problem. An explanation for its
setup is a bit long, but it is a typical case that a lot of e↵ort is spent on problem
setup. I have done the setup for you. Your job will be just to code the CG algorithms.

Consider a maze with two exits, A, and B, shown in Fig. 1 taken from this paper
by W. E and E. Vanden-Eijnden. This maze consists of a 20 ⇥ 20 array of cells,
N = 400 cells in total. We will number the cells from 1 to 400 column-wise, i.e., the
first column contains cells with indices from 1 to 20, the second one – from 21 to 40,
and so on. Exit A is at cell 1 while Exit B is at cell 400.

Let A be the adjacency matrix for this maze. A is 400 ⇥ 400, Aij = 1 if cells i and
j are adjacent and there is no wall between them, and Aij = 0 otherwise. A random
walker makes a step from a cell to any adjacent cell not separated by a wall with equal
probability. The stochastic matrix for this random walk can be found as P = R�1A
where R is a diagonal matrix with row sums of A along its diagonal. Row sums of P
are all equal to 1, and Pij is the probability that the random walker located at cell i
will next move to cell j.

https://www.researchgate.net/publication/23464509_Transition-Path_Theory_and_Path-Finding_Algorithms_for_the_Study_of_Rare_Events
https://www.researchgate.net/publication/23464509_Transition-Path_Theory_and_Path-Finding_Algorithms_for_the_Study_of_Rare_Events
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Exit A

Exit B

Figure 1: A maze with two exits.

Our goal is to compute the committor x 2 RN for this random walk, i.e., the vector
of probabilities whose component xi is the probability that the walker located at cell
i will first arrive at exit B rather than A. This vector of probabilities satisfies:

x1 = 0, xN = 1, xi =
NX

j=1

Pijxj , 2  i  N � 1. (1)

Equation (1) is obtained from the following reasoning. The probability of exiting via
B rather than A from cell i is equal to the sum of products of probabilities to move
to a cell j from i and exit from j via B. The sum is over all other cells j.

Equation (1) can be written in the matrix form as follows. We denote P � I by L.
Then

L2:(N�1),2:(N�1)x2:(N�1) = b2:(N�1), (2)

where b is obtained by b = �LeN , where eN is the vector with entries 1, ..., N � 1
equal to zero and entry N equal to 1. You can check this, or just believe me.

Recall that L = R�1A� I. It is not a symmetric matrix, but it can be symmetrized
as follows. We will mark with tilde all submatrices (2 : (N � 1), 2 : (N � 1)) and all
subvectors with indices in 2 : (N � 1).

L̃x̃ = b̃ (3)

(R̃�1Ã� Ĩ)x̃ = b̃ (4)

R̃1/2(R̃�1Ã� Ĩ)R̃�1/2R̃1/2x̃ = R̃1/2b̃ (5)

(R̃�1/2ÃR̃�1/2 � Ĩ)R̃1/2x̃ = R̃1/2b̃ (6)
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The matrix R̃�1/2ÃR̃�1/2 � Ĩ =: Lsymm is symmetric. R̃1/2x̃ =: y, a new vector of
unknowns. R̃1/2b̃ = bsymm is the new right-hand side. It is possible to check (just
believe me), that the matrix �Lsymm is symmetric positive definite.

Thus, here is the linear system with a symmetric positive definite matrix:

�Lsymmy = �bsymm, x2:(N�1) = R̃�1/2y. (7)

The Matlab code random_walk_in_maze.m visualizes the maze, sets up this linear
system, solves it using the built-in solver “\”, visualizes the solution, and plots the
eigenvalues of �Lsymm.

Task. Modify the code to solve Eq. (7) using the conjugate gradient algorithm with-
out and with preconditioning (Algorithms 5.2 and 5.3) in [NW]. Use the incomplete
Cholesky preconditioner. The corresponding Matlab command is

ichol_fac = ichol(sparse(A));

M = ichol_fac*ichol_fac’;

Stop iterations when the residual will have a norm less than 10�12. Plot the norm of
the residuals after each iteration for the CG algorithm with and without precondi-
tioning in the same figure. Use the logarithmic scale along the y-axis. Visualize the
computed solution. Link your code to the pdf file with the homework.
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Homework 7. Due Wednesday, Oct. 18.

Reference: [NW] J. Nocedal and S. Wright, “Numerical Optimization”, Second Edition,
Springer, 2006 (available online e.g. via UMD library).

1. (5 pts) Prove that for the sequence of iterates of the conjugate gradient algorithm,
the preliminary version (Algorithm 5.1, page 108 in [NW]), the residuals are orthog-
onal, i.e.,

r>k ri = 0, i = 0, 1, . . . , k � 1,

You can use facts proven in class:

span{p0, . . . , pk} = span{r0, . . . , rk} = span{r0, Ar0, . . . , Akr0} = K(r0; k),

p>k Api = 0, i = 0, 1, . . . , k � 1,

and Theorem 5.2 from [NW].

2. (5 pts) Prove that the conjugate gradient algorithm, the preliminary version (Al-
gorithm 5.1, page 108 in [NW]), is equivalent to Algorithm 5.2 (CG) (page 112 in
[NW]), i.e., that

↵k =
r>k rk
p>k Apk

and

�k+1 =
r>k+1rk+1

r>k rk
.

3. (5 pts) Let A be an n⇥ n matrix. A subspace spanned by the columns of an n⇥ k
matrix B is an invariant subspace of A if A maps it into itself, i.e., if AB ⇢ span(B).
This means that there is a k ⇥ k matrix C such that AB = BC.

Prove that if a vector r 2 Rn lies in the k-dimensional subspace spanned by the
columns of B, i.e., if r = By for some y 2 Rk (r is a linear combination of columns
of B with coe�cients y1, ..., yk) then the Krylov subspaces generated by r spot
expanding at degree k � 1, i.e,

span{r, Ar, . . . , Apr} = span{r, Ar, . . . , Ak�1r} 8p � k.

4. (5 pts) Prove Theorem 5.5 from [NW], page 115. Here are the steps that you need
to work out.

(a) Construct a polynomial Q(�) of degree k + 1 with roots �n, �n�1, ..., �n�k+1,
and 1

2(�1 + �n�k) such that Q(0) = 1.
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Homework 8. Due Wednesday, Oct. 25.

The goal of this homework is to understand the Nested Dissection algorithm (George,
1973).

Reference: G. Martinsson, 10 lectures on fast direct solvers (2014). Lecture 6.

1. (5 pts) Suppose an invertible matrix A has a block form

A =

2

4
A11 A13

A22 A23

A31 A32 A33

3

5 . (1)

Assume that LU decompositions for A11 and A22 are available: A11 = L11U11, A22 =
L22U22.

(a) Show that A can be factored as

A =

2

4
L11

L22

A31U
�1
11 A32U

�1
22 I

3

5

2

4
I

I

S33

3

5

2

4
U11 L

�1
11 A13

U22 L
�1
22 A23

I

3

5 , (2)

where the matrix S33 is called the Schur compliment. Derive the formula for
S33.

(b) Suppose that the LU decomposition of S33 is found: S33 = L33U33. Write out
the LU decomposition of A.

2. (5 pts) Modify the provided Matlab or Python code implementing the nested dis-
section algorithm to replace the LU factorizations with Cholesky factorizations. This
modification will be specifically designed for symmetric positive definite matrices A.
You can use a built-in function that computes Cholesky factorization.

Test it on the linear system from the problem with the maze from the previous
homework. Save the symmetric positive definite linear matrix, the corresponding
right-hand side, and the solution to it to a file and read this file in your new modified
code. Paste your code to the pdf file with your homework. Report the norm of the
di↵erence between the solution computed by your code and the solution computed
by a standard built-in linear solver.

3. (5 pts) Let the input matrix A be n ⇥ n, symmetric positive definite. Estimate
the number of flops in the resulting nested dissection with Cholesky factorizations.
Do not count multiplications by permutation matrices as, if they were implemented
in e.g. C, they would do only reindexing but involve no flops. Your answer should
contain the exact coe�cient next to the highest power of N . Terms with smaller
powers of N can be incorporated in O(·).

https://amath.colorado.edu/faculty/martinss/2014_CBMS/lectures.html
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Homework 9. Due Friday, Nov. 3.

Reference: [NW] J. Nocedal and S. Wright, “Numerical Optimization”, Second Edition.

1. (5 pts) Suppose that a smooth function f(x) is approximated by a quadratic model
in the neighborhood of a current iterate x:

m(p) = f(x) +rf(x)>p+
1

2
p>Bp,

where B is a symmetric positive definite matrix. Show that then the direction p
found by setting the gradient of m(p) to zero is a descent direction for f(x), i.e.,

cos ✓ := � rf(x)>p

krf(x)kkpk > 0.

Also, bound cos ✓ away from zero in terms of the condition number of B, i.e., (B) =
kBkkB�1k.

2. (5 pts) Let f(x), x 2 Rn, be a smooth arbitrary function. The BFGS method is a
quasi-Newton method with the Hessian approximate built recursively by

Bk+1 = Bk�
BksksTkBk

sTkBksk
+
ykyTk
yTk sk

, where sk := xk+1�xk , yk := rfk+1�rfk .

Let x0 be the starting point and let the initial approximation for the Hessian is the
identity matrix.

(a) Let pk be a descent direction. Show that Wolfe’s condition 2,

rf>
k+1pk � c2rf>

k pk, c2 2 (0, 1)

implies that y>k sk > 0.

(b) Let Bk be symmetric positive definite (SPD). Prove that then Bk+1 is also
SPD, i.e., for any z 2 Rn\{0}, z>Bk+1z > 0. You can use the previous item
of this problem and the Cauchy-Schwarz inequality for the Bk-inner product
(u, v)Bk := v>Bku.

3. (5 pts) The goal of this problem is to code, test, and compare various optimization
techniques on the problem of finding local minima of the potential energy function
of the cluster of 7 atoms interacting according to the Lennard-Jones pair potential
(for brevity, this cluster is denoted by LJ7):

f = 4
7X

i=2

iX

j=1

⇣
r�12
ij � r�6

ij

⌘
, rij :=

q
(xi � xj)2 + (yi � yj)2 + (zi � zj)2. (1)

https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf
https://en.wikipedia.org/wiki/Cauchy?Schwarz_inequality
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It is known that LJ7 has four local energy minima:

Pentagonal bipyramid 
f = -16.50538417

Capped octahedron 
f = -15.93504306

Tricapped tetrahedron 
f = -15.59321094

Bicapped trigonal bipyramid 
f = -15.53306005

min 1 min 4min 3min 2

Add the following search directions to the provided Matlab code LJ_line_search

(or to the Python code that I will provide soon):

• BFGS ([NW], page 24),

• (FRCG) Fletcher-Reeves nonlinear CG ([NW], page 121),

• (PRCG) Polak-Ribiere nonlinear CG ([NW], page 122, eq. (5.45)).

Note that it is recommended to reset the matrix Bk in the BFGS method to identity
every m steps. Try m = 5 and m = 20

Compare the performance of the five algorithms, the three algorithms above, steepest
descent, and Newton’s (already encoded) in terms of the number of iterations required
to achieve convergence and by plotting the graph of f and krfk agaist the iteration
number for each test case. Do it for each of the four initial conditions approximating
the four local minima and ten random initial conditions.

4. (5 pts) (Approx. Problem 3.1 from [NW])

(a) Compute the gradient and the Hessian of the Rosenbrock function

f(x, y) = 100(y � x2)2 + (1� x)2. (2)

Show that (1, 1) is the only local minimizer, and that the Hessian is positive
definite at it.

(b) Program the steepest descent, FRCG, PRCG, Newton’s, and BFGS algorithms
using the backtracking line search. Use them to minimize the Rosenbrock func-
tion (2). First start with the initial guess (1.2, 1.2) and then with the more
di�cult one (�1.2, 1). Set the initial step length ↵0 = 1 and plot the step
length ↵k versus k for each of the methods.

Plot the level sets of the Rosenbrock function using the command contour and
plot the iterations for each method over it.

Plot k(xk, yk)�(x⇤, y⇤)k versus k in the logarithmic scale along the y-axis for each
method. Do you observe a superlinear convergence? Compare the performance
of the methods.

https://pubs.aip.org/aip/jcp/article-abstract/107/20/8568/478108/Isomerization-dynamics-and-ergodicity-in-Ar7?redirectedFrom=fulltext
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Homework 10. Due Friday, Nov. 10.

Reference: [NW] J. Nocedal and S. Wright, “Numerical Optimization”, Second Edition.

1. (5 pts)

(a) Let h·, ·i be an inner product defined on a vector space V . Prove the Cauchy-
Schwarz inequality

|hu, vi|2  hu, uihv, vi 8u, v 2 V. (1)

Hint: Consider the quadratic polynomial

p(t) = hu+ tv, u+ tvi, t 2 R (or C). (2)

Can this polynomial take negative values? Use your answer to conclude what

should be the sign of the discriminant if you set p = 0.

(b) Let B be a real symmetric positive definite n ⇥ n matrix. Use the Cauchy-
Schwarz inequality to prove that

(g>Bg)(g>B�1g) � (g>g)2 8g 2 Rn. (3)

2. (5 pts) Consider Newton’s algorithm for solving the trust-region subproblem ([NW],
Algorithm 4.3, page 87). Prove that Eq. (4.43) is equivalent to Eq. (4.44) in [NW],
i.e., that for

�(�) =
1

�
�

2

4
nX

j=1

(qjg)2

(�j + �)2

3

5
�1/2

,

where (qj ,�j) are the eigenpairs of B, the Newton iteration

�(l+1) = �(l) � �(�(l))

�0(�(l))

is given by

�(l+1) = �(l) +

✓
kplk
kzlk

◆2 kplk ��

�
,

where zl = L�1pl, pl = �(B + �(l)I)�1g, and L is the Cholesky factor of B + �(l)I,
i.e., B + �(l) = LL>. Note: R = L> in Algorithm 4.3.

Hint: You will need to compute the derivative of � and express it in terms of kplk
and k(B+�(l)I)�1gk2. Also, you will need to use the fact that the Cholesky factor of

any SPD matrix M is related to M1/2
via an orthogonal transformation.

https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf
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3. (5 pts) Consider the problem of finding local energy minima of the LJ7 as in Problem
3 of HW9. Consider the same set of initial conditions: four initial conditions close to
its four local minima, and ten random initial conditions.

Implement the BFGS trust-region method with the dogleg subproblem solver. Com-
pare its performance with the trust-region Newton with the exact subproblem solver
implemented in the provided code by creating a table with the number of iterations
required to achieve convergence and plotting the graph of f and krfk against the
iteration number for each test case (the four initial conditions close to the minima
and one representative random configuration initial condition). Do it for each of the
four initial conditions approximating the four local minima and ten random initial
conditions. The set of figures to include is the same as for Problem 3 in HW9.

Comment on the performance of trust-region methods compared to the performance
of line-search methods.

4. (5 pts) (Approx. Problem 3.1 from [NW]) Write a code that applies the two algo-
rithms from the previous problem (the trust-region BFGS with the dogleg solver and
the trust-region Newton with the exact subspace solver) to the Rosenbrock function
as in Problem 4 of HW9:

f(x, y) = 100(y � x2)2 + (1� x)2. (4)

Experiment with the same two initial conditions: (1.2, 1.2) and (�1.2, 1).

Plot the level sets of the Rosenbrock function using the command contour and plot
the iterations for each method over it. Plot k(xk, yk) � (x⇤, y⇤)k versus k in the
logarithmic scale along the y-axis for each method. Compare the performance of the
methods.
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Homework 11. Due Monday, Nov. 20

(20 pts)

The goals of this project are

• to acquire practice in working with real data;

• to explore various optimization methods for solving classification problems and un-
derstand how their performance is a↵ected by their settings.

What to submit. Please submit a report with figures and comments. Link your codes
to the report pdf. These can be e.g. Dropbox links or GitHub links, etc. All optimizers
should be coded from scratch.

Programming language You can use any suitable programming language. Matlab
or Python are preferable. I provide an auxiliary package in Matlab, but it is easy to
rewrite whatever you need from it in Python. The content of this package is described
throughout the rest of this problem description.

• If you are going to use Matlab, you can use mnist.mat as input. Note that 4-pixel
paddings are removed in minst.mat.

• If you are using Python, you can read the binary data files (the link is below) directly
in Python. In this case, you can but do not have to remove the 4-pixel padding. Or
read mnist.mat in Python. Or, even simpler, save the data postprocessed with SVD
in Matab and then read them in Python.

1 MNIST dataset

You will experiment with the MNIST dataset of handwritten digits 0, 1, ..., 9 available at
http://yann.lecun.com/exdb/mnist/. The training set has 60000 28 x 28 grayscale images
of handwritten digits (10 classes) and a testing set has 10000 images.

The data files are in binary format. The code readMNIST.m written by Siddharth Hegde
and slightly modified by me reads these binary files and strips 4-pixel paddings from the
images. The code saveMNIST2mat.m saves the resulting data to a mat file mnist.mat. The
file mnist.mat and all codes I am mentioning are packaged to MNISTaux.zip.

2 Classification problem

The task is to select all images with digits 1 and all images with digits 7 from the training
set, find a dividing surface that separates them, and test this dividing surface on the 1’s
and 7’s from the test set. A sample of 1’s and 7’s from the training set is shown in Fig. 1.

1

http://yann.lecun.com/exdb/mnist/
https://www.mathworks.com/matlabcentral/fileexchange/27675-read-digits-and-labels-from-mnist-database


Figure 1: Samples of 20-by-20 images of 1’s (left) and 7’s (right) from MNIST.

Each image is a point in R400 (the images with stripped paddings are 20-by-20). It
is convenient to reduce dimensionality of data by using SVD and mapping the set to Rd

where d � 400, e.g. d = 3, d = 10, d = 20 – see mnist_2categories_hyperplane.m. We
label all images with “1” by 1 and all images with “7” by -1. The training data set Xtrain
(or X for brevity) is Ntrain-by-d matrix. The vector of labels y is Ntrain-by-1.

We pose three kinds of unconstrained optimization problems.

2.1 A smooth loss function for the optimal hyperplane with Tikhonov
regularization

In the simplest setting, we aim at finding a dividing hyperplane w�x + b = 0 with that
w�xj +b > 0 for all (almost all) xj corresponding to 1 (labelled with yj = 1) and w�xj +b < 0
for all (almost all) xj corresponding to 7 (labelled with yj = −1). Hence, xj is classified
correctly if

sign(yj(w�xj + b)) = 1.
Instead of the discontinuous sign function, we use a smooth sigmoid-type function (we call
it residual)

rj ≡ r(xj ;{w, b}) ∶= log �1 + e−yj(w�xj+b)� (1)

that is close to zero if yj(w�xj + b) > 0 and grows linearly in the negative range of the
aggregate yj(w�xj+b). For brevity, we will denote the d+1-dimensional vector of parameters{w, b} byw. We form the loss function by averaging up the residuals and adding a Tikhonov
regularization term:

f(w) = 1

n

n�
j=1 log �1 + e

−yj(w�xj+b)� + �

2
�w�2. (2)

2



Here n is the number of data points and � is a parameter for the Tikhonov regularization.
This loss function and its derivatives are encoded in functions fun0 and gfun0 at the
bottom of the code mnist_2categories_hyperplane.m. The optimization problem in
mnist_2categories_hyperplane.m is solved using the stochastic inexact Newton method.
The approximations for Newton’s directions are found by the conjugate gradient method.
A line search algorithm is used along each proposed direction. If you set nPCA = 3 in line
5, i.e., d = 3, then the dividing hyperplane is visualized.

2.2 A smooth loss function for the optimal quadratic hypersurface with
Tikhonov regularization

As you will see, a quadratic dividing hypersurface may lead to much fewer misclassified
digits. We are seeking a quadratic hypersurface of the form:

x�Wx + v�x + b.
Hence, the quadratic test function is

q(xj ;w) ∶= yj �x�Wx + v�x + b� . (3)

The loss function is defined in a similar manner:

f(w) = 1

n

n�
j=1 log �1 + e

−q(xj ;w)� + �

2
�w�2. (4)

Here w denotes the d2 + d + 1-dimensional vector of coe�cients of {W,v, b}. This loss
function and its gradient are available in the file qloss.m.

2.3 A nonlinear least squares problem for the optimal quadratic hyper-
surface

Finally, we can design the loss function to fit the framework of the nonlinear least squares
problem:

f(w) = 1

2

n�
j=1[rj(w)]

2, rj(w) = log �1 + e−q(xj ;w)� . (5)

The vector of the residuals and the Jacobian matrix are available in the file Res_and_Jac.m.

3 The research tasks

3.1 Levenberg-Marquardt

Set the number of PCAs d = 20. Find the optimal quadratic dividing surface. With this
number of PCAs and the quadratic surface, you should be able to achieve good accuracy

3



(the ratio of correctly classified test data to the total number of test data is about 99%).
Implement the Levenberg-Marquardt algorithm. A driver for it is
mnist_2categories_quadratic_NLLS.m.
It calls (line 94)

[w,f,gnorm] = LevenbergMarquardt(r_and_J,w,kmax,tol);

You need to code the function LevenbergMarquardt yourself. To avoid problems with
inverting the matrix J�J , regularize it by changing it to

J�J + I ⋅ 10−6.
3.2 Stochastic optimizers

Implement the following stochastic optimizers.

1. Stochastic gradient descent (experiment with various batch sizes and stepsize de-
creasing strategies.

2. Stochastic Nesterov (experiment with various batch sizes). Its deterministic version
is given by Eqs. (61)–(62) in Optimization.pdf.

3. Stochastic Adam (experiment with various batch sizes). Its deterministic version is
proposed in a paper by D. P. Kingma and J. L. Ba “Adam: A Method for Stochastic
Optimization” where ADAM is introduced: https://arxiv.org/pdf/1412.6980.pdf.

Use these optimizers to minimize the loss function (4) and find the optimal dividing
quadratic hypersurface. For each solver, experiment with the appropriate settings. Com-
pare the performance of these optimizers to each other.

Run the stochastic optimizers for the same number of epochs (if you have n data points
and your batch size is m then round(n�m) timesteps is one epoch). Which stochastic
optimizer do you find the most e�cient?

Include a detailed discussion on the performance of these solvers in various settings in
your report. Supplement your report with plots of the estimates for the loss function and
the norm of its gradient. Include tables, if appropriate.

4

https://arxiv.org/pdf/1412.6980.pdf
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Homework 12. Due Friday, December 1

1. (5 pts)

Consider the KKT system

� G A�
A 0

� � −p
�
� = � g

0
� . (1)

whereG is d×d symmetric positive definite and A ism×d and has linearly independent
rows. Show that the matrix

K ∶= � G A�
A 0

�
is of saddle-point type, i.e., it has d positive eigenvalues and m negative ones. Hint:

Find matrices X and S (S is called the Schur compliment) such that

� G A�
A 0

� = � I 0
X I

� � G 0
0 S

� � I X�
0 I

� .
Then use Sylvester’s Law of Inertia (look it up!) to finish the proof.

2. (5 pts) Consider an equality-constrained quadratic program QP

1

2
x
�Gx + c�x → min subject to (2)

Ax = b. (3)

The matrix G is symmetric. Assume that A is full rank (i.e., its rows are linearly
independent) and Z�GZ is positive definite where Z is a basis for the null-space of
A, i.e., AZ = 0.
(a) Write the KKT system for this case in the matrix form.

(b) Show that the matrix of this system K is invertible. Hint: assume that there is

a vector z ∶= (x,y)� such that Kz = 0. Consider the quadratic form z
�Kz, use

logical reasoning and algebra, and arrive at the conclusion that then z = 0.
(c) Conclude that there exists a unique vector (x∗,�∗)� that solves the KKT sys-

tem. Note that since we have only equality constraints, the positivity of � is
irrelevant.

1



3. (5 pts) Consider the following quadratic program with inequality constraints:

f(x, y) = (x − 1)2 + (y − 2.5)2 → min subject to (4)

[1] x − 2y + 2 ≥ 0 (5)

[2] −x − 2y + 6 ≥ 0 (6)

[3] −x + 2y + 2 ≥ 0 (7)

[4] x ≥ 0 (8)

[5] y ≥ 0 (9)

(a) Plot level sets of the objective function and the feasible set.

(b) What is the exact solution to (4)–(9)? Find it analytically with the help of your
figure.

(c) Suppose the initial point is (2,0). Initially, constraints 3 and 5 are active,
hence start with W = {3,5}. Work out all iterations of the active-set method
analytically. The arising linear systems should be very easy to solve. For each
iteration, you need to write out the set W , the KKT system, its solution, i.e.,(px, py), the vector of Lagrange multipliers, and the current iterate (xk, yk).
Plot all iterates on your figure. There should be a total of 5 iterations.

2
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Homework 13. Due Friday, December 8.

1. (10 pts) The invariant probability density for the system evolving in the double-well
potential V (x) = x4 − 2x2 + 1 according to the overdamped Langevin dynamics1 at
temperature �−1 = 1 is given by the Gibbs pdf

f(x) = 1

Z
e−(x4−2x2+1), where Z = � ∞

−∞ e−(x4−2x2+1)dx. (1)

(a) Use the composite trapezoidal rule to find the normalization constant Z. Pick an

interval of integration [−a, a] where a is large enough so that e−(a4−2a2+1) < 10−16.
(b) Find the optimal value of � in order to use the pdf of the form

g�(x) = 1√
2⇡�2

e−x2�(2�2)

for sampling RV with pdf f(x) (Eq. (1)) by means of the acceptance-rejection
method. The optimal � minimizes the constant c.

Hint: First find analytically

x∗ = argmax
x∈R

f(x)
g�(x)

as a function of �. Then you can find the optimal � using e.g. the function

fminbnd in MATLAB. If you use a programming language that does not have

standard function to find a minimum of a function in 1D, plot a graph c(�) and
pick � close to the optimal one.

(c) Sample RV ⌘ with pdf f(x) (Eq. (1)) using the acceptance-rejection method.
Check that the ratio of the total number of samples and the number of accepted
samples is close to C. Plot a properly scaled histogram for the obtained samples
and compare it with the exact distribution (with Z found numerically). An
example of generating such a histogram is given in the code in Section 3.3 in
MonteCarloAMSC660.pdf.

Hint: to generate samples of N (0,�2), generate samples from N (0,1) and mul-

tiply them by �.

(d) Find E[�x�] for the pdf f(x) using the Monte Carlo integration.

Submit a single pdf document. Link your codes to it, or print them to pdfs and

append them to the main pdf.

1The overdamped Langenin stochastic di↵erential equation is dX = −∇V (X)dt +�2�−1dW where dW
is the increment of the standard Brownian motion.

1

https://en.wikipedia.org/wiki/Trapezoidal_rule
https://www.mathworks.com/help/matlab/ref/fminbnd.html


2. (10 pts)

The unit cube in Rd centered at the origin is the set

Cd = �x ∈ Rd � max
1≤i≤d �xi� ≤ 1

2� ,
while the unit ball in Rd centered at the origin is the set

Bd = �x ∈ Rd � d�
i=1x

2
i ≤ 1� .

Obviously, all centers of the (d− 1)-dimensional faces of Cd, i.e., the points with one
coordinate ±1

2 and the rest zeros, lie inside Bd. The most remote points of Cd from

the origin are the corners with all coordinates ±1
2 . The distance of the corner of Cd

from the origin is
√
d�2. For d ≥ 5, the corners of Cd and some their neighborhoods

lie outside Bd. The d-dimensional volume of Cd is 1, while the volume of the d-
dimensional unit ball Bd tends to zero as d→∞:

Vol(Cd) = 1, Vol(Bd) = ⇡d�2
d
2� �d2� → 0 as d→∞.

Therefore, the fraction of the unit cube Cd lying inside Bd also tends to zero as
d→∞. You can read about this phenomenon in [1].

Task. Calculate Vol(Bd ∩ Cd) in d = 5,10,15,20 using Monte Carlo integration in
two ways.

(a) Use a sequence of independent uniformly distributed random variables in the
unit cube Cd.

(b) Use a sequence of independent uniformly distributed random variables in the
unit ball Bd. (You need to think of a way to generate such a random variable.)
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