NUMERICAL OPTIMIZATION IN THE CONTEXT OF
CLASSIFICATION PROBLEMS

MARIA CAMERON

CONTENTS
1. An overview of algorithms for unconstrained optimization
2. Line Search Methods
3. Trust-Region Methods
4. BFGS and L-BFGS
4.1. BFGS
4.2. L-BFGS

5. Methods for nonlinear least-squares problem

5.1. The gradient and a handy approximation to the Hessian

5.2. The Gauss-Newton method

5.3. The Levenberg-Marquardt method

6. Stochastic gradient descent

6.1. Expected decrease of f under SG iterations: assumptions and basic lemmas
6.2. Convergence of SG for strongly convex objective functions

6.3. SG for nonconvex objective functions

7. Gradient descent and accelerated gradient descent

7.1. Convergence analysis for gradient descent with constant learning rate
7.2. Nesterov’s accelerated gradient: motivation

7.3. Convergence of Nesterov’s accelerated descent

7.4. Adam

8. Basics of constrained optimization

8.1. Karush-Kuhn-Tucker optimality conditions

8.2. Active-set method

References

1. AN OVERVIEW OF ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION

Read Chapter 2 of Nocedal and Wright, “Numerical Optimization” [1]. See Fig. 1.

2. LINE SEARCH METHODS

Read Chapter 3 of Nocedal and Wright “Numerical Optimization” [1]. Keywords:
1

O T = NN DN ==

Fall 2023 AMSC660/CMSC660

Methods for unconstrained optimization

. Involve quadratic model
Derivative-free | | Involve only 1st derivatives

1
a1 = X+ m(p) = f(x) + V@) p+=p'Hp

: o 7\

Nedler-Mead Nonlinear

Trust region

Conjugate

Line search

Simplex
Method

Gradient Gradients

descent

Accelerated
Gradient

Quasi-newton
L-BFGS

Descent
(Nesterov,
Adam)

(StOChGStiC) / \ NLevenberg-MarQuardt)
/!

Deterministic

(Deterministic) (Stochastic) [

Nonlinear least-squares problem]

FiGure 1. Classification of algorithms for unconstrained optimization.

the Wolfe conditions,
steepest descent,
Newton’s method,
BFGS,

convergence.

3. TRUST-REGION METHODS

Read Chapter 4 of Nocedal and Wright “Numerical Optimization” [1].

4. BFGS anDp L-BFGS

4.1. BFGS. BFGS (Broyden-Fletcher-Goldfarb-Shanno) is, perhaps, the most successful
quasi-newton method [1] (Section 2.2). At each step of optimizing a function f(x), any

quasi-newton method updates a quadratic model for it

(1) m(p) = F05) + V() B+ 3p" Byp.

Fall 2023 AMSC660/CMSC660

where By, is a matrix approximating the Hessian of f. The step direction p is the minimizer
of (1):

Pr = —B,;1Vf(xk).
The matrix By, is constructed as follows. The initial matrix is often set to identity: By = I.
Then, at each step, is it updated to match the action of the actual Hessian of f on the
actual step. For brevity, we will denote fr = f(xx), Vfi = Vf(xx), and VV f(x;) = VV fi.
Taylor expansion at xj yields the following identity:

(2) V fit1 = Vi + VV fi(Xpr1 — %) + o([[xp11 — Xk])-
Hence
(3) V fir1 — Ve = VV fr(Xp1 — Xi).

We introduce notation

and define the update requirement for the matrix B motivated by (3):

(4) Bk:+15k; =Y.

Note that B is d x d while (4) gives only d equations. Therefore, (4) is an underdetermined
system that has a d-dimensional solution space. The BFGS update formula for By adds
a matrix of rank 2 to it designed so that Bj remains symmetric positive definite provided
that By is symmetric positive definite and s;—yk > 0 for all k.

Exercise Prove that all matrices By generated by BFGS

Bisks! Br. yry,
(5) Bj41 = By — . .

sszsk y,;rsk
are symmetric positive definite provided that such is By and sgyk > 0 for all kK € N.
A convenient feature of BFGS is that the inverse matrices H, = B, ! can be generated

automatically instead of By:

1
(6) Hipr = Vi HyVi + prsisy, where pp = ——, V=1 — pryssy -

Y Sk
Exercise Prove that the matrices Hj, given by (6) are inverses of By given by (5).

Fig. 2 displays iterates produced by three line search methods: Newton’s (blue), BFGS
(dark green), and gradient descent (dark red) applied to the Rosenbrock function

(7) f(x) = (1 —21)>+5(w2 —22)? with initial guess [—1.3,1.5]".

This function has a unique local minimum at [1;1]" but with the given parameter values it
is not convex. For Newton’s method, the Hessian is modified in the case if it is not positive
definite — see the code below. The stopping criterion is ||V f|| < 107!°. Newton’s method
converges in 10 iterations, BFGS — in 18, while gradient descent takes 270 iterations most
of which are in a small neighborhood of the solution. The main lesson for us is that BFGS
converges almost as fast as Newton as iterates get to a neighborhood of the local minimum
in which the objective function is well-approximated by a convexr quadratic.

Fall 2023 AMSC660/CMSC660

15K

0.5

15 I I I I I I I |

FIGURE 2. Iterates of Newton’s (blue), BFGS (dark green), and gradient
descent (dark red) applied to (7).

4.2. L-BFGS. L-BFGS stands for limited memory BFGS [1] (Section 7.2). It is often
the method of choice for large-scale problems where the Hessian cannot be computed at a
reasonable cost or is not sparse. L-BFGS (as other limited-memory quasi-Newton methods)
stores a small fixed number of vectors (e.g., m = 5) that represent an approximation to the
Hessian implicitly, i.e., it stores the pairs (s;,y;) for i = k—m, ..., k—1. At each iteration
k, an initial approximation H ,8 to the inverse Hessian is chosen. One such approximation
that has proven effective in practice is (see [1] Section 6.1)

-
0 Sg—1Yk-1
(8) Hp = ——.
Ye_1Yk-1
Then this approximation is updated by
. . ‘
9) Hlj; = Vk—ierjHlin—m-&-j + pk—m-i-jsk—m-&-]'sg—ferj? J=0,...,m—1,

where p; and V; are defined in (6). Equation (9) suggests that the matrix-vector multipli-
cation defining the direction of the step py, = —H}'V f;, can be performed in two for-loops
implemented in the Matlab code below.

function p = finddirection(g,s,y,rho)
% input: g = gradient dim-by-1
% s = matrix dim-by-m, s(:,i) = x_{k-i+1}-x_{k-i}

Fall 2023 AMSC660/CMSC660

%y = matrix dim-by-m, y(:,i) = g_{k-i+1}-g_{k-i}
% rho is 1-by-m, rho(i) = 1/(s(:,1i)’*y(:,i))
m = size(s,2);
a = zeros(m,1);
fori=1:m
a(i) = rho(i)*s(:,1)’*g;
g =g - a(Dxy(:,1);

end
gam = s(:,1) 7 xy(:,1)/(y(:,1)*xy(:,1)); % HO = gam*eye(dim)
g = g*gam;

for i =m :-1 : 1

aux = rho(i)*y(:,1)’*g;

g =g+ (a(i) - aux)*s(:,i);
end
p =g
end
L-BFGS keeps in memory pairs of vectors (s, yx) from the most recent m steps and replaces
the least recent pair with the new pair at each step. The Matlab program below encodes
L-BFGS and testing it on the Rosenbrock function (7). The convergence is achieved in 20
iterations which is comparable with Newton’s and close to BFGS (10 and 18, respectively)
and which is much fewer than gradient descent (270). The majority of these iterates are
done in a small neighborhood of the minimizer. Fig. 3 is generated by this routine. The
norm of the gradient versus iteration number for all four methods are plotted in Fig. 4.

function LBFGS()
%% the Rosenbrock function and parameters

a = b;

func = @(x,y) (1-x)."2 + a*x(y - x.72).72; 7 Rosenbrock’s function

gfun = Q(x) [-2%x(1-x(1))-4*a*x(x(2)-x(1) "2)*x (1) ;2*a*x(x(2)-x(1)"2)]; % gradient of f
Hfun = @(x) [2 + 12*a*x(1)"2 - 4x*xa*x(2), -4*a*xx(1); —-4*a*xx(1), 2*a]; % Hessian of f

gam = 0.9; % line search step factor

jmax = ceil(log(le-14)/log(gam)); % max # of iterations in line search
eta = 0.5; % backtracking stopping criterion factor

tol = 1e-10;

m = 5; % the number of steps to keep in memory

o

close all

figure;

hold on; grid;

x0 = [-1.3;1.5]; Y%initial guess

xstar = [1;1]; % the global minimizer

[xx,yy]l=meshgrid (1inspace(-2,2,1000),linspace(-1.5,2,1000));
ff = func(xx,yy);

Fall 2023 AMSC660/CMSC660

plot(xstar(1) ,xstar(2),’r.’, Markersize’,40);
daspect([1,1,1])

col = [0.4,0.2,0];

yA

s = zeros(2,m);

y = zeros(2,m);

rho = zeros(1,m);

pA

x = x0;

g = gfun(x);

plot(x(1),x(2),’.”,’color’,col, ’Markersize’,20);

fx = func(x(1),x(2));
contour (xx,yy,ff, [fx,fx],’k’,’Linewidth’,1);
% first do steepest decend step
a = linesearch(x,-g,g,func,eta,gam, jmax) ;
Xnew = X - axg;
gnew = gfun(xnew);
s(:,1) = xnew - x;
y(:,1) = gnew - g;
rho(1) = 1/(s(:,1)*y(:,1));
plot([x(1),xnew(1)], [x(2) ,xnew(2)], ’Linewidth’,2,’color’,col);
X = Xnew;
g = gnew;
nor = norm(g);
plot(x(1),x(2),’.’,’color’,col, ’Markersize’,20);
fx = func(x(1),x(2));
contour (xx,yy,ff, [fx,fx],’k’,’Linewidth’,1);
iter = 1;
while nor > tol
if iter < m
I =1 : iter;
p = finddirection(g,s(:,I),y(:,I),rho(I));
else
p = finddirection(g,s,y,rho);

end
[a,j] = linesearch(x,p,g,func,eta,gam, jmax);
if j == jmax
p=-8g
[a,j] = linesearch(x,p,g,func,eta,gam, jmax);
end
step = a*p;

xnew = x + step;
plot ([x(1),xnew(1)], [x(2),xnew(2)], ’Linewidth’,2,’color’,col);

Fall 2023 AMSC660/CMSC660

gnew = gfun(xnew);

s = circshift(s, [0,1]);

y = circshift(y, [0,1]);

rho = circshift(rho,[0,1]);
s(:,1) = step;

y(:,1) = gnew - g;

rho(1) = 1/(step’*y(:,1));
X = XNew;
g = gnew;

fx = func(x(1),x(2));
if nor > 1le-1
contour (xx,yy,ff, [fx,fx],’k’,’Linewidth’,1);
end
plot (x(1),x(2),’.’,’color’,col, ’Markersize’,20);
nor = norm(g);
iter = iter + 1;
end
fprintf (’L-BFGS: %d iterations, norm(g) = %d\n’,iter,nor);
set(gca,’Fontsize’,16);
xlabel(’x_1’,’Fontsize’,16);
ylabel(’x_2’,’Fontsize’,16);
end

Dot
function [a,j] = linesearch(x,p,g,func,eta,gam, jmax)
a=1;
f0 = func(x(1),x(2));
aux = etaxg’*p;
for j = 0 : jmax
Xtry = X + axp;
f1 = func(xtry(1),xtry(2));
if f1 < £f0 + a*aux
break;
else
a = axgam;
end
end
end

5. METHODS FOR NONLINEAR LEAST-SQUARES PROBLEM

Reference: Nocedal and Wright, “Numerical Optimization” [1], Chapter 10.

Fall 2023 AMSC660/CMSC660

-1.5

FIGURE 3. Iterates of L-BFGS applied to (7).

—=— Newton
—6—BFGS

—»— gradient descend
—e—L-BFGS

ligrad 1,

FIGURE 4. Decay of |V f(xy)|| for various methods applied to (7).

In least-squares problems, the objective function has the following special form:

(10) F0) = 5 S 3.
j=1

Fall 2023 AMSC660/CMSC660

Objective functions of this form arise in many applications wherever there is a nonlinear
model and experimental noisy data. The assumption that the noise is Gaussian leads to
the objective function (10) [1] (Chapter 10). Loss functions in classification problems and
training neural network problems can also be chosen of the form (10).

In this section, we will discuss two methods for solving nonlinear least squares problems:
Gauss-Newton and Levenberg-Marquardt [1] (Chapter 10).

5.1. The gradient and a handy approximation to the Hessian. We will denote by
r(x) and J(x), respectively, the vector-function with components r;(x) in (10) and its
Jacobian matrix:

r1(x) Vrix)" —
(11) r(x):=1| |, Jx)= :

rn(X) Vrn(x)T —
Then f and its gradient and Hessian are:
(12) £ = e
(13) Vix) =J(x) r(x),
(14) VVF(x) = Jx)TT(x)+ > ri(x)VVr;(x).

j=1

The second term in (14) can be small in two cases:

e if the residuals r; are small which is the case if the exact solution is zero of r,
and /or
e if r; are nearly linear in the neighborhood of the solution, i.e., VVr; are small.

Whether this is the case or not, both Gauss-Newton and Levenberg-Marquardt methods
approximate the Hessian of f with the first term in (14) only. Then Gauss-Newton follows
the line-search strategy, while Levenberg-Marquardt employs the trust-region strategy.

5.2. The Gauss-Newton method. The Gauss-Newton method defines the search direc-
tion at step k£ by solving

(15) Ji Jepe = —J} T,
where the subscript k replaces the argument xj, and proceeds according to the standard
routing for line-search methods. This choice of direction has several advantages.
e No computation of Hessians of r; is required.
o If r; are small or if VVr; are small, the Gauss-Netwon method converges almost
as fast as Newton’s method.

e If J; has linearly independent columns then the Gauss-Newton direction is a descent
direction, i.e., p; J; ry < 0. Indeed, from (15) we have:

(16) ppJy ti = —pp i Jepk = — || Jkpi||* < 0.

Fall 2023 AMSC660/CMSC660

If columns of Jy are linearly independent, equality takes place if and only if ri = 0.
Hence, if x;, is not the solution, we have strict inequality in (16) which means that
Pr is a descent direction. Note that this is not true, in general, for the regular
Newton’s method unless it is applied to a strictly convex function.

e Equation (15) is the normal equation for the linear least squares problem Jypj =
—rg, i.e., its solution is the minimizer of

(17) mgnHJkp—l— ry|?.

This allows us to use methods for solving linear least squares problem such as QR
decomposition via Householder reflections [2] for finding the search direction.

Convergence of the Gauss-Newton method to a stationary point under nonrestrictive
conditions is guaranteed by the following

Theorem 1. Suppose that all rj(x) are Lipschitz continuously differentiable in a neigh-
borhood of the level set

{x | f(x) < f(xo0)}
and J(x) satisfies the uniform full-rank condition
|I(x)z] > ylal] for some >0

in this neighborhood. Then the iterates of the Gauss-Newton method with stepsizes satis-
fying the Wolfe conditions [1] (Section 3.1) converge to a stationary point of f(x), i.e.,

lim J,;r r, = 0.
k—ro0
The proof of this theorem follows from Theorem 3.2 in [1].

5.3. The Levenberg-Marquardt method. The Levenberg-Marquardt method follows
the trust-region strategy. This means that at each step k, a trust region, typically of the
form

(18) [xk+1 — %kl = [[pl] < Ay,
is given, an a constrained minimization problem for a quadratic model
1
(19) m(p) = fi+p g+ 5P Bip
is solved. Then the quality of the model is assessed by computing the ratio of the actual
reduction to the expected reduction

f(xx) — f(xk + Pr)
f(xk) — m(pr)

and, depending on its value, the trust region radius for the next step is increased, left the
same, or decreased. Finally, if p is smaller than a user-prescribed threshold, the proposed
step Xx+1 = Xk + P is accepted or rejected. If the step is rejected, a new py1 is obtained
at the next step as the solution to the constrained optimization problem in a smaller trust
region. A pseudocode giving a template for any trust region method is outlined in Algo-
rithm 1 I usually set n = 0.1 and Ag = 0.2Apax. There are several approaches to solving

(20) p=

Fall 2023 AMSC660/CMSC660

Algorithm 1: Trust region template

Input:
Choose minimal and maximal radii of trust region Api, and Apax;
Choose the initial trust region radius Ay € [Amin, Amax);
Choose threshold 7 € [0,1/4) for accepting proposed step;
Choose initial approximation xg;
for k=1,2,...do
Compute unconstrained minimizer py = —Bk_l g of m(p);
if ||px|| > Ay then
Solve constrained minimization problem (18)—(19) and get pg;
end
Compute the ratio p (20);
if p < 1/4 then
‘ Reduce the trust region radius: Apy1 = 0.25A;
else
if p>3/1 and |px| = Ay then
| Increase trust region radius Agiq = min(2Ax, Apax)
end
end
if pr > n then
‘ Accept step: Xpt1 = X + Pk;
else
‘ Reject step: xpy1 = Xi;
end
end

the constrained minimization problem (18)—(19). The one used in Levenberg-Marquard
gives the exact solution. Note that the quadratic model for Levenberg-Marquardt is of the
form

1 1 1
mp) = Z|lJkP T Tkl = S ||Tk P Jp T+ P Ji JKP-
(21) (p) = 59+ rill* = Slral® + P e+ op I

Therefore, the quadratic model is convex but it might be not strictly convex if J, has
linearly dependent columns.

Recall Theorem 4.1 in [1] that characterizes the solution to the constrained minimization
problem solved at each step of a trust-region method.

Theorem 2. The vector p* is a global solution to the problem

1
(22) min f+g'p+op'Bp subject to [|p| < A,
pPER™

Fall 2023 AMSC660/CMSC660

if and only if there exists A > 0 such that

(23) (B+AM)p" =g,
(24) A(A —pll) =0,
(25) (B+ M) s positive semidefinite.

Therefore, if the unconstrained minimizer —B~'g lies outside the trust region, i.e,
|B~'g|| > A, the solution to (23)—(24) lies on the trust region boundary, i.e., ||p| = A
Let us discuss how to find p in this case. We have:

(26) (B+A)p=-g, [pl=A4A

Since B is symmetric and nonnegative definite as B = J ' J, its spectral decomposition is
= Q'AQ,

where Q = [q1,...,qq] is orthogonal, i.e. its columns are orthonormal, and A is diagonal.

We always can order the eigenvalues in the nondecreasing order, i.e,
A =diag{Ai,...,\g}, where 0<)\ <...<)\
Using the spectral decomposition, the identity p = —(B + AI)~'g can be rewritten as
q g
27 - _ J
(27) P=-2 W

j=1

Since columns of) are orthonormal, the identity ||p|| = A becomes:

d

(q) g)?
(28)]Z; m — A

Equation (28) is a 1D nonlinear equation that can be solved using Newton’s method.
Note that if A = 0, then p is unconstrained minimizer with ||p|| > A by our assumption.
Hence, since all \; are nonnegative, the solution A to (28) must be positive. On the other
hand, since the left-hand side of (28) strictly decreases and tends to zero as A — oo,
we conclude that there exists a unique solution * to (28). Also, the difference between
the left-and right-hand side of (28) behaves approximately as CA~! while the difference
between their reciprocals behaves approximately as a linear function which is beneficial for
rapid convergence of Newton’s iterations. So, we will solve numerically the equation

) d)2 ~1/2
(29) o) = 5 — ; ¥ H _0
The Newton iteration is
(30) A A0 _ (A1) ‘

Fall 2023 AMSC660/CMSC660

The derivative of ¢ is given by:
(q, g)*

(31) PO =~ (H;)z

d

J

Left p; be the solution to (B + AY)p = —g. Then ¢(AW) = A=1 — ||p;|| ", and the first
factor in (31) is ||py|| ~*. The second factor in (31) is the squared norm of the solution to
(B 4+ A\I)*/?q = —g. Hence

1

lall?
(32) ¢'(\) = — -
Ipe|f?
As a result, the Newton’s update formula becomes:
1 1] e [pul? [[l — A
33 AD — X0 [-~ } =0 4 .
(39 A Mol lal? la? | A

These considerations lead to the following subroutine for computing the solution to the
constrained minimization problem in Levenberg-Marquardt.

% do Tikhonov regularization for the case J is rank-deficient
B = J’xJ + (le-12)%I;

pstar = -B\g; ' unconstrained minimizer
if norm(pstar) <= R
p = pstar;

else % solve constrained minimization problem
lam = 1; % initial guess for lambda
while 1
Bl = B + lamxI;

C = chol(B1); % do Cholesky factorization of B
p = -C\(C’\g); % solve Blxp = -g
np = norm(p);

dd = abs(np - R); % R is the trust region radius
if dd < 1le-6
break
end
q = C’\p; % solve C"\top q = p
nqg = norm(q);
lamnew = lam + (np/nqg) " 2*(np - R)/R;
if lamnew < O
lam = 0.5%lam;
else
lam = lamnew;
end
end
end

Fall 2023 AMSC660/CMSC660

This Matlab routine does not take advantage of the fact that (B + AI)p = —g is really the
normal equation for the linear least squares problem

o3| Jre 5]

To take an advantage of it, one needs to use low-level language. Then (B + A)p = —g
can be solved by QR decomposition implemented via a clever combination of Householder
reflections and Givens rotations (see [1] (Section 10.3) and [2]).

For convergence theorems for Levenberg-Marquard consult Section 4 in [I]. There are
many nuances, but in short, iterates of Levenberg-Marquardt converge to a stationary
point provided that certain nonrestrictive conditions hold.

2

6. STOCHASTIC GRADIENT DESCENT

The key reference for this section is Bottou, Curtis, and Nocedal, “Optimization Methods
for Large-Scale Machine Learning”, STAM Review, 60, 2, 223-311, 2018 [3].

100

50\ _

X3 o— — B =

/A

-5 15

o

FIGURE 5. An example illustrating how stochastic gradient descent with
a constant step length first rushes to the region where the minima of the
individual functions are and then bounces around forever. Here, f(x) =
1/20 Z}Ql(a; —)2, step length is 0.3, batch size is 1. The iteration numbers
are indicated by the parula colormap going from blue to yellow.

Stochastic gradient descent (SG) originates from the work by Robbins and Monroe
(1951)“A stochastic approximation method” [1]. SG is designed for minimizing functions
of the form

N
(34) f(x) = %Zf,(x), N is large.
i=1

https://www.mathworks.com/help/matlab/ref/parula.html

Fall 2023 AMSC660/CMSC660

One simple version of SG runs as follows. One picks a batch, a random subset of indices
Sk € {1,..., N} and makes a step:

(35) Xpt+1 = X — Qg L Z Vfi(xk)
|Sk| :
JESk

A 1D example with batch size 1 is shown in Fig. 5. The expression in the square brackets
is a stochastic approximation to V f(xy). Why is this a reasonable approximation? Often,
there are many samples x; in the training set (each sample x; defines the corresponding
fi), and these samples can be split into groups consisting of similar samples. In this case,
using just a subset of samples for estimating the gradient will give almost as good result
but will be cheaper by the factor m/N. Moreover, typically, the dimensionality of machine
learning optimization problems is very large. Hence, evaluating all NV gradients may cause
a computer memory problem.

6.1. Expected decrease of f under SG iterations: assumptions and basic lem-
mas. The SG algorithm offers a lot of flexibility for choosing batch sizes |Si| and stepsizes
ag. These can be fixed or variable and chosen according to some strategy enhancing per-
formance. Moreover, the choice of the recipe for generating the direction for the step gives
an additional flexibility. For example, one can calculate the direction of a step from scratch
at each step, or incorporate the previously used directions, or even build up a stochastic
estimate for the inverse Hessian and make the method a stochastic quasi-Newton.

We will denote the stochastic vector in the direction opposite to the direction of step
k by g(xx; &) where & is a random variable (generally, a vector random variable). For a
simple SG with batch size 1,

g(xk; &) = V fe, (xk)-
For SG with batch size n;, we have

1 &
g(xk; &) = - >V feniy (x0)-
i=1
For a stochastic quasi-Newton version,
1 &
g(xk; &) = Hy >V e (%)-
i=1

In broad strokes, the SG algorithm is outlined in Algorithm 2.
To analyze SG we need to make some assumptions on the niceness of the objective
function f.

Assumption 1. f: R? = R is continuously differentiable and V f : R — R? is Lipschitz-
continuous with constant L, i.e.,

(36) IVf(x) = Vi)l < Llilx —yl| ¥x,y € R,

where || - || is the 2-norm.

Fall 2023 AMSC660/CMSC660

Algorithm 2: SG algorithm
Initialization: Choose an initial vector xg .
for k=0,1,2,... do
Generate a realization of the random variable &g;
Compute a stochastic vector g(xg, &);
Choose a stepsize ay;
Set a new iterate as Xp11 = Xp — (X, &k);
end

Using (36) we can obtain a quadratic bound for the growth of f:
1 df 1
100 = 1)+ [Gy +ate-y)da=)+ [Vo +atx-y) (x-y)da
0 a« 0
1
= £0)+ [(V) + 1 +alx=y) = VI E) (x = y)da

1
< F3) + V) (x—y) + / Lalx - y|*da.

Performing integration in the last identity, we obtain:

(37) F69) < F3) + VI T = y) + LIk -yl Wy € R

This identity allows us to establish the following

Lemma 1. Under Assumption 1, iterates of Algorithm 2 satisfy
(38)

2
B, 17 (oks1)] — F0) < —nV 7 (00) Beg ek, 6] + o b B g (e, €07V € 2y

Proof. By (37), the iterates satisfy

1
F(xhg1) = F(xk) < VF(xR) T (kg — xi) + o Llxk+1 = x|
Lo?
=~V f(xi) g%k, &) + Tng(Xk,ﬁk)HQ-
Taking expectations with respect to & and noting that x; is independent of &, we obtain
(38). O
A good news is that if —E¢, [g(xx,&r)] is a descent direction for f, i.e.,

Vf(xk) "B, [g8(xk, &)] > 0,
then for sufficiently small step length o we expect that f will decrease as a result the step
Xkr1 = X — ag(Xg,&). To ensure that the random directions guarantee some minimal
decrease we state

Fall 2023 AMSC660/CMSC660

Assumption 2. There exists a constant p > 0 such that for all k € Z4
(39) Vf(xk) "B [g(xk: &)] = ullV £ (x0) 1.

A bad news is that there is a harmful effect of the second term that is always positive.
In order to limit its effect, we make one more

Assumption 3. There exist constants M > 0 and Mg > p® > 0 (u is from (39)) such
that for all k € Z

(40) Ee, [llg(xr, &)%) < M + M|V f(xi)||*-
Example Let us see how Assumptions 2 and 3 apply to the 1D example in Fig. 5 where
10
1
f(z) = 20 ;(aﬁ —i)? and g=x—1i where i=randi(10).
Let us start with Assumption 2. We have: V f(z) = x — 5.5. The distribution of g(z*) is:
each of the values z — 1, z — 2, ..., z — 9, z — 10 is taken with the same probability 0.1.

Hence E;[g(z,7)] = z — 5.5 as well, hence p = 1 works.
The stationary point is * = 5.5. The distribution of g is: each of the values —4.5, —3.5,
..., 3.5, 4.5 is taken with the same probability 0.1. Hence, the expectation of g2 is
E[g(x*,i)?] = 0.1 -2(4.5% + 3.5? + 2.5% + 1.5% + 0.5%) = 8.25.

Hence, M = 825. Now, Vf(r) = z — 5.5 and |[Vf(2)|? = 2% — 112 + 30.25, while
g(z,i) =x — i and

10

E[||g(z,)% = 0.1 Z[I‘Q — 2ix + 4% = 2° — 11z + 38.5.

i=1

Plugging this into (40) we get:
2% — 11z + 38.5. < 8.25 + Mg(z? — 11z + 30.25).

Hence, it suffices to pick Mg = 1. Note that Mg = u?, hence the requirement that
Mg > 12 is satisfied.

Assumptions 2 and 3 allow us further elaborate the expected decrease of f under SG
iterations.

Lemma 2. Under Assumptions 1, 2, and 3, the iterates of SG satisfy

(41) E¢, [f (xk41)] — f(xx) < = (M - ;akLMG) ||V f(xp) 1> + %aiLM-

Proof. Plugging (39) and (40) to (38), we git:

e, [F(xu1)] — F0ax) < [V Geu)l> + Jad L (M + MgV fxi)])

1 1
- (u - QakLMG> ol V()| + J0RLM

https://www.mathworks.com/help/matlab/ref/randi.html?s_tid=srchtitle

Fall 2023 AMSC660/CMSC660

as desired. O

Note that if a4 is small enough, the first term in the right-hand side of (41) is negative.
The second term is always positive. These considerations are crucial for designing SG
methods.

6.2. Convergence of SG for strongly convex objective functions.

Assumption 4. The objective function f : R* — R is strongly convez, i.e., there exists a
constant ¢ > 0 such that

(42)) 2 £) + V00T (y = %) + 5lly = x[* vx,y € R

Hence, f has a unique minimizer x* € R? with f* = f(x*).

Assumption 4 guarantees that f grows away from its minimizer x* at least as fast as
the convex quadratic function §|lx — x* |2. Note that the requirement of strong convexity
is stronger than the one of strict convexity. If f is twice continuously differentiable, strong
convexity means that its Hessian is positive definite everywhere, and its eigenvalues are
bounded from below by ¢ > 0, while positive definiteness of the Hessian only will suffice
to guarantee strict convexity. For example, the function y = v/z2 + 1 whose graph is the
hyperbola lying above its two slant asymptotes y = £z is strictly convex but not strongly
convex. Its second derivative " = (1 4+ 1:2)_3/ 2 is positive everywhere but is approaches 0
as |z| — oo.

Comparing (42) and (37) we observe that ¢ < L (L is the Lipschitz constant for Vf).

Assumption 4 also allows us to bound so called optimality gap.

Proposition 1. Let f satisfy Assumption 4. Then
(43) 2¢(f(x) = f) < IVF)* vx e R
Proof. Let us fix x and consider the quadratic model

ay) = () + VI (v = x) + 5 lly =]

q(y) has the unique minimizer y := x — %Vf(x) with

a3) = 109) ~ 5 IVFG)IP.

Therefore, setting y = x* in (42), for any x € R? we have:

1

Sl = x| > £(x) = - IVl

Hence, (43) readily follows. O

> fx) + V)T (x* —x) +

Fall 2023 AMSC660/CMSC660

6.2.1. Fized stepsize. Now we are ready to establish the first convergence result for SG
with fixed stepsize for a strongly convex objective function. It is clear from (41) that
the iterates will not be able to converge to the minimizer but will bounce around in its
neighborhood as the first term in (41) tends to zero as we approach x* while the second
term remains constant. We will denote the total expectation of f(xy) for any k € Z by

E[f(xx)] :== Ee Ee Ee, ... Ee, [f (xx)]-

Theorem 3. Under Assumptions 1, 2, 3, and 4, suppose that the SG method (Algorithm
2) is run with a fived stepsize a satisfying
I

44 O0<a< .
() 4= LM¢a

Then the expected optimality gap satisfies the following inequality for all k € Z4-:
aLM aLM> aLM

_>

2cp 2

(45) E[f(xk) = f7] <

+(1- acu)k <f(x0) — = S

Roughly speaking, this theorem says that the SG iterates with a fixed stepsize will reach
a certain neighborhood of the optimal point and bounce there forever provided that the
stepsize is not too large.

Proof. Plugging the bound (44) on the stepsize to (41) (the result of Lemma 2) and then
inserting the optimality gap (43) we get:

Ee, [f(xp41)] — f(xx) < — (M - ;aLMG> | V(x| + %aQLM

IN

ap 1
—7”Vf(xk)H2 + §OZQLM

1
< —acu(f(x) — f) + ZoPLM.
Subtracting f* from both sides, rearranging terms, and taking total expectations, we get:

Elf(xp11) — £7] < (1 — acp)E[f(x¢) — 7] + Sa®LM.

2
Subtracting O‘QZJZI from both sides we get:
aLM alLM
4 E - f - <(1- E —f] - .
(16) Foxwen) =] = G0t < (1= aen) (Elfo) - 17)
Note that

2 2
UK C oy,
LMg — Lp?2 L —
Here we used the assumption that Mg > p?(see Assumption 3) you might have been
wondering about what is it for. Therefore,

0<(1—acu)<l.
Applying (46) repeatedly we obtain (45). This completes the proof. O

0<acu <

Fall 2023 AMSC660/CMSC660

6.2.2. Decreasing step size. As we have proven, SG with a fixed step size does not converge
to the minimizer. In order to achieve convergence, we need to reduce stepsize as we progress
but not too fast: a condition for stepsizes oy proven in [1] is

[e.9] (0.9}
(47) Zak = 00, Za% < 0.
k=1 k=1

Note that ay ~ k~! for large k satisfies (47). Moreover, if we want to reduce stepsize by a
factor of 2, we need to do it on a certain schedule. One such a schedule is: do mg steps of
size «, then do m; = my steps of size 27 'a, ..., then do my, = mOQk/k: steps of size 2 %a,
and so on. Then

0 k o0 E 2 0 2

2% « 2% o Qo

Zmozﬁ =0, Zmozﬁ = ZW@ < 0.

k=1 k=1 —
The following theorem offers another schedule for stepsize reduction for which error decay
goes as O(1/k).

Theorem 4. Under Assumptions 1, 2, 3,and j, suppose that the SG Algorithm (Algo-
rithm 2) is run with a stepsize sequence oy, k € N, such that

1
(48) ap = 'yf—k‘ for some > o and v >0 such that o < L]/\}G.
Then for all k € N, the expected optimality gap satisfies
v

49 E — < —,
(49) fx) = 1) < —
where

B2LM o LyMp?

= o= 1 - - .

(50) v im e { s O Do)~)+ 5 il

Proof. Repeating the start of the proof of Theorem 3 we obtain the inequality:

N 1
Be, [(ck41)] = £ (k) < —anen(f(xx) = f7) + 5or LM
Subtracting f* from both sides, rearranging terms, and taking total expectations, we get:
* * 1
E[f (xk41) = f*] < (1= anepELf (xx) = f*] + Sof LM.
Now we proceed by induction. It follows from definition of v that (49) holds for k = 1.
Indeed,

1

> — f*
o fx) = f
Induction assumption: (49) holds for k:
. v
E[f(xkx) = f] <

v+ k

Fall 2023 AMSC660/CMSC660

Induction step:

E[f(xs1) — £7] < (1 — anem)ELf(xu) — f7] + Sa2LM

2
5cu> v o1 @
—(1— 4= LM
(Y+k)v+k 2(y+k)?

_7+k—1y &W_lu 1 p Iy
(k)2 (v4R)?2 2(v+k)?

< 0 by definition of v

vy+k-1

= k2’
14

< -
vy+k+1
This completes the proof.]

as (Y+k)?>(+k+1)(y+k—1).

Example Fig. 6 shows an example of application of the SG algorithm to

(51) @) = =3 (@ —i)?

i=1
with n = 10, initial guess x¢9 = —5, batch size 1, and stepsizes reduced according to the
following schedule:
step = 0.3;
N = 15;
NN = 10;

for ii =1 : NN
s = step/27ii;
nsteps = ceil(N*27ii/ii);
for i = 1 : nsteps

k = randi(n);
g = grad(k,x);
X = X - g*s;
end
end

Then the expectations E[f(zy) — f*] is estimated as the average over 10° runs of this
algorithm.

6.3. SG for nonconvex objective functions. If the objective function is not convex,
then, under the rest of assumptions that we have made for the strongly convex case, there
is a subsequence of iterates at which the expected norm squared of the gradient approaches
zero, i.e., a subsequence of iterates approaches a stationary point. If we amplify smoothness
requirements for f, the iterates will approach a stationary point. This is summarized in
the following

Fall 2023 AMSC660/CMSC660

—10/k

Elfx) -]

1
0 500 1000 1500

! I .
2000 2500 3000 3500

K
FIGURE 6. Decay of the optimality gap for SG applied to (51) with n = 10
and batch size 1. The graph of 10/k is shown in red for comparison. The

regular gradient descent reduces the optimality gap to the same value in 16
iterations (see the yellow plot).

Theorem 5. Under Assumptions 1, 2, and 3, suppose that the SG algorithm is run with
stepsizes satisfying (47). Then

(52) lim inf B[V f(x) %] = 0.

|? has

If, in addition f is twice continuously differentiable, and the mapping x — ||V f(x)
Lipschitz-continuous derivatives, then

(53) lim BV (x¢)]|*) = 0.

I am referring an interested reader to [3] (Section 4.3) to look up the proof.

7. GRADIENT DESCENT AND ACCELERATED GRADIENT DESCENT

In this section, we will explore the convergence of gradient descent and accelerated
gradient descent with constant stepsize. We will discuss several variants of accelerated
gradient descent, in particular, Nesterov accelerated gradient and ADAM. I am using the
following sources:

e Convergence of gradient descent: lecture by Ryan Tibshirani (Carnegie Mellon
University): http://www.stat.cmu.edu/ ryantibs/convexopt-F13/scribes/lec6.pdf;

e The original paper by Yu. Nesterov (1983) in Russian;

e Convergence of Nesterov Accelerated Gradient: slides by Andersen Ang (UMONS,
Belgium): https://angms.science/doc/CVX/CVX_NAGD.pdf;

e A blog by Sebastien Ruder giving a good overview for modern methods for large-
scale optimization: https://ruder.io/optimizing-gradient-descent/;

http://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf
http://www.mathnet.ru/links/1d0e045879058764093bb0f383729b64/dan46009.pdf
https://angms.science/doc/CVX/CVX_NAGD.pdf
https://ruder.io/optimizing-gradient-descent/

Fall 2023 AMSC660/CMSC660

e A paper by A. Botev, G. Lever, and D. Barber, (CS, University College, Lon-
don) “Nesterov’s Accelerated Gradient and Momentum as approximations to Reg-
ularised Update Descent” that gives a nice perspective on Nesterov’s algorithm:
https://arxiv.org/pdf/1607.01981.pdf;

e A paper by D. P. Kingma and J. L. Ba “Adam: A Method for Stochastic Opti-
mization” where ADAM is introduced: https://arxiv.org/pdf/1412.6980.pdf.

7.1. Convergence analysis for gradient descent with constant learning rate. We
have the convergence result given as Theorem 4 for stochastic gradient descent (SG) for
strongly convex functions with Lipschitz-continuous gradient. It shows that the optimality
gap of SG converges as O(k~!) provided that the stepsize is reduced harmonically, a; =
B(k +~~1) with v and B chosen appropriately. Noting that M = 0, and u = Mg = 1 for
the gradient descent (GD), we easily can adapt Theorem 3 for GD with constant stepsize
a € (0,1/1] and conclude that

Fxp) = 5 < (1= ac)*(f(x1) =),

where the parameter ¢ > 0 characterizes the strong convexity of f. Now we will prove
another convergence result for GD characterizing its convergence rate as O(1/k). Note that
strong convexity is no longer required.

Theorem 6. Suppose the function f : R — R is convex and its gradient is Lipschitz
continuous with constant L > 0. Then if we run gradient descent for k iterations with a
fized step size 0 < o < /1, it will yield a solution f(xy) which satisfies

o — x>

(54 flo) - < PO

where f* = f(x*) is the minimum of f.
Proof. The iterations of GD are:
Tpp1 = 2 — aVfy, where fi = f(xg).

Recall that the Lipschitz continuity of V f implies (see (37)) that
2, 0L 2
F () = fla = aVfi) <) = @l VIll” + =1V fil

— o) = a (15) IVAI

Since 0 < a < 1/L, we have 0 < a@L/2 < 1/2. Therefore,
«
(55) Fxin) < FOxk) = S IV el
To obtain further bounds, we need to use the convexity of f. We have:

(56) fx) < ff+Vfx)T(x—x*) ¥xeRL

https://arxiv.org/pdf/1607.01981.pdf
https://arxiv.org/pdf/1412.6980.pdf

Fall 2023 AMSC660/CMSC660

Subtracting f* from both sides of (55) and using (56) then we get:
* * «
FOksn) = £ < FOxk) = £ = SV il
oo
< VI (i~ x) — SNVl

1 §) *
— o (20VA 0= x) = @IV = e = X1+ e =)
1 . .
— % (”Xk —x ||2 — HXk —x* — onfk||2)

1
2«
Summing the last inequality from j = 1 till j = k£ we obtain:

k TR
D) = £ < 52D (ger = x7I = flxg =)
J=1

j=1

(1% = x*[1* = [Ixp1 — x*|%) -

1 *
5. (%0 = X% =[x, = x7]%)

1
< — ok 2.
< gallxo = x7|

Finally, we use the fact that f is non-increasing at any iteration which means that

1 i 1
- 2 : < X2
as desired. O

7.2. Nesterov’s accelerated gradient: motivation. We start the discussion on Nes-
terov’s accelerated gradient (NAG) with an intuitive perspective on it given in [5]. Thinking
of Newton’s mechanics for a body of mass m being acted upon by the potential force V f
and experiencing friction proportional to its speed, we have:

1

57 v=—ywv——V ,

(57 V= v - —Vf(x)

(58) X = V.
Discretizing this equation in time with timestep 1, we obtain

1

(59) Vi1 = (L =) v, — %Vf(xk),
(60) Xk+1 = X + Vi41-

We will refer to this algorithm as gradient descent with momentum and abbreviate it as
MOM.

Fall 2023 AMSC660/CMSC660

Now we consider NAG. It is given by:

(61) Vi1 = (14 pr) Xp — ppXp—1,

(62) Xpt1 = Ye+1 — 4V f(Yit1),

where Nesterov proposed schedule pp = 1— 54% and fixed aj. Introducing vy := xp —xp_1,
we see that yp+1 = xi + pr v and hence

(63) Xk = Yk+1 — HEVE-

Furthermore,

(64) X1 = Y1 — @V f(Xk + pvi).

Subtracting (63) from (64) we obtain the iteration for xj and vy:

(65) Vi1 = Vi — oV f(Xg + pvi),

(66) Xp+1 = Xk + Vi1

Comparing (65)-(66) with (59)-(60) we see that NAG evaluates the gradient at the ex-
trapolated position x; + urVvi.

7.3. Convergence of Nesterov’s accelerated descent. The original version of NAG
is a bit different from a different from (61)-(62). The Algorithm outlined below gives a
slightly simplified modification of the original algorithm: the stepsize « is set to be 1/L
rather than being chosen at each step by the bisection method.

Initialization Choose the initial approximation yo. Set: k=0, A\g =0, X9 = yo.
for £k =0,1,2,... do
Gradient update:

1
V41 = Xjp — va(xk)Q

Extrapolation weight:
1 1—A
Mep1 =5 ([TH/1+4N), w= k,
2 Ak+1

Xp1 = (1 = V) Yit1 + WYk

Extrapolation:

end

Theorem 7. Suppose the function f : R* — R is convex and its gradient is Lipschitz
continuous with constant L > 0. Then the iterates of NAG with a constant stepsize o = 1/L
converge to the optimal value f* at rate O(k~2) as

_o*[|2
(67) Flyw) - 1 < 2HP0 2

where f* = f(x*) is the minimum of f.

http://www.mathnet.ru/links/1d0e045879058764093bb0f383729b64/dan46009.pdf

Fall 2023 AMSC660/CMSC660

The proof of this theorem is long and tricky. I refer an interested reader to Ang’s slides.
None that NAG can be easily converted to a stochastic version by approximating the
gradient of f as we have done in SG.

7.4. Adam. See D. P. Kingma and J. L. Ba “Adam: A Method for Stochastic Optimiza-
tion”: https://arxiv.org/pdf/1412.6980.pdf. A motivation for Adam and its connections
to other optimizers are discussed in S. Ruder’s blog.

Adaptive Moment Estimation (Adam) computes adaptive learning rates for each compo-
nent of x. At each step, we compute the decaying averages for the gradient and elementwise
gradient squared (the first and the second moments):

my = Bimp—1 + (1 = B1)Vf(xk), v = Povg—1 + (1 —52) [VF(xk) © VF(xp)].

Since at the start of the algorithm, these moments are biased toward zero, as 81 and s
are close to 1, these biases are counteracted by bias-corrected estimates:

mg Vg
L-pf" " 1-8

~

Uk

my =

The update for Adam is given by:
n N
Xg+1 = Xk — 7%77%
Default values for the parameters are:

B =09, By=0.999, e=10"% 7 =0.001.

8. BASICS OF CONSTRAINED OPTIMIZATION

Ref.: Nocedal and Wright [!], Chapter 12.
We will consider a general constrained optimization problem of the form

f(x) - min subject to
(68) ci(x) =0, €&, (equality constraints)
ci(x) >0, i€Z, (inequality constraints).

Any point x satisfying ¢;(x) =0, ¢ € € and ¢;(x) > 0, ¢ € Z, is called feasible. We assume
that f and ¢;, i € £ UZ, are continuously differentiable.

In order to understand how to solve (68), first recall the method of Lagrange multipliers
from your calculus course. A helpful quick reminder is given in the Wiki article “Lagrange
Multiplier”—look at Figure 1 there.

Imagine that we have a single equality constraint ¢(x) = 0. Then the minimizer of f(x)
subject to c(x) = 0 lies at a point x* such that the level set {x € R? | f(x) = f(x*)} is
tangent to the hypersurface ¢(x) = 0. Indeed, moving along the hypersurface ¢(x) = 0 and
keeping track of the values of f(x), the extreme values of f will be achieved at the points
where the level set of f is tangent to ¢(x) = 0 (see Fig. 7(a)). At such points, the gradients
of f and ¢ will be parallel to each other, i.e., they will relate via

(69) Vf(x) = AVe(x).

https://angms.science/doc/CVX/CVX_NAGD.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.ruder.io/optimizing-gradient-descent/
https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Lagrange_multiplier

Fall 2023 AMSC660/CMSC660

The factor A is called the Lagrange multiplier. The condition (69) motivates the definition
of the Lagrangian function

(70) L(x,\) = f(x) — Ae(x).

Stationary points of L(x, A) are those where its gradient is zero, i.e.,
(71) VxL =V f(x)— AVe(x) =0,

(72) VL = —c(x) =0,

Hence, at every stationary point of L(x,A) we have: (i) ¢(x) =0 and (4i) the gradients of

f and c are parallel.

/

FIGURE 7. The geometric sense of Lagrange multiplier. (a): The solution
to the equality-constrained minimization problem is reached at the point
x* where the level set of f is tangent to ¢(x) = 0. (b): The unconstrained
minimum of f is the solution to the inequality-constrained optimization
problem ¢(x) > 0. (c): At the constrained minimum of f, Vf(x*) =
AVe(x*), where A > 0. The level sets are those of the Rosenbrock function
flzy,22) = (1= 21)% + (22 — 7).

~ N o s o o

Now we replace the equality constraint ¢(x) = 0 with the inequality constraint ¢(x) > 0.
For visuality, we assume that level sets of f(x) are simple closed surfaces. This implies
that f has a unique local minimizer, and it is its global minimizer.

e If the minimum of f lies in the region ¢(x) > 0, the constrained minimum coincides
with the unconstrained minimum. Apart from this global minimum, consider the

point x* where a level set of f touches the level set ¢(x) = 0. The gradients
Vf(x*) and AVe(x*) are antiparallel, i.e., Vf(x*) = AVe(x*) for some A < 0 (see
Fig. 7(b)).

e If the global minimizer of f does not belong to the feasible set where ¢(x) > 0 as
in Fig. 7(c), the constrained minimum will be achieved at the point x* lying at
¢(x) = 0 where V f(x*) = A\Ve(x*) for some A\ > 0. In this case, we say that the
constraint ¢(x) > 0 is active at the solution x*.

This illustrative example shows that the sign of the Lagrange multiplier is important and
gives an intuition for the Karush-Kuhn-Tucker first-order optimality conditions.

https://en.wikipedia.org/wiki/Rosenbrock_function

Fall 2023 AMSC660/CMSC660

8.1. Karush-Kuhn-Tucker optimality conditions. This section is based on J. Nocedal
and S. Wright “Numerical Optimization” [1], Chapter 12.

Definition 1. The active set A(x) at any feasible x consists of the equality constraint
indices from £ together with the indices of the inequality constraints i for which ¢;(x) = 0;
that is,

(73) Ax)=E8U{i e T | c¢i(x)=0}.

At any feasible point x, the inequality constraint ¢;(x) > 0 is active if ¢;(x) = 0 and
inactive if ¢;(x) > 0.
The Lagrangian function is defined by

(74) Lx,A) = f(x) = Y Aici(x).

1€EUT

Definition 2. A feasible point x* is a local solution of (68) if all feasible sequences zj, — x*
as k — oo have the property that f(z) > f(x*) for all k sufficiently large.

Definition 3. A direction d at a feasible point x is feasible if Ve;(x)'d = 0 Vi € £ and
Vei(x)'d > 0Vie Ax)NT.

Definition 4. The vector d is a tangent vector to the feasible set) at a point x if there
are a feasible sequence zp, — x and a sequence of positive scalars t, — 0 as k — oo such
that

Z, — X

)
(75) R

=d.

The set of all tangent vectors at x is called the tangent cone and is denoted by To(x).

The first-order optimality conditions known as the Karush-Kuhn-Tucker (KKT) condi-
tions are stated in the following theorem.

Theorem 8 (KKT with LICQ). Suppose x* is a local solution of (68) where f and ¢;’s
are continuously differentiable, and the set of gradients of active constraints

(76) {Vei(x¥), i€ A(x")}

is linearly independent. Then there is a Lagrange multiplier vector A* = {)\Z‘}Z’E(guz) such
that the following conditions are satisfied at (x*, A¥):

(77) Vi L(x*,A*) =0,

(78) ¢i(x*)=0 Viekg,
(79) ¢i(x*) >0 VielZ,
(80) A>0 Viel,
(81) ANei(x*)=0 VieEUT.

https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5

Fall 2023 AMSC660/CMSC660

Condition (83) known as the linear independence constraint qualification (LICQ) elimi-
nates the situations when equations (77)—(81) do not hold at the solution point x* for any
A*. For example, consider the following problem:

f(x) = x% + (x2 + 1)2 — min subject to
(82) c(x)=z5—21>0
ca(x) = a3 + 1 > 0.

The curves ¢1(x) = 0 and c3(x) = 0 (red) and level sets of f(x) are shown in Fig. 8. The
feasible set is shaded in light blue. The optimal point is x* = [0,0]". At x*, we have:

Vi) =100,-2", Ve(x)=[-1,0]", Ve (x*)=[10]".
It is easy to check that LICQ does not hold and (77) does not hold either.

FIGURE 8. An example (82) showing that the KKT conditions might fail if
LICQ does not hold.

LICQ is not the only condition under which the KKT conditions (77)—(81) hold at the
optimal point. The KKT conditions also hold at the optimal point if the constraints are
linear. In this case, their linear independence is not required.

Theorem 9 (KKT with linear constraints). Suppose x* is a local solution of (68) where
f is continuously differentiable and c;’s are linear:

(83) ci(x)=a/x—b;, icEUT.

Fall 2023 AMSC660/CMSC660

Then there is a Lagrange multiplier vector A* = {)\i}ie(guz) such that the following condi-
tions are satisfied at (x*, X*):

(84) Vi L(x*, A*) = 0,

(85) a/x*—b;=0 Vieg,
(86) alx*—b;>0 Viel,
(87) N>0 Viel,
(88) Mi(a]x* —b)=0 VieEUL.

The proofs of Theorems 8 and 9 follow the same steps but the the proof of Theorem 9
is slightly shorter. The proof of Theorem 8 is found in Chapter 12 in [1].

Exercise Consider a constrained optimization problem with linear equality and inequality
constraints:

f(x) — min
(89) Agx — bg =0 linear equality contraints
Azx — bz > 0 linear inequality contraints

Reduce (89) to an equivalent problem that has only inequality constraints:

(90) {f(y) — min

Ay —-b>0 linear inequality contraints

Write out the expressions for f , 121, and b. Suppose you have solved (90), i.e., found a local
solution y*. Write out the formula for the corresponding local solution x* of (89).

Proof. (Theorem 9.) In the view of the exercise above, it suffices to prove Theorem 9 for
the case where the set of constraints consists only of linear inequality constraints, i.e., for
the problem
(91) f(x) — min subject to
Ax* —b >0, Aisnxd.

Without the loss of generality, we assume that the active set consists of the first m inequal-
ities: A(x*) = {1,...,m}. The matrix consisting of the first m rows of A and the vector
consisting of the first m components of b will be denoted by A, and b respectively. Note
that there is a neighborhood U(x*) such that Agy,y1:m,:)X — bmt1:m > 0 Vx € U(XT).

Step 1. Show that the set of feasible directions coincides with the tangent cone. Defini-
tion 3 implies that the set of feasible directions is
(92) F(x*) ={d e R? | Ad > 0}
and coincides with the tangent cone T(x*).

e Let d be a tangent vector. Then there is a feasible sequence z; and a sequence of
scalars ¢, — 0 such that

zr = X"+ tpd + o(tg).

Fall 2023 AMSC660/CMSC660

Multiplying this equation by A and subtracting b we get:

0 < Azk b=Ax - b +tkAd + O(tk) = tkAd + O(tk).
Dividing the last equality by t; and letting k& — 0, we get Ad > 0 which means
that any tangent vector is a feasible direction, i.e., T (x*) C F(x*).

e Let d be a feasible direction. Show that then there is a sequence of positive scalars
{tx} such that the sequence z; = x* + txd is feasible. We take {tx} sufficiently
small so that z; € U(x*). By multiplying this equality by A and subtracting b we
get

Az, —b=Ax"—b+t,Ad = t,Ad >0
=0
which implies that d is a tangent vector. Hence F(x*) C T(x*).

Remark Note that if the constraints are nonlinear and LICQ does not hold, the set of
feasible directions does not need to coincide with the tangent cone. For example, the set of
feasible directions at [0,0]" for problem (82) includes [0,1]" and [0, —1]T, but the tangent
cone does not include [0, —1]T.

Step 2. Show that if x* is a local solution of (91) then
(93) Vix)Td>0 vde To(x").

Indeed, assume the opposite: there is a tangent vector d such that Vf(x*)"d < 0. Then
there exist sequences z, — x*, feasible, and t; — 0, t; > 0, such that

flzr) = f(x*) + 6V F(x) Td + o(ty) > f(x).
Hence, subtracting f(x*) from both sides and dividing by ¢, we get:
f(zk) - f(X) _ Vf(X*)Td—I—O(l) <0

tr ———
<0

0<

for sufficiently small ¢;, — a contradiction. Therefore, (93) holds.
Step 3 (Farkas’ lemma). Consider the cone

(94) K::{ATMAeRm, >\¢20V1§i§m}.

Note that K is convex and closed. Prove that for any vector g € R the following alternative
takes place:
e either g € K, i.e., there is a vector A € R™ with nonnegative components such
that g = AT\,
e or there exists a vector d € R? such that the hyperplane normal to d separates g
and K, i.e.,

(95) g'd <0, while Ad>0.

Fall 2023 AMSC660/CMSC660

First, we show that the two alternatives cannot take place simultaneously. From con-
verse, assume that g = AT\ for A\ > 0 while g'd < 0 and Ad > 0. Then this leads to a
contradiction:

0>g'd=ATAd=)T Ad >0.
N~
>0 >0

Now we show that if g ¢ K then (95) holds. Let y be the point of the cone K closest
to g in terms of the Euclidean distance. Such a point exists as K is closed. Note that y
may be the origin or a boundary point of K different from the origin — these two cases are
depicted in Fig. 9. In both cases, the argument below is valid.

FIGURE 9. Ilustration to step 3 of the proof of Theorem 8 in the case where
d =2 and m = 2. The vectors a; and as are the rows of the matrix A.

By the definition of cone, the whole ray emanating from the origin and passing through
y belongs to K:

{ay € K | a > 0}.
Since y is the closest point to g in this ray as well, the minimum of the function
1 1 1
d(a) = 5(ay —g) (ay —g) = 5o’ |y* —ay g+ Slgl?
is achieved at o = 1. Therefore,
d
0 90

=o-(1) = Iyl?-y'g=y"(y —g)

Fall 2023 AMSC660/CMSC660

Let z € K, z #y. Since K is convex, we have
y+0(z—y)e K V6e]|0,1].
By the minimizing property of y we have
ly +0(z—y) gl > ly —gl* v0e€l0,1].
Hence
20(z —y) ' (y — &) + 0%z —y|* > 0.
Dividing this equation by 6 and taking limit 6 | 0, we get

0<(z-y)' (y-g=z'(y-g -y (y-g =z (y—g) ie
=0

(96) z' (y-g) >0 VzeK.
Now we set
di=y—g
and show that d satisfies (95). Note that d # 0 as g ¢ K. Indeed, (96) means that
d"ATA>0 VA>0,
which is true only if dTAT >0, i.e, Ad > 0. On the other hand,
dlg=d'(y-d)=(y -8 (y-d) = - y-ldf<o.
=0

Step 4. Now we set g = V f(x*). By Farkas’ lemma proven in Step 3, either V f(x*) €
K, i.e., there is a vector A with nonnegative components such that

(97) V) =ATA,

or there is a direction d such that Ad > 0 (i.e. d is feasible) and Vf(x*)"d < 0 which
means that x* is not a local solution. Therefore, since x* is a local solution, (97) takes
place.

Finally, we set the Lagrange multipliers with indices in the active set (1 < i < m) to be
equal to A and we set to zero the rest of them, i.e.,

3]

The conditions (84)—(88) are readily verified. O

Fall 2023 AMSC660/CMSC660

8.2. Active-set method. This section is based on J. Nocedal and S. Wright “Numerical

Optimization” [1], Chapter 16. We consider a convex quadratic program (QP)
(98) f(x) = %XTGX +c'x — min subject to

(99) a/x=b;, ic&

(100) a/x>b;, icT.

Convexity of the QP means that the matrix G is positive definite.
A quite natural method to solve (98)—(100) is the active-set method. At every step of
this algorithm, we solve a QP
1

(101) f(x) = §XTGX +c'x — min subject to

(102) a/x=hb;, icW,

where W is the current set of active constraints. We will denote by Ay the matrix whose
rows at a;, i € W, and byy the vector of b;’s, i € W. Then (102) becomes Ayyx = byy.

We do so as follows. Let xj be the current iterate. We want to find a step py to obtain
the next iterate

Xk+1 = Xk + Pk-

In the case if x41 is not feasible, we shorten the step length just enough to make xy41
remain feasible. Plugging x;11 = x; + px into (101) we get

1 1
§(xk + pk)TG(xk +pi) + cT(xk +pr) = §ngpk + (Gx, + c)Tpk + f(xx).

We observe that Gx; + ¢ = Vf(xx) and f(xg) is independent of pi and hence does not
affect the minimizer. Moreover, plugging X;11 = X + px into (102) we get the following
constraint for pg:

Aw(xi + pr) — bw = Awxy — by +Aywpr = Aywpr = 0.
=0

Therefore, the minimization problem for pj reduces to

1
(103) ipTGp + Vf(xk.)Tp — min subject to
(104) Awp = 0.

The Lagrangian function for (103)—(104) is
1
(105) L(p,A) =P 'GP+ V/(xx) 'p— A" Awp.
The KKT system for (103)—(104) is
Gpr + Vf(xr) — ApyA =0, Aypy =0.

https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5

Fall 2023 AMSC660/CMSC660

It can be rewritten in the matrix form:

(106) Pl

Exercise Show that the matrix in (106) where G is d x d symmetric positive definite and
A is m x d and has linearly independent rows, is of saddle-point type, i.e., it has d positive
eigenvalues and m negative ones. Hint: Omit the subscript W for brevity. Find matrices
X and S (S is called the Schur compliment) such that

G AT] [T o][G 0O I X7

A 0 | | X I 0o S o I |-
Then use Sylvester’s Law of Inertia (look it up!) to finish the proof.
Exercise Consider an equality-constrained QP (G is symmetric)
1
1 —_
(107) .
(108) Ax = b.

x'Gx+c'x — min subject to

Assume that A is full rank (i.e., its rows are linearly independent) and Z'GZ is positive
definite where Z is a basis for the null-space of A, i.e., AZ = 0.
(1) Write the KKT system for this case in the matrix form.
(2) Show that the matrix of this system K is invertible. Hint: assume that there is a
vector z := (x,y)" such that Kz = 0. Consider the form z' Kz, and so on
You should arrive at the conclusion that then z = 0.
(3) Conclude that there exists a unique vector (x*,A*)" that solves the KKT system.
Note that since we have only equality constraints, positivity of A is irrelevant.
According to the claims in the exercises, (106) has a unique solution (p, X). We consider
two cases.

e If p # 0, we can make a step in the direction p. Let us show that this is a descent
direction for f(x), i.e., V.f(x;) p < 0. Indeed, we have

Gp + Vf(xk) = AjyA
Awp =0.

Multiplying the first equation by pT we get

p (Gp+Vf(xi)=p Gp+Vf(xp) ' p=p' A= (Awp) A =0.
=0

Since G is positive definite and p # 0 by assumption, we conclude that V f(x;)'p <
0 which means that p is a descent direction for f.

Next, we start moving from xj along the direction p until we either travel the
full distance ||p|| or activate another constraint:

T

a; x ="0; forsome i¢W.

Fall 2023 AMSC660/CMSC660

Hence, to find step length «, we consider

a (xy +ap)=a;x,+aa/p=>b; forall i¢W.

Since a;r X > b Vi ¢ W, if a;-rp > 0, we can only reinforce this constraint by
moving along p. In contrast, if a;p < 0, we may hit the constraint before traveling
the full distance. Hence, the step length « is given by

b — al
(109) a=minq 1, min % .
i¢W,alp<0 &, P

Finally, we set ap = a and pg = p.
e If p =0, we cannot move anywhere from xj, given the set of constraints V. Hence,
there are two possibilities.

— We have found the solution to (98)—(100). To check if this is the case, we look
at the vector A of Lagrange’s multipliers, and check their signs. If all Lagrange
multipliers corresponding to inequality constraints are nonnegative, a solution
is found, and we terminate the iterations.

— If there is a negative Lagrange multiplier corresponding to an inequality con-
straint, we remove it from W and proceed with iterations.

A Matlab function ASM implements the active-set method for the case where f is allowed
to be nonconvex and nonquadratic, and the set of constraints consists of inequality con-
straints only. A driver for it with the Rosenbrock function and the feasible region being a
hexagon is the function ASMdriver.

function ASMdriver()
%% the Rosenbrock function

a=>5;

func = @(x,y)(1-x)."2 + ax(y - x.72).72; % Rosenbrock’s function

gfun = Q(x) [-2%x(1-x(1))-4*a*x(x(2)-x(1) "2)*x (1) ;2*a*(x(2)-x(1)"2)]; % gradient of f
Hfun = @(x) [2 + 12*axx(1)"2 - 4x*xa*x(2), -4*a*xx(1); —-4*a*x(1), 2*a]; % Hessian of f

lsets = exp([-3:0.5:2]);
%% constraints

Nv = 6;

t = linspace(0,2*pi,Nv+1);

t(end) = [];

t0 = 0.1;

verts = [0.1+cos(t0+t);0.1+sin(t0+t)];

R = [0,-1;1,0];

A = (R*(circshift(verts, [0,-1])-verts))’;

b = verts(1,:)’.%xA(:,1) + verts(2,:)’.%xA(:,2); % b_i = a_ixverts(:,1i)
x = [-0.5;0.5];

W= [];

[xiter,1m] = ASM(x,gfun,Hfun,A,b,W);
%% graphics

Fall 2023 AMSC660/CMSC660

close all
fsz = 16;
figure(1);
hold on;
n = 100;
txmin

min(verts(1,:))-0.2;

txmax = max(verts(1,:))+0.2;
tymin = min(verts(2,:))-0.2;
tymax = max(verts(2,:))+0.2;

tx = linspace(txmin,txmax,n);

ty linspace(tymin,tymax,n) ;
[txx,tyy]l = meshgrid(tx,ty);

ff = func(txx,tyy);

contour (tx,ty,ff,lsets,’Linewidth’,1);

edges = [verts,verts(:,1)];
plot(edges(1,:),edges(2,:),’Linewidth’,2,’color’,’k’);
plot(xiter(l,:),xiter(2,:),’Marker’,’.’, ’Markersize’,20, ’Linestyle’,’-7,...

’Linewidth’,2,’color’,’r’);
xlabel(’x’,’Fontsize’,fsz);
ylabel(’y’,’Fontsize’,fsz);
set(gca,’Fontsize’,fsz);
colorbar;
grid;
daspect([1,1,1]);
end

function [xiter,lm] = ASM(x,gfun,Hfun,A,b,W)
%% minimization using the active set method (Nocedal & Wright, Section 16.5)
% Solves f(x) --> min subject to Ax >= b
% x = initial guess, a column vector
TOL = 1e-10;
dim = length(x);
g = gfun(x);
H = Hfun(x);
iter = 0;
itermax = 1000;
m = size(A,1); % the number of constraints
% W = working set, the set of active constrains
I =((1:m)?’;
Wec = I; % the compliment of W
xiter = x;
while iter < itermax
% compute step p: solve 0.5xp’*Hxp + g’+p --> min subject to A(W,:)*p = 0

Fall 2023 AMSC660/CMSC660

AW = A(W,:); % LHS of active constraints
% fix H if it is not positive definite
ee = sort(eig(H),’ascend’);
if ee(1) < 1le-10
lam = -ee(1) + 1;
else
lam
end
H = H + lam*eye(dim);
if “isempty (W)
M = [H, -AW’;AW,zeros(size(W,1))];
RHS = [-g;zeros(size(W,1),1)];
else
M = H;
RHS = -g;
end
aux = M\RHS;
p = aux(1:dim);
Im = aux(dim+1:end);
if norm(p) < TOL % if step ==
if “isempty (W)
Im = AW’\g; % find Lagrange multipliers
if min(lm) >= 0 % if Lagrange multipliers are positive, we are done
% the minimizer is one of the corners
fprintf (’A local solution is found, iter = %d\n’,iter);
fprintf(’x = [\n’); fprintf(’%d\n’,x);fprintf(’1\n’);
break;
else % remove the index of the most negative multiplier from W
[lmin,imin] = min(1lm);
W = setdiff (W,W(imin));
We = setdiff(I,W);

0;

end

else
fprintf(’A local solution is found, iter = %d\n’,iter);
fprintf(’x = [\n’); fprintf(’%d\n’,x);fprintf(’]\n’);
break;

end

else if step is nonzero

alp = 1;

% check for blocking constraints

Ap = A(Wc, :)*p;

icand = find(Ap < -TOL);

if “isempty(icand)

Fall 2023 AMSC660/CMSC660

% find step lengths to all possible blocking constraints
al = (b(Wc(icand)) - A(Wc(icand),:)*x)./Ap(icand);

% find minimal step length that does not exceed 1
[almin,kmin] = min(al);

alp = min(1,almin);

end

X = x + alp*p;
g = gfun(x);

H = Hfun(x);
if alp < 1

W = [W;Wc(icand(kmin))];
Wec = setdiff(I,W);
end
end
iter = iter + 1;
xiter = [xiter,x];

end
if iter == itermax
fprintf (’Stopped because the max number of iterations J%d is performed\n’,iter);
end
end

REFERENCES

[1] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2 ed., 2006.

[2] J. W. Demmel, Applied Numerical Linear Algebra. STAM, 1997.

[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,”
SIAM Review, vol. 60, no. 2, pp. 223-311, 2018.

[4] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist., vol. 22, pp. 400—
407, 1951.

[5] A. Botev, G. Lever, and D. Barber, “Nesterov’s accelerated gradient and momentum as approximations
to regularised update descent.” arXiv:1607.01981.

	1. An overview of algorithms for unconstrained optimization
	2. Line Search Methods
	3. Trust-Region Methods
	4. BFGS and L-BFGS
	4.1. BFGS
	4.2. L-BFGS

	5. Methods for nonlinear least-squares problem
	5.1. The gradient and a handy approximation to the Hessian
	5.2. The Gauss-Newton method
	5.3. The Levenberg-Marquardt method

	6. Stochastic gradient descent
	6.1. Expected decrease of f under SG iterations: assumptions and basic lemmas
	6.2. Convergence of SG for strongly convex objective functions
	6.3. SG for nonconvex objective functions

	7. Gradient descent and accelerated gradient descent
	7.1. Convergence analysis for gradient descent with constant learning rate
	7.2. Nesterov's accelerated gradient: motivation
	7.3. Convergence of Nesterov's accelerated descent
	7.4. Adam

	8. Basics of constrained optimization
	8.1. Karush-Kuhn-Tucker optimality conditions
	8.2. Active-set method

	References

