
LINEAR ALGEBRA

MARIA CAMERON

Contents

1. Linear Algebra I: theory and conditioning 2
1.1. Vector spaces 3
1.2. Vector norms 5
1.3. Matrix norm 7
1.4. Eigenvalues and eigenvectors 7
1.5. Normal equations 11
1.6. The QR decomposition and Gram-Schmidt Algorithm 12
1.7. Singular Value Decomposition (SVD) 13
2. Condition number 17
2.1. Condition numbers for differentiable functions 18
2.2. Condition number for matrix-vector multiplication 18
2.3. Condition number for solving linear systems 19
2.4. The condition number of a matrix 19
2.5. Condition numbers for eigenvalue problem 19
3. Linear Algebra II: algorithms 23
3.1. Solving Ax = b via LU factorization with pivoting 23
3.2. Cholesky decomposition 27
3.3. Properties of symmetric positive definite matrices 28
4. Linear Algebra III: Matrix factorization for low-rank approximation 31
4.1. The full SVD and the truncated SVD 31
4.2. Ky-Fan norms 31
4.3. Eckart-Young-Mirsky theorem 32
4.4. Gradient descent for SPD quadratic functions 33
5. Nonnegative matrix factorization (NMF) 35
5.1. Projected gradient descent 35
5.2. Multiplicative update scheme by Lee and Seung 36
5.3. Coordinate descent (CD) 37
6. Collaborative filtering and matrix completion 38
6.1. Two simple trial models 39
6.2. Low-rank factorization 40
6.3. Penalizing nuclear norm 42
7. CUR matrix decomposition 43

1

2 MARIA CAMERON

8. Conjugate gradient Methods 44
9. Direct methods for solving linear systems with sparse and structured matrices 44
9.1. A model problem 44
References 47

1. Linear Algebra I: theory and conditioning

References:

• D. Bindel’s and J. Goodman’s book “Principles of Scientific Computing”, Chapter
4.

• J. Demmel, “Applied Numerical Linear Algebra”, Section 1.7 (vector and matrix
norms) and Chapter 3.

Linear algebra is one of the most important tools of modern computational science. In
recent years, the importance of numerical linear algebra has increased due to the need
to solve large-scale problems arising in data science. For example, numerous personal
recommendations that you encounter in such services as Netflix, Amazon, etc., are obtained
for you by solving certain large-scale optimization problems with algorithms heavy on the
use of linear algebra. New methods for solving large-scale linear algebra problems have
been developed in recent years. These include, e.g., the butterfly algorithm for fast Fourier
transform, fast direct algorithms for solving structured linear systems, etc.

The operations of linear algebra include but are not limited to:

• solving linear systems of algebraic equations;
• finding subspaces;
• matrix factorization (PLU, QR, SVD, CUR, etc);
• solving least squares problems;
• computing eigenvectors and eigenvalues.

In this section, we will go over the aspect of linear algebra that you should know as a
user of linear algebra software: basic concepts, basic theory, and conditioning. The last
item is extremely important as you should be aware of what can go wrong when you are
using some standard linear algebra operations.

There are publicly available linear algebra libraries on low-level languages: clapack

(C/C++), lapack (Fortran). Matlab contains excellent linear algebra commands for both
dense and sparse matrices.

Standard linear algebra algorithms are backward stable. This means that the output
of any standard linear algebra algorithm is as accurate as the condition number for the
problem allows. Recall that

• an algorithm is backward stable if its output is the exact answer for a slightly
perturbed input;

• the condition number for the problem is the strict upper bound for the ratio of the
relative error in the output to the relative error in the input that caused it.

https://epubs.siam.org/doi/book/10.1137/1.9781611971446?mobileUi=0
https://dl.acm.org/doi/10.1137/08071291X
https://dl.acm.org/doi/10.1137/08071291X
https://www.cs.cornell.edu/courses/cs6220/2017fa/RS2012.pdf

LINEAR ALGEBRA 3

This means, in particular, that the error produced by a backward stable algorithm can be
large if the condition number of the problem being solved is large.

We start with reviewing the basic concepts of linear algebra.

1.1. Vector spaces. Typically we are happy with the results of any numerical algorithm
if the produced error is small. If the error is multi- or infinite-dimensional, in order to
say that it is small, we need some reasonable way to convert it to a single nonnegative
number and compare it with some threshold. An appropriate vector norm often serves this
purpose.

Definition 1. A vector space V is a set closed with respect to the operations of addition
“+”: V × V → V , and scalar multiplication “·α”: V → V . These operations satisfy the
following properties.

(1) a+ b = b+ a,

(2) (a+ b) + c = a+ (b+ c),

(3) α(a+ b) = αa+ αb,

(4) (α+ β)a = αa+ βa,

(5) there is 0 ∈ V s.t. a+ 0 = a for any a ∈ V,

(6) for any a ∈ V there is (−a) ∈ V s.t. a+ (−a) = 0,

(7) α(βa) = (αβ)a,

(8) 1a = a for any a ∈ V.

Exersise 1. Prove that 0a = 0 for any a ∈ V .

Below we remind some basic concepts. Please read Sections 4.2.1 and 4.2.2 in Bindel
and Goodman for more details.

• A subspace W of a vector space V is a subset of V that is a vector space itself with
respect to the same operations as in V , i.e., W is closed under addition and scalar
multiplication: for any w1, w2 ∈ W and α ∈ R or C, w1 + w2 ∈ W and αw1 ∈ W .
Therefore, to check if W is a subspace, it suffices to check if it is closed under
addition and scalar multiplication. The properties of the operations are inherited
for those in V .

• The span of vectors v1, ..., vn in V is the set of their all possible linear combinations.
• We say that vectors v1, ..., vn are linearly independent if any their zero linear
combination implies that all of its coefficients are zero.

• A basis of V is a subset of vectors {bi}i∈I such that:
(1) any v ∈ V can be represented as

v =
∑
i∈I

αibi,

4 MARIA CAMERON

(2) and the {bi}i∈I is minimal in the sense such that for any m ∈ I one can find
v ∈ V such that

v −
∑

i∈I\m

αibi ̸= 0

for any set of values of αi, i ∈ I\{m}.
Recall a theorem in linear algebra saying that if {bi}ni=1 is a basis in V , then any
other basis in V also has n vectors.

• If the number of vectors in a basis of V is finite, this number is called the dimension
of V . Otherwise, the vector space is infinitely dimensional.

• A linear transformation or a linear map for a vector space V to a vector space W
is a map L : V → W such that for any v1, v2 ∈ V and any α ∈ R or C

L(v1 + v2) = L(v1) + L(v2) and L(αv1) = αL(v1).

Let B = {bi} be a basis in V and E = {ei} be a basis in W . Then by linearity, we
have:

L(v) = L

∑
j

vjbj

 =
∑
j

vjL(bj) =
∑
j

vj
∑
i

aijei where L(bj) =
∑
i

aijei.

Therefore, we can define the matrix of the linear transformation

A =E [L]B = (aij).

Hence, the columns of the matrix of linear transformation from V to W are the
images of the basis vectors in V written in the basis in W .

• A matrix product AB is defined if and only if the number of columns in A is equal
the number of rows in B. The matrix product AB corresponds to a composition of
linear transformations with matrices A and B. Matrix multiplication is associative
but not commutative.

• For a matrix A = (aij) the transpose is defined by A⊤ := (aji). If A has complex
entries, than its adjoint is defined as its transpose with complex conjugation: A∗ :=
(āji) .

Now let us list some examples illustrating these concepts.

Example (1) Rn is an n-dimensional vector space. Its standard basis is

E = {e1, e2, . . . , en} =




1
0
...
0

 ,


0
1
...
0

 , · · · ,


0
0
...
1


}.

The subset V0 defined as

V0 :=

{
v ∈ Rn

n∑
i=1

vi = 0

}

LINEAR ALGEBRA 5

is an (n− 1)-dimensional subspace of Rn, while the subset

V1 :=

{
v ∈ Rn

n∑
i=1

vi = 1

}
is not a subspace as it is not closed under addition and scalar multiplication.

(2) The set of polynomials of degree ≤ n denoted by Pn is an (n + 1)-dimensional
vector space. One basis for Pn is the set

X := {1, x, . . . , xn}.

(3) An example of linear transformation from Pn to Pn−1 is the differentiation:

d

dx
: Pn → Pn−1.

Its matrix in the basis X is

DX :=


0 1 0 . . . 0
0 0 2 . . .

. . .

0 . . . 0 n

 .

If we pick another basis, for example, Chebyshev’s basis, the differentiation matrix
will be different.

(4) Examples of infinite-dimensional spaces are
• P, the space of all polynomials,
• C(a, b), the space of all continuous functions on an interval (a, b),
• the space of all continuous functions on [a, b] satisfying the homogeneous
boundary conditions f(a) = f(b) = 0.

1.2. Vector norms.

Definition 2. Norm is a function defined on a vector space V :

N : V −→ R+ ≡ [0,+∞]

such that

(1) ∥a∥ ≥ 0, ∥a∥ = 0 iff a = 0,

(2) ∥αa∥ = |α|∥a∥,
(3) ∥a+ b∥ ≤ ∥a∥+ ∥b∥.

Example The space of continuous functions on the interval [a, b] with the maximum norm

V = C([a, b]), ∥f∥ = sup
[a,b]

|f(x)|.

If the interval is finite, ∥f∥ = max[a,b] |f(x)|.

6 MARIA CAMERON

Example The space of continuous functions on the interval [a, b] with the maximum norm

V = Lp([a, b]), ∥f∥ =

(∫ b

a
|f(x)|pdx

)1/p

.

Example The space V = lp of all sequences {ak}∞k=1 such that

∥{a}∥p :=

(∞∑
k=1

|ak|p
)1/p

< ∞.

In particular, l1 is the space of all absolutely convergent sequences as

∥{a}∥1 :=
∞∑
k=1

|ak| < ∞.

Example The space V = l∞ of all sequences {ak}∞k=1 such that

∥{a}∥∞ := sup
k

|ak| < ∞.

In other words, l∞ is the space of all bounded sequences.

The concept of orthogonality is generalized to vector spaces via the notion of the inner
product.

Definition 3. An inner product is a function (·, ·) : V × V −→ R or C satisfying

(1) (a,a) ≥ 0, (a,a) = 0 iff a = 0,

(2) (a,b) = (b,a),

(3) (a,b+ c) = (a,b) + (a, c),

(4) (αa,b) = α(a,b).

The norm induced by an inner product is given by ∥f∥ =
√

(f, f). The norms that are
associated with inner products are especially important.

Example (1) Let V = Rd. The dot product v⊤w is an inner product.
(2) Let V = Rd and A be a symmetric positive definite d × d matrix, i.e., for all

v ∈ Rd\{0}, v⊤Av > 0. Then

(v, w)A := w⊤Av

is an inner product.
(3) The Legendre inner product:

f, g ∈ L2([a, b]), (f, g) =

∫ b

a
f(x)g(x)dx.

(4) the Chebyshev inner product:

f, g ∈ C([−1, 1]), (f, g) =

∫ b

a

f(x)g(x)√
1− x2

dx.

LINEAR ALGEBRA 7

Suppose we are looking at the error e(x) = f(x)− p(x) where f is a given function

and p is its approximation. The function w := (1−x2)−1/2 is the Chebyshev weight
function. It puts more weight on points near the ends of the interval, i.e., the error
near the ends of the interval contributes more to the norm than the error near its
midpoint. This choice of the weight function eliminated the Runge phenomenon of
interpolation error being large near the ends of the interpolation interval.

(5) Hermite inner product:

f, g ∈ C([−∞,∞]), (f, g) =

∫ ∞

−∞
f(x)g(x)e−x2

dx.

Suppose we are looking at the error e(x) = f(x) − p(x) where f is a given func-
tion and p is its approximation. Only the error around the origin will contribute
significantly to the norm.

1.3. Matrix norm.

Definition 4. The norm of a matrix associated with the vector norm ∥ · ∥ is defined as

(1) ∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

.

The geometric sense of the matrix norm is the maximal elongation of a unit vector as a
result of the corresponding linear transformation.

Exersise 2. Let A = (aij) be an m× n matrix. Show that then:

(1) For the l1-norm,

∥A∥1 = max
j

∑
i

|aij |,

i.e., the maximal column sum of absolute values. Find the maximizing vector.
(2) For the max-norm or l∞-norm

∥A∥max = max
i

∑
j

|aij |,

i.e., the maximal row sum of absolute values. Find the maximizing vector.

To solve this exercise, first find an upper bound for ∥A∥, then find a maximizing vector
and show that this bound is achieved on this vector.

1.4. Eigenvalues and eigenvectors. Finding eigenvalues and eigenvectors is very useful
in many different contexts. For example, the general analytic solution to a linear system of
ODEs ẋ = Ax is often written in terms of eigenvalues and eigenvectors of A. The 2-norm of
A is expressed in terms of eigenvalues of A⊤A. The eigenvectors corresponding to maximal
eigenvalues serve as principle components in principal component analysis and diffusion
maps.

8 MARIA CAMERON

1.4.1. Diagonalizable matrices. Recall that an n× n matrix A is called diagonalizable if it
has n linearly independent eigenvectors. In this case, A can we written as

(2) A = RΛR−1 ≡ RΛL =

[
r1 r2 · · · rn
↓ ↓ ↓

]
λ1

λ2

. . .

λn




l1 →
l2 →
...
ln →

 .

The columns of R are the right eigenvectors of A. They satisfy:

Arj = λjrj .

The rows of L := R−1 are the left eigenvectors of A satisfying

ljA = λjlj .

Even if A is real, eigenvectors and eigenvalues do not need to be real. They are complex
in the general case.

1.4.2. Symmetric matrices.

Proposition 1. If A is real and symmetric, there exists an orthonormal basis of real
eigenvectors. Moreover, the eigenvalues are real, and the eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof. We will only prove that the eigenvalues are real and the eigenvectors corresponding
to distinct eigenvalues are orthogonal. The Existence of an orthonormal basis follows from
the Jordan Decomposition theorem proved in MATH405.

Let λ be an eigenvalue, and r be the corresponding unit right eigenvector. Then r∗ := r̄⊤

is the left eigenvector for λ̄. Indeed, since A is real and symmetric, we have:

Ar = λr, hence (Ar)∗ = (λr)∗, i.e. r∗A = λ̄r∗,

which shows that r∗ is the left eigenvector for λ̄. Then, sandwiching A between r∗ and r
we get

r∗Ar = r∗(Ar) = λr∗r = λ∥r∥2 = λ.

On the other hand, applying A to r∗, we get

r∗Ar = (Ar)∗r = λ̄r∗r = λ̄∥r∥2 = λ̄.

Therefore, λ = λ̄, i.e., λ is real.
Now we show that eigenvectors corresponding to distinct eigenvalues are orthogonal. Let

Ar1 = λ1r1 and Ar2 = λ2r2 with λ1 ̸= λ2. Then

r∗1Ar2 = λ1r
∗
1r2 = λ2r

∗
1r2.

Since λ1 ̸= λ2, r
∗
1r2 must be zero. Hence r1 and r2 are orthogonal.

□

Note that we can always pick real eigenvectors for real eigenvalues of a real symmetric
matrix.

LINEAR ALGEBRA 9

Exersise 3. Let A = (aij) be an m× n matrix. Show that then for the vector l2-norm,

∥A∥2 =
√
ρ(A⊤A).

Solution. Recall that the vector 2-norm is given by ∥x∥2 =
√
x⊤x. Using this we get

∥A∥2 = max
∥x∥2=1

∥Ax∥2 = max
x⊤x=1

√
x⊤A⊤Ax.

Since A⊤A is symmetric, its eigendecomposition is given by

A⊤A = UΛU⊤,

where U is an orthogonal matrix (i.e., U⊤U = UU⊤ = I, or U⊤ = U−1) whose columns
are the eigenvectors of A, and Λ is a diagonal matrix whose diagonal entries are the
corresponding eigenvalues. Using this we continue:

∥A∥2 = max
x⊤x=1

√
x⊤UΛU⊤x = max

x⊤x=1

√
(U⊤x)⊤Λ(U⊤x).

Now we note that

∥x∥2 = ∥U⊤x∥2
because

∥x∥22 = x⊤x = x⊤UU⊤x = (U⊤x)⊤(U⊤x) = ∥U⊤x∥2.

Let us denote U⊤x by y. Then

∥A∥2 = max
y⊤y=1

√
y⊤Λy = max

y⊤y=1

√
y21λ1 + y22λ2 + . . .+ y2nλn = max

j=1,...,n

√
|λn| ≡

√
ρ(A⊤A).

Remark If A is a square real symmetric matrix, then the eigenvalues of A⊤A are squares
of the eigenvalues of A. Hence the 2-norm of A is the spectral radius of A:

∥A∥2 = max
i

|λi| = ρ(A).

1.4.3. Defective matrices and the Jordan form. If matrix is not diagonalizable, it is called
defective. An example of such a matrix is

(3) A =

[
1 10
0 1

]
.

This matrix has eigenvalue 1 of algebraic multiplicity 1 and just one eigenvector [1, 0]⊤.
In theoretical linear algebra, the Jordan canonical form J is often considered for such
matrices. The Jordan decomposition of A is

(4) A = V JV −1

10 MARIA CAMERON

where columns of V form the Jordan basis and J is a block-diagonal matrix with blocks of
the form

Jj :=


λj 1

λj 1
. . .

. . .

λj 1
λj

 .

There is a unique eigenvector vj corresponding to each block.

Exersise 4. Find the Jordan form and the Jordan basis for the matrix in (3).

In numerical linear algebra, the Jordan form is rarely computed. The reason is that it is
unstable with respect to small perturbations of A. For example, consider a 16× 16 matrix
A

(5) A :=


0 1

0 1
. . .

. . .

0 1
0

 .

It is already in the Jordan form consisting of a single block, and its unique eigenvalue of
algebraic multiplicity 16 is zero. Indeed,

det(λI −A) = λ16 = 0.

Now consider a perturbation of A such that the zero at its bottom left corner is replaced
with 10−16:

(6) A+ δA :=


0 1

0 1
. . .

. . .

0 1
10−16 0

 .

The eigenvalues of A+ δA are the roots of

det(λI −A) = λ16 − 10−16 = 0.

There are 16 distinct complex eigenvalues located at the corners of the 16-gon in the
complex plane:

λk = 0.1ei2πk/16, k = 0, 1, . . . 15.

Hence, the Jordan form of A will be diag{λ0, . . . , λ15} which is not close to (6). Thus,
we see that a perturbation of the size of the machine epsilon has a dramatic effect on the
Jordan form and on the magnitudes of the eigenvalues of A.

LINEAR ALGEBRA 11

1.4.4. The Schur form. For reasons indicated in Section 1.4.3 the Jordan form of a matrix
is rarely computed. Another eigenvalue revealing form is much more preferable. This is
the Schur form defined by:

A = QTQ⊤

where T is upper-triangular,

T =


λ1 t12 t13 . . . t1n

λ2 t23 . . . t2n
. . .

. . .

λn−1 tn−1,n

λn

 .

and Q is orthogonal (or unitary if it is complex), i.e., its columns form an orthonormal
basis, or Q∗Q = I. Often it is more preferable to deal with the so-called real Schur form in
which complex pairs of eigenvalues form 2× 2 blocks along the diagonal of T . Then both
Q and T are real. The Matlab command to compute the Schur form is

A = rand(10);

[Q,T] = schur(A);

If A is real, this command computes the real Schur form. If you would like the complex
Schur form, type

[Q,T] = schur(A,’complex’);

Exersise 5. Let u + iv be a complex eigenvector of a real matrix A, and µ + iν be the
corresponding eigenvalue. Show that

(7) A[u, v] = [u, v]

[
µ ν

−ν µ

]
,

i.e., the vectors u and v span a 2-dimensional invariant subspace of A.

1.5. Normal equations. Consider an overdetermined system of linear equations

Ax = b, Am×n, m ≥ n.

Such problems arise, for example, when we want to find a line that best fits measured data
points (xi, yi), i = 1, . . . ,m, that ideally lie on a straight line ax+ b = y. Thus, we set up
the following system:

(8)


x1 1
x2 1
...

...
xm 1


[
a
b

]
=


y1
y2
...
ym

 .

The system (8) typically does not have a solution unless the points happen to lie on the
same line. However, we always can find a line ax + b that fits the data best in the least
squares sense, the so-called least squares solution.

12 MARIA CAMERON

Definition 5. We say that x∗ is the least squares solution of Ax = b, A is m×n , m ≥ n,
if

x∗ = arg min
x∈Rn

∥Ax− b∥.

Proposition 2. Let A be m× n, m ≥ n, rank(A) = n. Then the least squares solution x∗

to Ax = b is given by

(9) x∗ = (A⊤A)−1A⊤b.

Proof. Note that x∗ is the solution of the so-called normal equation that is obtained from
Ax = b by multiplication by A⊤ from the left. Since the matrix A has full rank, i.e.,
rank(A) = n, the matrix A⊤A is symmetric positive definite. Write x = x∗ + e and
consider ∥Ax− b∥2. We want to show that it is minimal if and only if e = 0, i.e., x = x∗.

∥Ax− b∥2 = (Ax− b)⊤(Ax− b) = (Ax∗ +Ae− b)⊤(Ax∗ +Ae− b) =

∥Ae∥2 + ∥Ax∗ − b∥2 + 2(Ae)⊤(Ax∗ − b) =

∥Ae∥2 + ∥Ax∗ − b∥2 + 2e⊤(A⊤Ax∗ −A⊤b) =

∥Ae∥2 + ∥Ax∗ − b∥2 ≥ ∥Ax∗ − b∥2

The equality occurs if and only if e = 0, i.e., the norm ∥Ax − b∥ is minimal if and only if
x = x∗ given by Eq. (9). □

1.6. The QR decomposition and Gram-Schmidt Algorithm.

Theorem 1. Let A be m × n, m ≥ n. Suppose that A has full column rank. Then
there exist a unique m × n orthogonal matrix Q, i.e., Q⊤Q = In×n, and a unique n × n
upper-triangular matrix R with positive diagonals rii > 0 such that A = QR.

Proof. The proof of this theorem is given by the Gram-Schmidt orthogonalization process.

Algorithm 1: Gram-Schmidt orthogonalization

Input : matrix A = [a1 a2 . . . an], m× n, rank(A) = n.
Output: orthogonal matrix Q m× n, Q⊤Q = In×n, and upper-triangular n× n

matrix R with rii > 0.
for i = 1, . . . , n do

qi = ai;

for j = 1, . . . , i− 1 do{
rji = q⊤j ai CGS

rji = q⊤j qi MGS
;

qi = qi − rjiqj ;

end

rii = ∥qi∥;
qi = qi/rii;

end

LINEAR ALGEBRA 13

Here CGS and MGS stand for the Classic Gram-Schmidt and the Modified Gram-
Schmidt respectively. □

Unfortunately the classic Gram-Schmidt algorithm is numerically unstable when the
columns of A are nearly linearly dependent. The modified Gram-Schmidt is better but
still can result in Q that is far from orthogonal (i.e., ∥Q⊤Q − I∥ is much larger than the
machine ϵ) when A is ill-conditioned. There are numerically stable ways to compute the
QR-decomposition, i.e., by using the Householder reflections or Givens’ rotations. We will
consider the Householder reflections in homework exercises.

Exersise 6. Show that the least squares solution of Ax = b is given by

x∗ = R−1Q⊤b,

where A = QR is the QR decomposition of A.

In Matlab, the least squares solution of Ax = b is found by A\b. The QR decomposition
per se can be obtained by [Q,R]=qr(A).

1.7. Singular Value Decomposition (SVD). The Singular Value Decomposition is a
very useful decomposition. It has numerous practical applications. Examples are image
compression and determination of effective dimensionality of a data set.

Theorem 2. Let A be an arbitrary m× n matrix with m ≥ n. Then we can write

A = UΣV ⊤,

where

U is m× n and U⊤U = In×n,

Σ = diag{σ1, . . . , σn}, σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

and V is n× n and V ⊤V = In×n.

The columns of U , u1, ..., un, are called left singular vectors. The columns of V , v1, ...,
vn are called right singular vectors. The numbers σ1, ..., σn are called singular values. If
m < n, the SVD is defined for A⊤.

The geometric sense of this theorem is the following. Let us view the matrix A as a map
from Rn into Rm:

A : Rn → Rm, x 7→ Ax.

Then one can find orthogonal bases in Rn, v1, ... ,vn, and in Rm, u1, ..., um and numbers
σ1, ..., σn, such that

vj 7→ σjuj , j = 1, . . . , n.

Then for any x ∈ Rn we have:

if x =

n∑
j=1

xjvj then Ax =

n∑
j=1

xjσjuj .

14 MARIA CAMERON

Proof. We use induction in m and n. We assume that the SVD exists for (m− 1)× (n− 1)
matrices and prove it for m × n. We assume A ̸= 0; otherwise we take Σ = 0 and U and
V are arbitrary orthogonal matrices.

The basic step occurs when n = 1 (since m > n). We write

A = UΣV ⊤ with U =
A

∥A∥
, Σ = ∥A∥, V = 1,

where ∥ · ∥ is the 2-norm.
For the induction step, choose v so that

∥v∥ = 1 and ∥A∥ = ∥Av∥ > 0.

Let

u =
Av

∥Av∥
,

which is a unit vector. Choose Ũ and Ṽ so that U = [u, Ũ] and V = [v, Ṽ] are m×m and
n× n orthogonal matrices respectively. Now write

U⊤AV =

[
u⊤

Ũ⊤

]
·A · [v Ṽ] =

[
u⊤Av u⊤AṼ

Ũ⊤Av Ũ⊤AṼ

]
.

Then

u⊤Av =
(Av)⊤(Av)

∥Av∥
= ∥Av∥ := σ

and

Ũ⊤Av = Ũ⊤u∥Av∥ = 0.

We claim that u⊤AṼ = 0 too because otherwise

σ = ∥A∥ = ∥U⊤AV ∥ ≥ ∥[1, 0, . . . , 0]U⊤AV ∥ = ∥[σ, u⊤AṼ]∥ > σ,

a contradiction. Therefore,

U⊤AV =

[
σ 0

0 Ũ⊤AV

]
=

[
u⊤Av 0

0 Ã

]
.

Now we apply the induction hypothesis that

Ã = U1Σ1V
⊤
1 .

Hence,

U⊤AV =

[
σ 0
0 U1Σ1V

⊤
1

]
=

[
1 0
0 U1

] [
σ 0
0 Σ1

] [
1 0
0 V1

]⊤
or

A =

(
U

[
1 0
0 U1

])[
σ 0
0 Σ1

](
V

[
1 0
0 V1

])⊤
,

which is our desired decomposition.
□

LINEAR ALGEBRA 15

The SVD has a large number of important algebraic and geometric properties, the most
important of which are summarized in the following theorem.

Theorem 3. Let A = UΣV ⊤ be the SVD of the m× n matrix A, m ≥ n.

(1) Suppose A is symmetric and A = UΛU⊤ be an eigendecomposition of A Then the
SVD of A is UΣV ⊤ where σi = |λi| and vi = uisign(λi), where sign(0) = 1.

(2) The eigenvalues of the symmetric matrix A⊤A are σ2
i . The right singular vectors

vi are the corresponding orthonormal eigenvectors.
(3) The eigenvectors of the symmetric matrix AA⊤ are σ2

i and m− n zeroes. The left
singular vectors ui are the corresponding orthonormal eigenvectors for the eigen-
values σ2

i . One can take any m − n orthogonal vectors as eigenvectors for the
eigenvalue 0.

(4) If A has full rank, the solution of

min
x

∥Ax− b∥ is x = V Σ−1U⊤b.

(5)

∥A∥2 = σ1.

If A is square and nonsingular , then

∥A−1∥2 =
1

σn
.

(6) Suppose

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0.

Then

rank(A) = r,

null(A) = {x ∈ Rn : Ax = 0 ∈ Rm} = span(vr+1, . . . , vn),

range(A) = span(u1, . . . , ur).

(7)

A = UΣV ⊤ =
n∑

i=1

σiuiv
⊤
i ,

i.e., A is a sum of rank 1 matrices. Then a matrix of rank ≤ k < n closest to A in
the sense of the 2-norm is

Ak =

k∑
i=1

σiuiv
⊤
i , and ∥A−Ak∥ = σk+1.

Proof. Proof of item (7) for the matrix 2-norm. We will use the following
notation:

• Vk = [v1, . . . , vk],
• Uk = [u1, . . . , uk],
• Σk = diag{σ1, . . . , σk}.

16 MARIA CAMERON

If M = UkΣkV
⊤
k then

∥A− UkΣkV
⊤
k ∥2 =

∥∥∥∥∥∥
d∑

j=k+1

σjujv
⊤
j

∥∥∥∥∥∥
2

= σk+1.

Now letM be an arbitrary rank ≤ k matrix. If rank of A is ≤ k, then takingM = A
will zero out any norm of the difference A−M . So, assume rank(A) = r > k. The
null-space of M has dimension ≥ n− k. The space spanned by {v1, . . . , vk+1} has
dimension k + 1. Hence

dim null(M) + dim span(Vk+1) ≥ n+ 1 > n,

which means that they have an intersection of dimension ≥ 1. Let

x ∈ null(M) ∩ span(Vk+1), ∥x∥2 = 1.

Then

∥A−M∥22 ≥ ∥(A−M)x∥22 = ∥UΣV ⊤x∥22 = ∥ΣV ⊤x∥22 ≥ σ2
k+1∥V ⊤x∥22 = σ2

k+1.

This completes the proof. □

Example This example illustrates the low-rank approximation of a large matrix. The
original image is shown in Fig. 1(a). The rank 3, 10, and 20 approximations are shown
in Figs. 1 (b), (c), and (d) respectively. The sequence of Matlab commands to create an
approximation of rank m for a given image is the following.

>> clear all

>> im=imread(’IMG_1413.jpg’);

>> [m n k]=size(im)

m = 1600

n = 1200

k = 3

>> mimi=zeros(m,n);

>> mimi=sum(im,3);

>> fig=figure;

>> imagesc(mimi)

>> colormap gray

>> set(gca,’DataAspectRatio’,[1 1 1])

>> [U S V]=svd(mimi);

>> size(U)

ans = 1600 1600

>> size(V)

ans = 1200 1200

>> size(S)

ans = 1600 1200

>> fig=figure;

>> m=10;

LINEAR ALGEBRA 17

(a) (b)

(c) (d)

Figure 1. Low rank approximations of image. (a): original; (b): rank 3;
(c) rank 10; (d) rank 20.

>> rm=U(:,1:m)*S(1:m,1:m)*V(:,1:m)’;

>> colormap gray

>> set(gca,’DataAspectRatio’,[1 1 1])

2. Condition number

We start by making the definition of the condition number more precise. Let f(x) be a
generally vector-valued function that we need to evaluate. The condition number κ(f ;x)
is the ratio of the relative error in f caused by the relative error in x provided that the
change in x is small. Hence, we define κ as

(10) κ(f ;x) := lim
ϵ→0

max
∥∆x∥=ϵ

∥f(x+∆x)− f(x)∥/∥f(x)∥
∥∆x∥/∥x∥

.

18 MARIA CAMERON

2.1. Condition numbers for differentiable functions. Let us calculate the condition
numbers for differentiable functions. Let f(x) be a differentiable function f : Rn → R.
Then

f(x+∆x) = f(x) +∇f(x)⊤∆x+O(∥∆x∥2).
Therefore, the expression for the condition number can be rewritten as follows:

κ(f ;x) = lim
ϵ→0

max
∥∆x∥=ϵ

∥x∥|∇f(x)⊤∆x+O(∥∆x∥2)|
|f(x)|∥∆x∥

= lim
ϵ→0

max
∥∆x∥=ϵ

∥x∥|∇f(x)⊤∆x|
|f(x)|∥∆x∥

The maximum over ∆x ∈ Rn such that ∥∆x∥ = ϵ is achieved at

∆x =
∇f(x)

∥∇f(x)∥
ϵ.

Therefore,

κ(f ;x) =
∥∇f(x)∥∥x∥

|f(x)|
.

Now let f(x) be a differentiable vector-valued function f : Rn → Rm. Then

f(x+∆x) = f(x) + J(x)∆x+O(∥∆x∥2),

and J is the jacobian matrix of f with entries:

Jij(x) :=
∂fi
∂xj

.

Then

κ(f ;x) = lim
ϵ→0

max
∥∆x∥=ϵ

∥x∥∥J(x)∆x∥
∥f(x)∥∥∆x∥

.

The maximum over ∆x ∈ Rn such that ∥∆x∥ = ϵ is achieved if ∆x is parallel to the first
right singular vector v1 of J(x) = UΣV ⊤. Therefore,

κ(f ;x) =
∥J∥∥x∥
∥f(x)∥

.

2.2. Condition number for matrix-vector multiplication. A particular case is when
f(x) is a linear function, i.e., f(x) = Ax where A is an m× n matrix. Then the Jacobian
matrix of f is constant and is equal to A. Hence, the condition number for matrix-vector
multiplication is

(11) κ(A;x) =
∥A∥∥x∥
∥Ax∥

= ∥A∥ ∥x∥
∥Ax∥

.

Identity (11) shows that the condition number will be large if

∥Ax∥
∥x∥

≪ ∥A∥,

i.e., if there is a vector y that is elongated by A by a much larger factor than x.

LINEAR ALGEBRA 19

Let A = UΣV ⊤ be an SVD of A. Recall that ∥A∥ = σ1. The best-case scenario: x is

parallel to v1. Then ∥Ax∥
∥x∥ = σ1 and κ(A;x) = 1. The worst-case scenario: x is parallel to

vn. Then
∥Ax∥
∥x∥ = σn and κ(A;x) = σ1

σn
.

Let us illustrate this phenomenon on a simple example from D. Bindel’s and J. Good-
man’s book “Principles of Scientific Computing”, Chapter 4, page 89. Let

A =

[
1000 0

0 10

]
, and x =

[
0
1

]
.

Then

Ax =

[
0
10

]
.

Suppose x is perturbed by

∆x =

[
ϵ
0

]
. Then A(x+∆x)−Ax = A∆x =

[
1000ϵ
0

]
.

The error in x is amplified by the factor of 1000 which is 100 times larger than the elongation
of x. It is easy to check that for this example, κ(A;x) = 100.

2.3. Condition number for solving linear systems. On the other hand, let us consider
the problem of solving a linear system Ax = b, i.e., f(b) = A−1b. We find:

(12) κ(A−1; b) = ∥A−1∥ ∥b∥
∥A−1b∥

= ∥A−1∥∥Ax∥
∥x∥

.

Recall that ∥A−1∥ = 1/σn, where σn is the smallest singular value of A.The condition
number for the linear system Ax = b is large if some vector is stretched by A much less
than the solution x.

Therefore, the best-case scenario: x is parallel to vn. Then
∥Ax∥
∥x∥ = σn and κ(A;x) = 1.

The worst-case scenario: x is parallel to v1. Then
∥Ax∥
∥x∥ = σ1 and κ(A;x) = σ1

σn
.

2.4. The condition number of a matrix. The condition number of a matrix A is often
defined as

κ(A) = ∥A∥∥A−1∥.
This is the worst-case scenario condition number for both matrix-vector multiplication and
solving linear systems.

2.5. Condition numbers for eigenvalue problem. Ref.: D. Bindel’s and J. Goodman’s
book “Principles of Scientific Computing”, Sections 4.2.6 and 4.3.3.

Let A be a square n × n matrix and (λj , rj) be its jth eigenpair. We will split the
problem of finding the condition numbers into four subproblems:

• Condition number for eigenvalue λj if A is symmetric;
• Condition number for eigenvalue λj if A is not symmetric;
• Condition number for eigenvector rj if A is symmetric;
• Condition number for eigenvector rj if A is not symmetric.

20 MARIA CAMERON

Thus, we have: Arj = λjrj . First, we want to evaluate the change in λj as A changes
to A + ∆A. A useful technique for doing this is the method of virtual perturbations. Let
∆A be an arbitrary small perturbation of A. We can connect A and A+∆A by a path in
the matrix space Rn×n and parametrize it by its archlength. Then

(13) A+∆A = A+ Ȧ∆t+O((∆t)2) = A+ Ȧ∆t+O(∥∆A∥2),

where Ȧ denotes the derivative of A with respect to t. As we move along this path, λj and
rj change in a way so that the equality Arj = λjrj is preserved. For their perturbations,
we have:

(14) λj +∆λj = λj + λ̇jdt+O(∥∆A∥2),

(15) rj +∆rj = rj + ṙjdt+O(∥∆A∥2).

The appeal of this approach is that it allows us to use differentiation rules for finding
perturbations. We consider the following chain of identities:

Arj = λjrj ;(16)

d

dt
(Arj) =

d

dt
(λjrj) ;

Ȧrj +Aṙj = λ̇rj + λj ṙj .(17)

Equation (17) will be a key equation for calculating the desired condition numbers.

2.5.1. Condition numbers for eigenvalues of symmetric eigenvalue problem. Since A is sym-
metric, rj and λj are real. We choose rj so that ∥rj∥ = 1 where the norm is the 2-norm.

Furthermore, r⊤j is the left jth eigenvector of A corresponding to eigenvalue λj . Multipli-

cation on (17) by r⊤j on the left gives

r⊤j Ȧrj + r⊤j Aṙj = r⊤j λ̇jrj + r⊤j λj ṙj ;

r⊤j Ȧrj +�
���λjr
⊤
j ṙj = λ̇jr

⊤
j rj +�

���λjr
⊤
j ṙj ;

r⊤j Ȧrj = λ̇j .

Therefore, using (13) and (14), we get

(18) ∆λj = r⊤j ∆Arj +O(∥∆A∥2)

Next, we observe that

r⊤j ∆Arj ≤ ∥∆A∥∥r⊤j |∥rj∥ = ∥∆A∥.

The equality is achieved if ∆A = ϵrjr
⊤
j . Therefore, using this bound and (21) we calculate:

(19)

∣∣∣∣δλj

λj

∣∣∣∣ ≤ ∥∆A∥
|λj |

=
∥∆A∥
∥A∥

∥A∥
|λj |

.

LINEAR ALGEBRA 21

Finally, we compute the condition number κ(λj ;A) for the jth eigenvalue of A using (22):

(20) κ(λj ;A) = lim
ϵ→0

max
∥∆A∥=ϵ

∣∣∣ δλj

λj

∣∣∣
∥∆A∥
∥A∥

=
∥A∥
|λj |

=
|λmax(A)|

|λj |
.

Equation (20) shows that if λj is the eigenvalue with the absolute value has condition
number 1 and the only reason why κj(A) can be large is that |λmax(A)| might be much
larger than |λj |.

2.5.2. Condition numbers for eigenvalues of nonsymmetric eigenvalue problem. If A is not
symmetric, its eigenvalues and eigenvectors do not need to be real. Let lj be the left
eigenvector corresponding to λj . Multiplying (17) on lj on the left we get:

ljȦrj + ljAṙj = lj λ̇jrj + ljλj ṙj ;

ljȦrj +���λjlj ṙj = λ̇jljrj +���λjlj ṙj ;

ljȦrj = λ̇j .

Here we took into account that ljrj = 1. Using (13) and (14), we get

(21) ∆λj = lj∆Arj +O(∥∆A∥2)
Now we would like to bound |lj∆Arj |:

|lj∆Arj | ≤ ∥lj |∥∆A∥∥rj∥.
The equality is achieved if ∆A = rjlj . However, contrary to the case where A is symmetric,
the norms of rj and lj no longer need to be one. The matrices of eigenvectors may be ill-
conditioned. Proceeding with the calculation of κ(λj ;A) we obtain:

(22)

∣∣∣∣δλj

λj

∣∣∣∣ ≤ ∥∆A∥∥lj |∥rj∥
|λj |

∥lj |∥rj∥ =
∥∆A∥
∥A∥

∥A∥
|λj |

∥lj |∥rj∥;

(23) κ(λj ;A) = lim
ϵ→0

max
∥∆A∥=ϵ

∣∣∣ δλj

λj

∣∣∣
∥∆A∥
∥A∥

∥lj |∥rj∥ =
∥A∥
|λj |

∥lj |∥rj∥.

Equation (23) shows that there are two reasons for the problem of finding the jth eigenvalue
of a nonsymmetric matrix A can be ill-conditioned:

• |λj | might be much smaller than ∥A∥ =
√
λmax(A⊤A);

• the matrix of eigenvectors may be ill-conditioned.

A useful bound for the product ∥lj |∥rj∥ is given by:

∥lj |∥rj∥ ≤ ∥R−1∥∥R∥ =
σ1(R)

σn(R)
,

where σ1(R) and σn(R) are the largest and the smallest singular values of R. It is possible
to show that if a family of matrices approaches a matrix with a Jordan block, the condition

22 MARIA CAMERON

number of R approaches infinity. Indeed, recall the example in Section 1.4.3. A tiny but
specially crafted perturbation changes the set of eigenvalues in a nondifferentiable manner.

2.5.3. Condition numbers for eigenvectors of symmetric eigenvalue problem. We start with
(17) and expand the perturbation ṙj in terms of the eigenvectors {r1, . . . , rn}:

ṙj =

n∑
l=1

mjlrl.

We assume that all eigenvectors are distinct so that A is diagonalizable. Multiplying (17)
on r⊤k on the left we obtain

r⊤k Ȧrj + r⊤k A
n∑

l=1

mjlrl = r⊤k λ̇jrj + r⊤k λj

n∑
l=1

mjlrl.

Using the orthonormality of the eigenvectors we get

r⊤k Ȧrj +mjkλk = λ̇jr
⊤
k rj +mjkλj .

We can assume that mjj = 0. If k ̸= j, we have r⊤k rj = 0. Hence,

r⊤k Ȧrj = mjk(λj − λk).

Therefore,

mjk =
r⊤k Ȧrj
λj − λk

.

Then ∆rj can be calculated as

∆rj =
∑
k ̸=j

mjkrk =
∑
k ̸=j

r⊤k ∆Arj
λj − λk

rk +O(∥∆A∥2).

Then

∥∆rj∥ ≤ ∥∆A∥
√∑

k ̸=j

(λj − λk)−2.

Hence, the condition number for rj is

(24) κ(rj ;A) = lim
ϵ→0

max
∥∆A∥=ϵ

∥∆rj∥
∥rj∥
∥∆A∥
∥A∥

≤ ∥A∥
√∑

k ̸=j

(λj − λk)−2.

This equation shows that the condition number κ(rj ;A) is large if there is an eigenvalue
close to λj .

Exersise 7. Find an upper bound for the condition number for eigenvector rj of a non-
symmetric matrix A assuming that all its eigenvalues are distinct. In what case will this
condition number be large?

LINEAR ALGEBRA 23

3. Linear Algebra II: algorithms

References:

• D. Bindel’s and J. Goodman’s book “Principles of Scientific Computing”, Chapter
5.

• J. Demmel, “Applied Numerical Linear Algebra”, Chapter 2.

In this section, we will get familiar with two very important linear algebra algorithms:
solving systems of linear algebraic equations Ax = b via LU factorization with pivoting and
computing the Cholesky decomposition for symmetric positive definite matrices A = LL⊤

where L is lower triangular. On the example of these two algorithms, we will learn how to
estimate the computational cost of linear algebra algorithms via counting flops (floating-
point operations). Furthermore, we will prove the existence of the Cholesky decomposition
and a number of useful properties of symmetric positive definite matrices.

3.1. Solving Ax = b via LU factorization with pivoting. Throughout this section,
we will assume that A is an invertible n×n matrix. When we solve linear systems Ax = b
using paper and pencil, we start with converting the matrix A into a row echelon form.
This operation often required pivoting. Then we solve the resulting equivalent equation
Ux = c with an upper-triangular matrix U using back substitution, i.e., first, we find xn
from unnxn = cn, then we find xn−1 from un−1,n−1xn−1+un−1,nxn = cn−1, and so on. Now
we would like to convert this approach into a reliable algorithm that finds the solution to
Ax = b whenever A is invertible.

3.1.1. LU without pivoting. Converting A into a row echelon form without pivoting is equiv-
alent to computing its LU decomposition, i.e., A = LU where L is unit lower triangular,
and U is upper triangular:

(25)


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1
l21 1
...

. . .

ln1 ln2 . . . 1




u11 u12 . . . u1n
u22 . . . u2n

. . .
...

unn

 .

It is easy to check by multiplying L and U that the first row of U coincides with the first
row of A. Next, l21 is found from l21u11 = a21, i.e., l21 = a21/u11. Then the second row of
U is found by multiplying the second row of L by columns 2 through n of A:

l21u1k + u2k = a2k, hence u2k = a2k − l21u1k, 2 ≤ k ≤ n.

Then l31 and l32 are found from the equations obtained by multiplying the third row of L
by the first and the second columns of A:

l31 = a31/u11, l32 =
a32 − l31u12

u22
.

Then the third row of U is found by multiplying the third row of L by columns 3 through
n of A:

l31u1k + l32u2k + u3k = a3k, hence u3k = a3k − l31u1k − l32u2k, 2 ≤ k ≤ n.

https://epubs.siam.org/doi/book/10.1137/1.9781611971446?mobileUi=0
https://en.wikipedia.org/wiki/Row_echelon_form

24 MARIA CAMERON

And so on.
Looking at Eq. (25) we observe that both matrices, L and U , can be overwritten on

A. Indeed, we do not need to store the diagonal entries of L as we know that they are all
1. We also notice that in calculating LU factorization we can proceed exactly like we did
when we were converting A into an echelon form. We compute the first column of L by

lj1 =
aj1
a11

, j = 2, . . . , n.

Then we modify all entries of A in the submatrix A2:n,2:n according to

ajk = ajk − lk1a1k, 2 ≤ j ≤ n, 2 ≤ k ≤ n.

The second row of the modified A starting from the second entry will be the row of U . Then
we apply the same procedure to the submatrix A2:n,2:n of the modified A. The resulting
LU factorization algorithm implemented in Matlab is displayed below.

function [L,U] = simpleLU(A)

n = length(A); % get the dimension of A

for i = 1 : n - 1

for j = i + 1 : n

% L(j,i) = new A(j,i)

A(j,i) = A(j,i)/A(i,i); % one flop: "/"

end

for j = i + 1 : n

for k = i + 1 : n

% U(j,k) = new A(j,k);

A(j,k) = A(j,k) - A(j,i)*A(i,k); % two flops: "-" and "*"

end

end

end

end

3.1.2. Counting flops for LU. This code allows us readily calculate the number of flops
W (n):

(26) W (n) =
n−1∑
i=1

 n∑
j=i+1

1 +
n∑

j=i+1

n∑
k=i+1

2

 =
n−1∑
i=1

[
n− i+ 2(n− i)2

]
.

In order to estimate the computational cost, we do not need to compute the number of
flops exactly. It suffices to find the term that grows fastest with n. This accuracy is good
enough for all practical purposes as different arithmetic operations take different CPU
times, and, in our count of flops, we do not take into account logical operations. Hence,
even if we calculate the number of flops exactly, it will not give us an exact prediction for
the required CPU time. Therefore, we proceed with calculating the number of flops in the
simplest possible manner: we approximate sums that are hard to compute with integrals.

LINEAR ALGEBRA 25

We continue the calculation in Eq. (26) as follows:

W (n) =
n−1∑
i=1

[
n− i+ 2(n− i)2

]
≈
∫ n

0
(n− x) + 2(n− x)2dx

=

∫ n

0
t+ 2t2dt ≈ 2

3
n3 +O(n2).(27)

We intentionally wrote the term n2/2 in (27) as O(n2) because we already introduced an
error by replacing the sum with an integral and by replacing n − 1 with n in the upper
limit of the integral for the ease of calculation.

Thus, we conclude that the computational cost of LU factorization is 2
3n

3 +O(n2).

3.1.3. Need for pivoting. It is easy to see that the LU algorithm in Section 3.1.1 can
encounter division by zero even if the matrix A is invertible. For example, consider the
matrix

A =

[
0 1
2 3

]
.

To eliminate this problem, we will do row pivoting, i.e., at each value of i in the outer for-
loop, we will find the largest in absolute value entry among aii, ai+1,i, . . ., an,i and swap the
row containing this entry with row i. We will also need to swap the corresponding entries
of the right-hand side b. The LU algorithm with row pivoting implemented as a Matlab
script is shown below. It computes the LU factorization of PA where P is a permutation
matrix with 1 in row i located in column p(i). The same permutation is applied to the
vector b.

% LU factorization with pivoting, overwriting L and U on A

for i = 1 : n - 1

% find pivot

v = abs(A(i,i));

for k = i+1 : n

vtemp = abs(A(k,i));

if vtemp > v

v = vtemp;

p(i) = k;

end

end

% p(i) is the index of the row with max abs value A(k,i)

% swap rows p(i) and (i)

for k = 1 : n

temp(k) = A(p(i),k);

A(p(i),k) = A(i,k);

A(i,k) = temp(k);

end

btemp = b(p(i));

26 MARIA CAMERON

b(p(i)) = b(i);

b(i) = btemp;

% LU algorithm

for j = i + 1 : n

A(j,i) = A(j,i)/A(i,i); % L(j,i) = new A(j,i)

end

for j = i + 1 : n

for k = i + 1 : n

A(j,k) = A(j,k) - A(j,i)*A(i,k); % U(j,k) = new A(j,k)

end

end

end

3.1.4. Solving LUx=b. Once the LU factorization of A (or PA) is computed, we solve
LUx = b (or LU = Pb) in two stages. We introduce a new variable y := Ux and solve
Ly = b (or Pb) taking an advantage of the fact that L is lower triangular by computing
one entry of y in a time starting from y1. Note that in the code below A(i,j) = L(i,j)

as L is overwritten on the subdiagonal part of A.

% Solve Ly = b

y = zeros(n,1);

for i = 1 : n

rhs = b(i);

for j = 1 : i - 1

rhs = rhs - A(i,j)*y(j); % 2 flops

end

y(i) = rhs;

end

After that, x is found by solving Ux = y also by finding one entry of x in a time starting
from xn:

x = zeros(n,1);

% back substitution Ux = y

for i = n : -1 : 1

rhs = y(i);

for j = i + 1 : n

rhs = rhs - A(i,j)*x(j); % two flops

end

x(i) = rhs/A(i,i); % one flop

end

LINEAR ALGEBRA 27

Let us count the number of flops. For solving Ly = b we get:

Ly = b :
n∑

i=1

i−1∑
j=1

2 =
n∑

i=1

2(i− 1) = 2
n(n− 1)

2
= n2 − n(28)

Ux = y :
n∑

i=1

1 + i−1∑
j=1

2

 =
n∑

i=1

(2i− 1) = 2
n(n+ 1)

2
− n = n2.(29)

Therefore, the overall cost of solving LUx = b is 2n2 − n which is much lower than
2n3/3 + O(n2), the cost of LU factorization. Hence, the total cost of solving Ax = b
via LU factorization is 2n3/3 +O(n2).

3.2. Cholesky decomposition.

Definition 6. An n× n matrix A is symmetric positive definite (abbreviation SPD) if

(30) A⊤ = A and x⊤Ax > 0 ∀x ∈ Rn\{0}.
Symmetric positive definite matrices form a special class of matrices arising in many

different applications. One of them you have encountered. Recall the normal equation
for an overdetermined system of linear algebraic equations Ax = b, where A is m × n,
m > n, and columns of A are linearly independent. The normal equation is obtained by
premultiplying Ax = b by A⊤: A⊤Ax = A⊤b. The matrix A⊤A is symmetric positive
definite.

Symmetric positive definite matrices allow us to design more efficient computational
algorithms, i.e., algorithms of lower computational cost and superior accuracy. In particu-
lar, instead of the LU factorization, it is beneficial to compute the Cholesky decomposition
A = LL⊤ where L is lower triangular with positive diagonal elements. The matrix L is
called the Cholesky factor of A:

(31)


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


l11
l21 l22
...

. . .

ln1 ln2 . . . lnn




l11 l21 . . . u1n
l22 . . . un2

. . .
...

lnn

 .

As you will see, the computational cost of Cholesky factorization is n3/3+O(n2), approx-
imately twice as low as that of the LU decomposition.

To understand the Cholesky algorithm, let us start calculating the entries of L column-
by-column. Multiplying each row of L by the first column of L⊤ we find:

l211 = a11, hence l11 =
√
a11,

l21l11 = a21, hence l21 = a21/l21,

...

ln1l11 = an1, hence l21 = an1/l21,

28 MARIA CAMERON

Then we multiply the 2nd, 3rd, ..., and nth row of L by the second column of L⊤ and find:

l221 + l222 = a22, hence l22 =
√
a22 − l221,

l31l21 + l32l22 = a32, hence l32 =
a32 − l31l21

l22
,

...

ln1l21 + ln2l22 = an2, hence ln2 =
an2 − ln1l21

l22
.

And so on. The Cholesky factorization is summarized in the following code:

for j = 1 : n

L(j,j) = (A(j,j) - sum(L(j,1:j-1).^2))^(1/2); % 2j-1 flops

for i = j + 1 : n

L(i,j) = (A(i,j) - sum(L(i,1:j-1).*L(j,1:j-1)))/L(j,j); % 2j-1 flops

end

end

The total number of flops is:

n∑
j=1

2j − 1 +
n∑

i=j+1

(2j − 1)

 =
n∑

j=1

(n− j + 1)(2j − 1)

≈
∫ n

0
(n− x+ 1)(2x− 1)dx = n3 − 2

3
n3 +O(n2) =

1

3
n3 +O(n2).(32)

The cheapest way to check if a symmetric matrix is positive definite is by computing
its Cholesky factorization. If at any stage of the algorithm the number under the square
root is less or equal to zero, the matrix is not symmetric positive definite. Otherwise,
it is symmetric positive definite. In the next section, we will prove a number of useful
facts about SPD matrices, in particular, that a matrix A is SPD iff there exists a unique
Cholesky decomposition A = LL⊤ with L having positive diagonal entries.

3.3. Properties of symmetric positive definite matrices.

Theorem 4. If X is nonsingular then A is SPD if and only if X⊤AX is SPD.

Proof. ⇒○ Let X be nonsingular, and A be SPD. We need to prove that then X⊤AX is
SPD. First check that X⊤AX is symmetric. Indeed, since A is symmetric, we have:

(X⊤AX)⊤ = X⊤A⊤X = X⊤AX.

Let x ∈ Rn\0. Then Xx = y ̸= 0 as X is nonsingular. Therefore, since A is SPD, we have:

x⊤X⊤AXx = (Xx)⊤A(Xx) = y⊤Ay > 0,

Hence X⊤AX is SPD.

LINEAR ALGEBRA 29

⇐○ Let X⊤AX be SPD. We want to show that then A is SPD. First check that A is
symmetric. We multiply X⊤AX by X−⊤ and X−1 on the left and on the right and get
A = X−⊤(X⊤AX)X−1. Hence, since X⊤AX is symmetric, we get:

A⊤ = (X−⊤(X⊤AX)X−1)⊤ = X−⊤(X⊤AX)⊤X−1 = X−⊤(X⊤AX)X−1 = A.

Therefore, A is symmetric. Now we show that A is positive definite. Let y ∈ Rn\0. We
define x = X−1y as X is nonsingular and calculate:

y⊤Ay = y⊤(X−⊤X⊤)A(XX−1)y = (X−1y)⊤(X⊤AX)X−1y = x⊤X⊤AXx > 0.

Hence A is SPD. □

Theorem 5. If A is SPD and H is any principal submatrix of A then H is SPD.

Let us first understand what is a principal submatrix. Let J ⊆ {1, . . . , n} be any
nonempty subset of indices. Then a principal submatrix of A corresponding to J is obtained
by taking the intersection of columns of A with indices in J and rows of A with indices in
J . For example, if A = (aij) is 4× 4 SPD and J = {1, 3} then the corresponding principal
submatrix H is:

H =

[
a11 a13
a31 a33

]
.

Proof. First, we observe that the principal submatrixH corresponding to a subset of indices
J = {j1, . . . , j|J |} can be obtained from A by sandwiching it with the |J | × n matrix P
whose row i has a single nonzero entry 1 at the position ji, 1 ≤ i ≤ |J |:

H = PAP⊤.

Let x ∈ R|J |\{0}. Then P⊤x = y ∈ Rn\{0} and yji = xi, 1 ≤ i ≤ |J |, and the rest of

entries of y are zeros. Let us show that x⊤Hx > 0:

x⊤Hx = x⊤PAP⊤x = (P⊤x)A(P⊤x) = y⊤Ay > 0.

□

Theorem 6. A is SPD if and only if A = A⊤ and all its eigenvalues are positive.

Exersise 8. Prove this theorem.

Theorem 7. If A is SPD then all

aii > 0 and max
ij

|aij | = max
i

aii > 0.

Proof. First, we observe that all diagonal entries of A are its 1× 1 principal submatrices.
Therefore, they must be positive. The second part of the claim of this theorem will be
proven from the converse. Assume that

max
ij

|aij | = |akl| with k ̸= l.

Let us sandwich A with a specially crafted vector x := ek − sign(akl)el where ek and el are
the standard unit vectors with ones at positions k and l, respectively, and zeros everywhere

30 MARIA CAMERON

else. Denoting the kth and lth columns of A by A:,k and A:,l, respectively, using the fact
that akl = alk, and noting that sign(alk)alk = |alk|, we calculate:

x⊤Ax = [ek − sign(akl)el]
⊤[A:,k − sign(akl)A:,l]

= akk − sign(akl)alk − sign(akl)akl + all = akk + all − 2|akl| < 0.

The last inequality follows from the assumption that |akl| > akk and |akl| > all. This
contradicts to the fact that A is SPD, i.e., x⊤Ax must be positive for any nonzero x. □

Theorem 8. A is SPD if and only if there is a unique lower triangular matrix L with
positive diagonal entries such that A = LL⊤.

Proof. ⇐○ Let A = LL⊤ with L having positive diagonal elements. Then, A is symmetric
as LL⊤ = (LL⊤)⊤. Since L is nonsingular,

x⊤Ax = (x⊤L)(L⊤x) = ∥Lx∥22 > 0 ∀x ̸= 0.

Hence A is SPD.
⇒○ Let A be SPD. To show that is admits a Cholesky decomposition, we proceed by

induction in n.
Basis. If n = 1, A = a11 > 0, and its Cholesky decomposition exists and is given by√
a11

√
a11.

Induction hypothesis: A Cholesky decomposition exists for every SPD matrix A k × k.
Induction step. Let us construct a Cholesky decomposition for an SPD A of size (k +

1)× (k + 1). We will write A in a block form

A =

[
a11 A12

A⊤
12 A22

]
where a11 is 1× 1, A12 is 1× k, and A22 is k× k. We wish to decompose A into a product
of three matrices with a block-diagonal matrix in the middle of it and a lower-triangular
matrix and its transpose being sandwiched around it. Then we can apply the induction
hypothesis to the matrix in the middle of this sandwich. We write:

(33) A =

[
a11 A12

A⊤
12 A22

]
=

[√
a11 0

1√
a11

A⊤
12 I

] [
1 0

0 Ã22

] [√
a11 0

1√
a11

A⊤
12 I

]⊤
,

where Ã22 needs to be determined. Multiplying these three matrices back together we get:

A =

[
a11 A12

A⊤
12 A22

]
=

[
a11 A12

A⊤
12 Ã22 +

1
a11

A⊤
12A12

]
.

Hence

Ã22 = A22 −
1

a11
A⊤

12A12.

We need to show that Ã22 is SPD. Indeed, by Theorem 4, the matrix[
1 0

0 Ã22

]
is SPD.

LINEAR ALGEBRA 31

Then, by Theorem 5, its principal submatrix Ã22 is SPD. Therefore, there exists a Cholesky
decomposition of Ã22 by induction assumption: Ã22 = L̃L̃⊤. Plugging in this decomposition
for Ã22 in (33) we get:

A =

[√
a11 0

1√
a11

A⊤
12 I

] [
1 0

0 L̃

] [
1 0

0 L̃

]⊤ [√
a11 0

1√
a11

A⊤
12 I

]⊤
=

([√
a11 0

1√
a11

A⊤
12 I

] [
1 0

0 L̃

])([√
a11 0

1√
a11

A⊤
12 I

] [
1 0

0 L̃

])⊤

.(34)

Noting that the matrices in the parentheses are the products of two lower-triangular ma-
trices with positive diagonal entries, we conclude that these matrices are lower-triangular
with positive diagonal entries. I will leave it as an exercise to prove the fact that lower-
triangular matrices with positive diagonal entries form a group with respect to matrix
multiplication. Hence, the decomposition (34) is a Cholesky decomposition for A of size
(k + 1)× (k + 1). This proves the induction step.

□

Exersise 9. Prove that lower triangular matrices form a group with respect to matrix mul-
tiplication. Hint: to prove that the inverse of a lower triangular matrix is lower triangular,
you can use induction in n.

Exersise 10. Prove that the Cholesky decomposition is unique.

4. Linear Algebra III: Matrix factorization for low-rank approximation

4.1. The full SVD and the truncated SVD. We have discussed an ‘economy’ SVD
for the case where A was n× d with n ≥ d. In the case of d > n, 1economy’ SVD of A is
obtained from the one for A⊤. For theoretical purposes, it is often useful to think of the
full SVD of A defined as A = UΣV = A, where

• U is n× n, UU⊤ = U⊤U = I,
• Σ is n× d with the top left submatrix being diag{σ1, . . . , σd} and all entries in the
rest of Σ are zeros, and

• V is d× d, V V ⊤ = V ⊤V = I.

4.2. Ky-Fan norms.

Definition 7. We say that a function f : Rn×d → R is orthogonally (or unitarily in the
complex case) invariant if f(Q1AQ2) = f(A) for any orthogonal (unitary) matrices Q1

and Q2.

Any unitarily invariant function f can be written in terms of singular values of A. Indeed,
take Q1 = U⊤ and Q2 = V . Then, it follows from the unitary invariance of f that

f(A) = f(Σ) = f̃(σ1, . . . , σd).

Among the most important unitarily invariant functions are the Ky-Fan norms, which are
lp norms of the vectors of singular values. The Ky-Fan norms we care about are:

32 MARIA CAMERON

• The l∞ Ky-Fan norm is the 2-norm of A (the operator 2-norm or the spectral norm):

(35) ∥A∥2 = σ1 = max
1≤i≤d

σi.

• The l2 Ky-Fan norm is the Frobenius norm of A:

(36) ∥A∥F =

√√√√ n∑
i=1

d∑
j=1

|aij |2.

Exersise 11. Prove that

(37) ∥A∥2F =
d∑

i=1

σ2
i .

Hint: use the full SVD of A and the cyclic property of trace (you can prove this
property by direct checking):

(38) trace(ABC) = trace(BCA) = trace(CAB)

for all A, B , C such that their product is defined and is a square matrix.

• The nuclear norm

(39) ∥A∥∗ =
d∑

i=1

σj

is the Ky-Fan l1 norm.

4.3. Eckart-Young-Mirsky theorem. Ref.: A. Dax “From Eigenvalues to Singular Val-
ues: A Review”.

The Eckart-Young-Mirsky theorem says that the truncated SVD of A is the best rank k
approximation to A in the 2-norm and in the Frobenius norm. It also holds for any Ky-Fan
norm, so, for the nuclear norm as well.

Theorem 9. (Eckart-Young-Mirsky) Let A = UΣV ⊤ be the SVD of A. Then for any
matrix M of rank ≤ k we have

∥A−M∥2 ≥
∥∥∥A− UkΣkV

⊤
k

∥∥∥
2
= σk+1,(40)

∥A−M∥F ≥
∥∥∥A− UkΣkV

⊤
k

∥∥∥
F
=

√√√√ n∑
j=k+1

σ2
j(41)

We have already proven this theorem for the 2-norm in the beginning of this chapter.
The proof for the Frobenius norm makes use of the following lemma.

Lemma 1. Let a matrix A ∈ Rn×d be decomposed into a sum A = B + C. Let σj(M)
denote the jth singular value of the matrix M , M = A,B,C. We also set σj(M) = 0 for
all integer j > rank(M). Then

(42) σi+j−1(A) ≤ σi(B) + σj(C) ∀i, j ≥ 1,

https://www.scirp.org/pdf/APM_2013122415582178.pdf
https://www.scirp.org/pdf/APM_2013122415582178.pdf

LINEAR ALGEBRA 33

Proof. Let i and j be arbitrary integers 1 ≤ i, j ≤ d. Then, by the Eckart-Young-Mirsky
theorem for the 2-norm

σi(B) + σj(C) ≡ ∥B −Bi−1∥2 + ∥C − Cj−1∥2 = σ1(B −Bi−1) + σ1(C − Cj−1).

By the triangle inequality for the 2-norm we have:

∥B −Bi−1∥2 + ∥C − Cj−1∥2 ≥ ∥B −Bi−1 + C − Cj−1∥2 ≡ ∥A−Bi−1 − Cj−1∥2.

Now we observe that the rank of a sum of two matrices cannot exceed the sum of their
ranks. Therefore,

rank(Bi−1 + Cj−1) ≤ i+ j − 2.

Then, by the Eckart-Young-Mirsky theorem for the 2-norm we have:

∥A−Bi−1 − Cj−1∥2 ≥ ∥A−Ai+j−2∥2 = σi+j−1(A)

as desired. □

Now we prove the Eckart-Young-Mirsky theorem for the Frobenius norm.

Proof. Proof for the Frobenius norm. Lemma 1 implies that for any matrix M for
rank ≤ k and for all i = 1, 2, . . . we have:

(43) σk+i(A) ≤ σi(A−M) + σk+1(M) ≡ σi(A−M),

as σk+1(M) = 0 as k + 1 exceeds the rank of M . By (37):

∥A−M∥2F =

d∑
i=1

σ2
i (A−M) ≥

d−k∑
i=1

σ2
i (A−M).

Then we apply (43) and obtain

∥A−M∥2F ≥
d−k∑
i=1

σ2
i (A−M) ≥

d−k∑
i=1

σ2
k+i(A) =

d∑
j=k+1

σ2
j (A)

as desired. □

Exersise 12. Prove Eckart-Young-Mirsky theorem for an arbitrary Ky-Fan norm.

4.4. Gradient descent for SPD quadratic functions. To proceed to discuss methods
for computing low-rank we need to get familiar with a fundamental optimization algorithm
called the gradient descent. The task of optimization is to find the minimum of a given
function. The function to be optimized is called the objective function.

We consider the case where the objective function ϕ : Rn → R is quadratic with an SPD
matrix A:

(44) ϕ(x) :=
1

2
x⊤Ax+ b⊤x+ c.

Its gradient is given by

(45) ∇ϕ(x) = Ax+ b.

34 MARIA CAMERON

The point x∗ = −A−1b, the zero of ∇ϕ, is the minimizer of ϕ(x). Indeed, any y ∈ Rn can
be written as y = x∗ + e. Then

ϕ(y) = ϕ(x∗ + e)

=
1

2
(x∗ + e)⊤A(x∗ + e) + b⊤(x∗ + e) + c

= ϕ(x∗) + e⊤Ax∗ + b⊤e+
1

2
e⊤Ae

= ϕ(x∗)− e⊤AA−1b+ b⊤e+
1

2
e⊤Ae

= ϕ(x∗) +
1

2
e⊤Ae ≥ ϕ(x∗).

The equality takes place if and only if e = 0 as A is SPD.
The gradient descent iteration is

(46) xk+1 = xk − α∇ϕ(xk).

The parameter α is called stepsize in classical optimization textbooks or learning rate in
machine learning contexts. In the case of the objective function (44) it becomes

(47) xk+1 = xk − α(Axk + b) = (I − αA)xk − b.

Let us estimate the error ek = xk−x∗ at iteration k. Note that for the solution x∗ = −A−1b
we have:

(48) x∗ = x∗ − α(A∗ + b).

Subtracting (48) from (47) we obtain

(49) ek+1 = (I − αA)ek.

Therefore, we can predict error at iteration k given the initial error e0:

(50) ek = (I − αA)ke0.

The necessary and sufficient condition for ∥ek∥ → 0 for any initial error e0 (i.e., for any
initial guess x0) is that ∥I − αA∥ < 1. The norm considered in this section is the 2-norm
unless noted otherwise. Recall that ∥I−αA∥ = |λmax(I−αA)| since I−αA) is symmetric.
The eigenvalues of I −αA are 1−αλj(A), 1 ≤ j ≤ n. Let us order the eigenvalues of A in
decreasing order:

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) > 0

Then

|λmax(I − αA)| = max{|1− αλn(A)|, |1− αλ1(A)|}.
Note that

1 > 1− αλn(A) > 1− αλ1(A)

Hence the only way |λmax(I − αA)| can reach 1 is when

1− αλ1(A) ≤ −1.

LINEAR ALGEBRA 35

Hence, in order for the iteration to converge, α must be such that

(51) 1− αλ1(A) > −1, i.e. α <
2

λ1(A)
.

The optimal convergence rate is achieved when |λmax(I − αA)| is minimal which happens
at λ∗ such that

(52) 1− α∗λn(A) = α∗λ1(A)− 1, i.e. α∗ =
2

λn(A) + λ1(A)
.

At α∗, the norm of I − α∗A is

(53) ∥I − α∗A∥ = 1− 2λ1(A)

λn(A) + λ1(A)
= 1− 2

1 + κ(A)
,

where κ(A) = λ1/λn ≡ σ1/σn is the condition number of A. Equation (53) shows that if
A is ill-conditioned, then the norm of the error at every iteration might reduce by a factor
very close to 1.

5. Nonnegative matrix factorization (NMF)

Reference: D. Bindel’s Lecture 7 “NMF”. A common problem with low-rank factoriza-
tions is that they are hard-to-interpret. In this section, we switch to interpretable matrix
factorizations.

Let A be an n × d matrix with nonnegative entries. We seek matrices W ∈ Rn×k
+ and

H ∈ Rk×d
+ where the subscripts + means that their entries must be nonnegative, such that

(54) A ≈ WH.

5.1. Projected gradient descent. Perhaps the simplest method to compute an NMF is
using projected gradient descent (PGD). The projection used here is a simple nonnegativity
constraint:

P(x) = [x]+, elementwise maximum of x and 0.

Let ϕ be the objective function. The iteration is defined by

(55) xk+1 = P(xk − αk∇ϕ(xk)).

Its convergence properties are similar to those of the unprojected version. A convergence
for convex functions and sufficiently small stepsizes can be proven. Ill-conditioning may
make the convergence slow.

To work out the PGD iteration, it is handy to introduce the Frobenius inner product

(56) ⟨X,Y ⟩F :=
∑
i,j

xijyij = trace(X⊤Y) = trace(Y ⊤X).

For the problem (54), the objective function is

(57) ϕ(W,H) =
1

2
∥A−WH∥2F =

1

2
⟨A−WH,A−WH⟩F .

Furthermore, to reduce the amount of writing, it is useful to use the notation δϕ, δW and
δH for the variations of ϕ, W , and H, respectively. This is an analog of the differential of

http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-30.pdf

36 MARIA CAMERON

a function of several variables. Regular differentiation rules apply. Let R := A−WH. We
have:

δϕ =
1

2
δ⟨R,R⟩F = ⟨δR,R⟩F

= −⟨(δW)H,R⟩F − ⟨W (δH), R⟩F .(58)

In the calculation below, we will use the cyclic property of the trace (38) to isolate the
variations of W and H in the Frobenius inner products in (58):

⟨(δW)H,R⟩F = trace
(
H⊤(δW)⊤R

)
= trace

(
(δW)⊤RH⊤

)
= ⟨(δW), RH⊤⟩F ,(59)

⟨W (δH), R⟩F = trace
(
(δH)⊤W⊤R

)
= ⟨(δH),W⊤R⟩F .(60)

These equations mean that

(61)
∂ϕ

∂Wij
= −

(
RH⊤

)
ij
,

∂ϕ

∂Hij
= −

(
W⊤R

)
ij
, 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Therefore, the PGD iteration for minimizing (57) among W ∈ Rn×k
+ and H ∈ Rk×d

+ is:

(62) Wnew =
[
W + αRH⊤

]
+
, Hnew =

[
H + αW⊤R

]
+
.

5.2. Multiplicative update scheme by Lee and Seung. One of the earliest and most
popular algorithms for NMF is the multiplicative update by D. D. Lee and H. S. Seung
(2001) [1]. A derivation of their iteration can also be found here. In this algorithm, the
entries of the matrices W and H are all updated with individually selected stepsizes. Let
SW be the matrix of stepsizes for the entries of W , and SH be the same for H. The
iteration is the projected gradient descend modified accordingly:

(63) Wnew =
[
W + SW ⊙RH⊤

]
+
, Hnew =

[
H + SH ⊙W⊤R

]
+
.

The projection in (63) zeroes out negative values. They may appear due to the subtractions
hidden in R = A − WH provided that all current entries in all matrices involved are
nonnegative. The trick proposed by Lee and Seung allows us to avoid the need for the
projection: the stepsizes are chosen so that the subtraction is eliminated! Let us rewrite
(63) decoding R and removing the projection:

(64) Wnew = W + SW ⊙
[
AH⊤ −WHH⊤

]
, Hnew = H + SH ⊙

[
W⊤A−W⊤WH

]
.

The Lee and Seung stepsizes are

(65) SW = W ⊘
[
WHH⊤

]
, SH = H ⊘

[
W⊤WH

]
,

where ⊘ denotes entrywise division. It is easy to see that with this choice of stepsizes, the
subtractions in (64) are completely eliminated as the subtracted term is canceled with the
W and H, respectively. Therefore, the Lee-Seung iteration is:

(66) Wnew =
[
W ⊙AH⊤

]
⊘
[
WHH⊤

]
, Hnew =

[
H ⊙W⊤A

]
⊘
[
W⊤WH

]
.

https://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://www.jjburred.com/research/pdf/jjburred_nmf_updates.pdf

LINEAR ALGEBRA 37

Monotone convergence of this algorithm is proven in [1]. A shortcoming of this algorithm
is that it takes very conservative stepsizes, and it may take very many steps to achieve the
desired convergence.

5.3. Coordinate descent (CD). Coordinate descent embraces the class of methods
where the update directions are chosen along particular coordinates or their blocks.

5.3.1. One entry at-a-time. The simplest version of CD updates one entry of W or H at-
a-time. Let s be step length and ei be a column vector with entry 1 at position i and the
rest of its entries being zeros. To determine s for updating entry (i, j) of W , we solve the
following constrained least squares problem:

1

2

∥∥∥A− (W + seie
⊤
j)H

∥∥∥2
F
=

1

2

∥∥∥R− seie
⊤
j H
∥∥∥2
F

=
1

2
∥R∥2F − s⟨(eie⊤j), RH⊤⟩F +

s2

2
∥eie⊤j H∥2F(67)

subject to s ≥ −wij .(68)

Here, we used the cyclic property of the trace (38) and the rule:

(69) ∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2⟨A,B⟩F .

Exersise 13. Prove (69).

The matrix eie
⊤
j has only one nonzero entry at the position (i, j) equal to one, and the

matrix eie
⊤
j H has a single nonzero row i equal to the row j of H. Therefore,

⟨(eie⊤j), RH⊤⟩F = (RH⊤)ij , ||eie⊤j H∥2F = (HH⊤)jj .

Hence s minimizing the quadratic function

s2

2
(HH⊤)jj − s(RH⊤)ij +

1

2
∥R∥2F is s =

(RH⊤)ij
(HH⊤)jj

.

Applying the constraint (68) we get the stepsize for the entry (i, j):

(70) s = max

{
−wij ,

(RH⊤)ij
(HH⊤)jj

}
.

This leads to the update for wij and for row i of R:

(71) wij = wij + s, Ri,: = Ri,: − sHj,:.

To update entry (i, j) of H, we are solving

1

2

∥∥∥A−W (H + seie
⊤
j)
∥∥∥2
F
=

1

2

∥∥∥R− sWeie
⊤
j

∥∥∥2
F

=
1

2
∥R∥2F − s⟨(eie⊤j),W⊤R⟩F +

s2

2
∥Weie

⊤
j ∥2F(72)

subject to s ≥ −hij .(73)

38 MARIA CAMERON

The stepsize and the update is obtained by a similar calculation:

(74) s = max

{
−hij ,

(W⊤R)ij
(W⊤W)ii

}
, hij = hij + s, R:,j = R:,j − sW:,i.

5.3.2. Hierarchical alternating least squares (HALS) or rank-one residual iteration (RRI).
The formulas developed in Section 5.3.1 are readily adapted for updating one column of
W at-a-time and one row of H at-a-time. The corresponding constrained least squares
problems

1

2
∥R− uHj,:∥2F → min subject to u ≥ −W:,j ,(75)

1

2
∥R−W:,iv∥2F → min subject to v ≥ −Hi,:.(76)

These problems are equivalent to

1

2
∥R− uiHj,:∥2F → min subject to ui ≥ −wij , 1 ≤ i ≤ n,(77)

1

2
∥R−W:,ivj∥2F → min subject to vj ≥ −hij , 1 ≤ j ≤ d.(78)

Therefore, the formulas for stepsizes (70) and (74) are suitable for computing u and v. The
update formulas for column j of W and the matrix R, and then row i or H and R are:

W:,j = W:,j + u, R = R− uHj,:; Hi,: = Hi,: + v, R = R−W:,iv.

5.3.3. Alternating non-negative least squares (ANLS). The ANLS updates all entries of W
then all entries of H by solving the following constrained convex optimization problems:

ϕ1(W) =
1

2
∥A−WH∥2F → min subject to W ≥ 0,(79)

ϕ2(H) =
1

2
∥A−WH∥2F → min subject to H ≥ 0.(80)

Unfortunately, contrary to HALS, these problems cannot be solved in simple closed form.
One approach is to solve them using some modern versions of the active set method that
we will study in the chapter on optimization.

6. Collaborative filtering and matrix completion

Reference: D. Bindel’s Lecture 8 “Matrix Completion”. Imagine a spreadsheet with
columns corresponding to movies and rows corresponding to users. Each user has watched
some subset of movies. The problem posed by the Netflix company is to make intelligent
guesses based on the available data how much each user would like the movies that she/he
hasn’t watched yet and make appropriate recommendations. Similar problems are also
important for other online sellers. When you are shopping for some product, you often
see that the website recommends you to look at some other products by saying something
like: “The customers who looked at this products also looked at these products”. I see this
often and find that the system predicts my tastes and my needs quite well.

http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf

LINEAR ALGEBRA 39

In this section, we will explore some methods for making such intelligent predictions.
Let A be an incomplete n× d matrix in which only aij for

(i, j) ∈ Ω ⊂ {(l1, l2) | 1 ≤ l1 ≤ n, 1 ≤ l2 ≤ d}

are known. We will denote by PΩ(A) the projection of A onto Ω:

PΩ(A) =

{
aij , (i, j) ∈ Ω,

0, otherwise.

The idea is to pick a model M for some parametric family to minimize some loss function.
For now, we pick the squared errors loss:

(81) ϕ(M) =
1

2
∥PΩ(A−M)∥2F =

1

2

∑
(i,j)∈Ω

(aij −mij)
2.

Let us consider some models for M to build up some intuition.

6.1. Two simple trial models.

6.1.1. Baseline model. Let M = µ1n×d where µ is to be determined. Plugging M into (81)
and finding the minimizer of the resulting 1D quadratic function, we find

(82) µ =
1

|Ω|
∑

(i,j)∈Ω

aij .

While this model is exactly solvable, it is useless for making predictions. It gives the same
rating for all movies and all users.

6.1.2. Baseline plus uniform adjustments for each user and each movie. This model is
given by

(83) M = µ1n×d + b11×d + 1n×1c
⊤, b ∈ Rn, c ∈ Rd.

The first term in (106) gives some uniform base rating to all movies for each user. The
second term uniformly adjusts ratings for all movies, but these adjustments are chosen
individually for each user. The third term adjusts movie ratings uniformly for all users,
but these adjustments are individual for each movie.

The solution to this problem is the solution to the linear system obtained by taking the
gradient of

(84) ϕ(µ,b, c) =
1

2

∑
(i,j)∈Ω

(aij − µ− bi − cj)
2 :

40 MARIA CAMERON

∂ϕ

∂µ
= −

∑
(i,j)∈Ω

(aij − µ− bi − cj) = 0,(85)

∂ϕ

∂bi
= −

∑
j∈Ωi

(aij − µ− bi − cj) = 0, Ωi := {j | (i, j) ∈ Ω},(86)

∂ϕ

∂cj
= −

∑
i∈Ωj

(aij − µ− bi − cj) = 0, Ωj := {i | (i, j) ∈ Ω}.(87)

• Note that the set of solutions to (85)–(87) is at least two-dimensional:

if (µ,b, c) is a solution, then so is (µ+ α,b+ β1n×1, c− (α+ β)1d×1), ∀α, β ∈ R.

However, this is not a problem since each of these solutions gives the same matrix
M , hence the same recommendations. One way to get rid of this nonuniqueness is
to impose the condition that b and c both sum up to zero. Them µ is given by
(82).

• Also note that the resulting linear system is large: |Ω| × (1 + n + d). This only
will be a problem if we try to use factorization-based direct methods. But certain
iterative methods will work just fine.

• Finally, and most importantly, this model is still not useful as it predicts the same
relative rankings for each user.

6.2. Low-rank factorization. A useful model is the low-rank model:

(88) M = XY ⊤, X ∈ Rn×k, Y ∈ Rd×k.

As the second model considered in the previous section, the factorization M = XY ⊤ is
not unique. To get rid of this nonuniqueness and to penalize crazy choices of X and Y , we
regularize the problem by introducing a penalty for large Frobenius norms of X and Y :

(89) F (X,Y) =
1

2
∥PΩ(A−XY ⊤)∥2F +

λ

2

(
∥X∥2F + ∥Y ∥2F

)
.

Let R = PΩ(A−XY ⊤). Then F (X,Y) =
1

2
⟨R,R⟩F +

λ

2

(
∥X∥2F + ∥Y ∥2F

)
.

To take the variation of F , we first calculate the variation of its first term:

⟨δR,R⟩F = ⟨(−δX)Y ⊤ −X(δY)⊤, R⟩F
= −⟨(δX)Y ⊤, R⟩F − ⟨X(δY)⊤, R⟩F
= −trace(Y (δX)⊤R)− trace((δY)X⊤R)

= −trace((δX)⊤RY)− trace((R⊤X)⊤(δY))

= −⟨δX,RY ⟩F − ⟨δY,R⊤X⟩F .(90)

Note that in the calculation above we did not need to project the first argument of the
Frobenius inner product because the terms of (−δX)Y ⊤ −X(δY)⊤) corresponding to un-
known entries of A will be zeroes out due to the second term R.

LINEAR ALGEBRA 41

The variation of the second term of F is

⟨δX, λX⟩F + ⟨δY, λY ⟩F .
Hence

(91) δF = ⟨δX, λX −RY ⟩F + ⟨δY, λY −R⊤X⟩F .
First, consider the case where all entries of A are available. Let us show that in this

case, the solution to F → min would be

(92) X = Uk

√
sλ(Σk), Y = Vk

√
sλ(Σk), where sλ(σ) = [σ − λ]+,

and UkΣkV
⊤
k is the truncated SVD of A. Note that if λ = 0 then XY ⊤ = UkΣkV

⊤
k would

be the optimal rank k approximation of k as we know from the Eckart-Young-Mirsky
theorem.

We will show that, if X and Y are given by (92), then the variation of F is zero, i.e.

(93) RY = λX, R⊤X = λY.

Indeed,

RY = UΣV ⊤Vk

√
sλ(Σk)− Uksλ(Σk)V

⊤
k Vk

√
sλ(Σk)

= UkΣk

√
sλ(Σk)− Uksλ(Σk)

√
sλ(Σk)

= Uk [Σk − sλ(Σk)]
√

sλ(Σk) = λUk

√
sλ(Σk) = λX,

R⊤X = V ΣU⊤Uk

√
sλ(Σk)− Vksλ(Σk)U

⊤
k Uk

√
sλ(Σk)

= VkΣk

√
sλ(Σk)− Vksλ(Σk)

√
sλ(Σk)

= Vk [Σk − sλ(Σk)]
√
sλ(Σk) = λVk

√
sλ(Σk) = λY.

Here we have used the fact that for 1 ≤ j ≤ k,

σj − [σj − λ]+ =

{
λ, λ ≤ σj ,

σj , λ > σj ,

and, if λ > σj , then sλ(σj) = 0.
The situation is trickier if only partial data are available. In this case, we need to

minimize F numerically. For example, we can use stochastic gradient descent. Another
option is to do the alternating iteration:

Xk+1 = argmin
X

F (X,Y k),(94)

Y k+1 = argmin
Y

F (Xk+1, Y).(95)

Each of these steps can be further decomposed into a collection of small linear least squares
problems. For example, at each substep of (94), we solve the linear least squares problem
to compute the row i of X:

(96) x⊤
i = argmin

x

1

2

∥∥∥x⊤Y ⊤
Ωi

− aΩi

∥∥∥2
2
+

λ

2
∥x∥2,

42 MARIA CAMERON

where Ωi := {j | (i, j) ∈ Ω}, Y ⊤
Ωi

is the set of columns of Y ⊤ with indices in Ωi, and aΩi is
the set of known entries of A in its row i.

6.3. Penalizing nuclear norm. Reference: Bindel’s lecture 8, Section 3 “Nuclear norm
trick”.

An alternative approach to optimizing factors of the model matrix M is to optimize
the matrix M itself. Note that rank is not a continuous function of matrix entries, hence,
imposing rank constraints is not a promising approach. Instead, we are going to penalize
the nuclear norm of M , i.e.,

(97) ϕ(M) =
1

2
∥PΩ(A)− PΩ(M)∥2F + λ∥M∥∗, ∥M∥∗ =

∑
i

σi(M).

The nuclear norm constraint is low-rank promoting for the same reason as the lasso regu-
larizer is sparsity promoting. Below I offer an explanation for it.

Observe that ϕ(M) can be viewed as a Lagrangian function minus tλ for the following
constrained optimization problem

(98) f(M) :=
1

2
∥PΩ(A)− PΩ(M)∥2F → min subject to t− ∥M∥∗ ≥ 0

for some positive constant t. If there exists a matrix M with ∥M∥∗ < t such that PΩ(A−
M) = 0, then the KKT optimality conditions require that λ = 0 as λ(t−∥M∥∗) = 0 while
t−∥M∥∗ > 0. Since we set λ > 0 in (97), this is not the case. This means that ∥M∥∗ = t.

To get a sense of what is the set ∥M∥∗ = t, let us consider a very simple example that
we can visualize. Consider the set of 2× 2 matrices

M(w, x, y, z) :=

[
w x
y z

]
.

Let us find a subset S1 of (w, x, y, z) ∈ R4 such that the nuclear norm of the matrix is 1,
i.e.

(99) S1 :=
{
(w, x, y, z) ∈ R4 | σ1(M(w, x, y, z)) + σ2(M(w, x, y, z)) = 1

}
.

The set S1 is a 3D surface in a 4D space. We are particularly interested in two aspects of
S1:

• Does the surface have singularities (2D edges)? This is because the level sets of
f(M) in (98) are smooth ellipsoids, and the minimal ellipsoid having a nonempty
intersection with the surface ∥M∥∗ tends to have this intersection on a singular
edge.

• Do these singularities of the surface correspond to a low rank of M(w, x, y, z)?

We cannot visualize a 3D surface in 4D, but we can visualize a family of its 2D slices
each of which corresponds to a fixed value of w. Three of these slices are displayed in
Fig. 2. We color the slices according to the value of the determinant of M(w, x, y, z).
If det(M(w, x, y, z)) = 0 then rank(M(w, x, y, z)) < 2. We see that each slice has sin-
gular a singular edge, and the surface color near the edge is green which corresponds to
det(M(w, x, y, z)) = 0. The full set of slices is shown in the Youtube video.

http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf
http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf
https://youtu.be/b9Gz6lT7LNs

LINEAR ALGEBRA 43

Figure 2. Slices of the set S1 (see (99)) corresponding to w = −0.19 (left),
w = 0.31 (middle), and w = 0.81 (right). The coloring of the surfaces
corresponds to the values of det(M(w, x, y, z)). Note that the edge of these
surfaces is green which corresponds to det(M(w, x, y, z)) = 0.

Now let us discuss methods for solving the minimization problem (97). It is helpful to
see what is the solution to it in the case if all entries of A are known, the so-called proximal
problem. Then (97) becomes

(100) ϕ(M) =
1

2
∥A−M∥2F + λ∥M∥∗.

Its minimizer is given by

(101) Sλ(A) := Usλ(Σ)V
⊤,

where A = UΣV ⊤ is the SVD of A and sλ(σj) = max{σj − λ, 0} as before. Note that if
there are exactly k singular values of A greater than λ then (101) is also the minimizer for
the problem considered in Section (6.2):

(102) F (X,Y) =
1

2

∥∥∥A−XY ⊤
∥∥∥2
F
+

λ

2

(
∥X∥2F + ∥Y ∥2F

)
→ min, X ∈ Rn×k, Y ∈ Rd×k.

A similar result holds when only part of the data matrix A is available: the nuclear norm
regularization and the optimization of the factored form with Frobenius norm regularization
on the factors yield the same model predictions when the factor size k in the latter problem
is at least as large as the rank observed in the nuclear norm problem.

The SVD solution (101) to the proximal problem suggests the following iteration:

(103) M j+1 = Sλ

(
M j + PΩ(A−M j)

)
.

Since there are only a few singular values greater than λ at each step, the necessary
components of the SVD at each step can be computed very efficiently using a Lanczos-type
algorithm (see e.g. Trefenthen and Bau “Numerical Linear Algebra”).

7. CUR matrix decomposition

Please read the PNAS article by M. Mahoney and P. Drineas of 2009 [2]. The CUR
algorithm in it is the one I would like you to implement. The preceding article by the
same authors plus S. Muthukrishnan [3] contains detailed proofs and more complicated

https://people.maths.ox.ac.uk/trefethen/text.html
https://www.pnas.org/content/pnas/106/3/697.full.pdf

44 MARIA CAMERON

algorithms with better worst-case scenario guarantees. Background material on leverage
scores can be found e.g. here. In addition, here is a nice lecture on CUR by Jeff M. Philips,
University of Utah.

8. Conjugate gradient Methods

Read Section 5.1 in J. Nocedal and S. Wright “Numerical Optimization”, Second Edition,
Springer, 2006 (available online)

9. Direct methods for solving linear systems with sparse and structured
matrices

Ref.: Ten lectures by G. Martinsson (2014). Read Lecture 1 for the general introduction
to direct methods and Lecture 6 for the Nested Dissection algorithm (George, 1973).

9.1. A model problem. We start with a simple model problem, the Poisson equation in
2D in a unit square Ω = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with Dirichlet boundary conditions:

uxx + uyy − f(x, y) = 0, (x, y) ∈ Ω,(104)

u = 0, (x, y) ∈ ∂Ω.(105)

Let us introduce a mesh with step h = 1/J and approximate Eq. (104) with the central
difference scheme with a 5-point stencil (Fig. 3):

(106)
1

h2
(UN + US + UW + UE − 4UP) = fP .

Each mesh point is naturally indexed with two indices (i, j) where i, j ∈ {0, 1, . . . , J},

P

N

S

EW

1

9

85

7

6

4

3

2

(4,0) (4,4)(4,3)(4,2)(4,1)

(3,4)(3,3)(3,1) (3,2)(3,0)

(2,4)(2,3)(2,2)(2,1)(2,0)

(1,4)(1,3)(1,2)(1,1)(1,0)

(0,4)(0,3)(0,2)(0,1)(0,0)

Figure 3. An illustration for the 5-point stencil and indexing of mesh points.

i.e., J + 1 points in each direction in total. I prefer to index them in the same order as
the matrix entries are indexed (Fig. 3). The function u is known to be 0 at all boundary

http://yintat.com/teaching/cse599-winter18/10.pdf
https://www.cs.utah.edu/~jeffp/teaching/cs7931-S15/cs7931/5-cur.pdf
https://www.cs.utah.edu/~jeffp/teaching/cs7931-S15/cs7931/5-cur.pdf
https://amath.colorado.edu/faculty/martinss/2014_CBMS/lectures.html

LINEAR ALGEBRA 45

points of the mesh: u0j = ui0 = uJj = uiJ = 0, i, j ∈ {0, 1, . . . , J}. Therefore, we need to
find uij , 1 ≤ i, j ≤ J − 1. To do it, we set up a linear system for uij of the form Au = f .
The matrix A will be (J − 1)2× (J − 1)2. We start with casting uij , 1 ≤ i, j ≤ J − 1 into a
vector column-wise as shown in Fig. 3. This indexing is consistent with Matlab’s operator
(:) and its inverse operator reshape illustrated in the following example.

>> a = [1 4 7; 2 5 8; 3 6 9]

a =

1 4 7

2 5 8

3 6 9

>> a1 = a(:)

a1 =

1

2

3

4

5

6

7

8

9

>> a2 = reshape(a1,3,3)

a2 =

1 4 7

2 5 8

3 6 9

For the example in Fig. 3 we obtain the following linear system.

46 MARIA CAMERON

Au = 1
h2

1 2 3 4 5 6 7 8 9
1 -4 1 1
2 1 -4 1 1
3 1 -4 1
4 1 -4 1 1
5 1 1 -4 1 1
6 1 1 -4 1
7 1 -4 1
8 1 1 -4 1
9 1 1 -4

u1
u2
u3
u4
u5
u6
u7
u8
u9

=

f1
f2
f3
f4
f5
f6
f7
f8
f9

From this example, it is easy to catch the block structure of the matrix A, where each
block is (J − 1)× (J − 1):

(107) A =
1

h2


T I
I T I

. . .
. . .

. . .

I T

 , where T =


−4 1
1 −4 1

. . .
. . .

. . .

1 −4

 ,

and I is the (J − 1)× (J − 1) identity matrix.
Matlab has two types of matrices: full, where all entries are kept in memory, and sparse,

where only nonzero entries and their indices are kept in memory. Each row of A in Eq. (107)
has at most 5 nonzero entries, hence it is worthwhile to set it up as sparse. Note that if you
set it up as full, Matlab will be able to solve your system for at most J = 150 or so depending
on your computer. It can handle much larger values of J if you set up A as sparse. Look
how A is set up in the code below. The command kron(A,B) gives the Kronecker product
of matrices A and B. The code below solves Eq. (104) with f(x, y) = sin(2πx) sin(2πy)
for J = 2k, k = 8. The exact solution is uexact = −f(x, y)/(8π2).

k = 8;

n = 2^(k + 2) + 1;

n2 = n - 2;

t = linspace(0,1,n);

[x,y] = meshgrid(t,t);

f = sin(2*pi*x).*sin(2*pi*y);

f1 = f(2 : n - 1,2 : n - 1);

f_aux = f1(:);

h = 1/(n - 1);

u = zeros(n);

% Set up the matrix A

I = speye(n2); % n2-by-n2 sparse identity matrix

e = ones(n2,1);

T = spdiags([e -4*e e],[-1:1],n2,n2); % set up a sparse matrix T

S = spdiags([e e],[-1 1],n2,n2); % set up a sparse matrix S

https://en.wikipedia.org/wiki/Kronecker_product

LINEAR ALGEBRA 47

A = (kron(I,T) + kron(S,I))/h(k)^2; % kron is the Kronecker product

% Solve the linear system

u_aux = A\f_aux;

u(2:n-1,2:n-1) = reshape(u_aux,n2,n2);

Nested Dissection

References

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Proc. Neural Information
Processing Systems, 2001.

[2] M. W. Mahoney and P. Drineas, “Cur matrix decompositions for improved data analysis,” PNAS,
vol. 106, no. 3, pp. 697–702, 2009.

[3] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Relative-error cur matrix decompositions,” SIAM
J. Matrix Anal. Appl., vol. 30, no. 2, pp. 844–881, 2008.

	1. Linear Algebra I: theory and conditioning
	1.1. Vector spaces
	1.2. Vector norms
	1.3. Matrix norm
	1.4. Eigenvalues and eigenvectors
	1.5. Normal equations
	1.6. The QR decomposition and Gram-Schmidt Algorithm
	1.7. Singular Value Decomposition (SVD)

	2. Condition number
	2.1. Condition numbers for differentiable functions
	2.2. Condition number for matrix-vector multiplication
	2.3. Condition number for solving linear systems
	2.4. The condition number of a matrix
	2.5. Condition numbers for eigenvalue problem

	3. Linear Algebra II: algorithms
	3.1. Solving Ax=b via LU factorization with pivoting
	3.2. Cholesky decomposition
	3.3. Properties of symmetric positive definite matrices

	4. Linear Algebra III: Matrix factorization for low-rank approximation
	4.1. The full SVD and the truncated SVD
	4.2. Ky-Fan norms
	4.3. Eckart-Young-Mirsky theorem
	4.4. Gradient descent for SPD quadratic functions

	5. Nonnegative matrix factorization (NMF)
	5.1. Projected gradient descent
	5.2. Multiplicative update scheme by Lee and Seung
	5.3. Coordinate descent (CD)

	6. Collaborative filtering and matrix completion
	6.1. Two simple trial models
	6.2. Low-rank factorization
	6.3. Penalizing nuclear norm

	7. CUR matrix decomposition
	8. Conjugate gradient Methods
	9. Direct methods for solving linear systems with sparse and structured matrices
	9.1. A model problem

	References

