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1. Linear advection equation

Please read Chapter 10 and Appendix E.3 in R. LeVeque “Finite difference methods for
ordinary and partial differential equations”. These notes are complimentary.
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We will consider the linear advection equation on the interval x ∈ [0,1] with the periodic
boundary condition. the resulting initial and boundary value problem (IBVP) is

(1)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ut + aux = 0, x ∈ [0,1], t ≥ 0,

u(0, t) = u(1, t), t ≥ 0

u(x,0) = η(x).

The exact solution to (1) is η(x − at) periodically extended, i.e., η(x − at mod 1).

1.1. Useful matrices and their spectra. It is convenient to conduct the stability anal-
ysis of methods for linear advection equation by thinking of the method of lines and and
the forward Euler time discretization. Below we will list matrices that arise the right-hand
side of the method of lines and find their eigenvalues and eigenvectors.

Throughout this section, we will assume that the interval [0,1] is partitioned to m
subintervals of length h = 1/m. The periodic boundary conditions make the points x0 = 0
and xm = 1 identical. Therefore, we need to find the numerical solutions only at the points
x0, x1, ..., xm−1 at each tn = kn. Hence, the matrices in the right-hand side of the MOL
will be m ×m.

● Matrix A1 arises whenever the first derivative in space approximated using the
central difference

Uj+1 −Uj−1

2h

and the periodic boundary conditions are imposed:

(2) A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1
−1 ⋱

⋱ ⋱

⋱ 1
1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In words, A1 has 1s along its first superdiagonal, −1s along is first subdiagonal, −1
in the top right corner, and 1 in the bottom left corner. All other entries of A1

are zero. We can guess the form of the eigenvector of A1 taking into account that
its jth entry must be proportional to the difference between its nearest neighbors.
Moreover, the eigenvectors of A1 should be extendable periodically. Hence, we try
the vector v with entries vj = e

ijb as the candidate for the eigenvector. Periodicity
requires

1 = v0 = vm = eijbm.

Hence jbm = 2πp where p ∈ Z. Therefore, b = 2πp
m . For all 0 ≤ j ≤m − 1 we have:

[Av]j = vj+1 − vj−1 = e
2πpi
m
(j+1)

− e
2πpi
m
(j−1)

= e
2πpi
m

j2i sin(
2πp

m
) = vj2i sin(

2πp

m
) .
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Furthermore, the m distinct eigenpairs correspond to p = 0,1, . . . ,m−1. Therefore,
the eigenvectors and eigenvalues of A1 are

(3) vp =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

e
2πpi
m

e
2πpi
m

2

⋮

e
2πpi
m
(m−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, λp = 2i sin(
2πp

m
) , p = 0,1, . . . ,m − 1.

● Matrix A2 arises when the artificial viscosity, i.e. a term with

Uj+1 − 2Uj +Uj−1

h2
,

is added to the finite difference scheme and the periodic boundary conditions are
imposed. It is added in the Lax-Friedrichs scheme for stability purposes. In the Lax-
Wendroff scheme, it compensates the error term proportional to uxx resulting from
the finite difference approximation of the first derivative and makes the method
stable. The matrix A2 is:

(4) A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 1
1 −2 1

⋱ ⋱ ⋱

⋱ ⋱ 1
1 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its eigenvectors are the same as those of A1 (see (3)). The eigenvalues of A2 are

(5) λp = 2 cos(
2πp

m
) − 2, p = 0,1, . . . ,m − 1.

● Matrices A3 and A4 arise in left and right upwind schemes, in which the first
derivatives in x are approximated using

Uj −Uj−1

h
and

Uj+1 −Uj

h
,

respectively:

(6) A3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1
−1 1

⋱ ⋱

⋱ ⋱

−1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1
−1 1

⋱ ⋱

⋱ 1
1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Their eigenvectors are the same as those of A1 (see (3)). Their eigenvalues are

(7) λp(A3) = 1 − e−
2πpi
m , λp(A4) = e

2πpi
m − 1, p = 0,1, . . . ,m − 1.

1.2. Finite difference schemes and their spectra.
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1.2.1. Lax-Friedrichs. The scheme:

(8) Un+1
j =

Unj+1 +U
n
j−1

2
−
ak

2h
(Unj+1 −U

n
j−1) .

The local truncation error for Lax-Friedrichs is O(h2)+O(k) making it first-order accurate.
The corresponding MOL discretization gives:

(9)
dU

dt
=

1

2k
A2U −

a

2h
A1U.

The eigenvalues of the matrix M ∶= 1
2kA2 −

a
2hA1 are:

(10) λp =
1

k
(cos(

2πp

m
) − 1) − i

a

h
sin(

2πp

m
) , p = 0,1, . . . ,m − 1.

The Lax-Friedrichs method is obtained from the MOL equation (9) by using the forward
Euler time stepping. Hence, the stability condition requires that ∣kλp + 1∣ ≤ 1, i.e.,

(11) ∣cos(
2πp

m
) − i

ka

h
sin(

2πp

m
)∣ = [cos2

(
2πp

m
) + (

ka

h
)

2

sin2
(

2πp

m
)]

1/2

< 1.

This condition holds iff

(12) ∣
ka

h
∣ ≤ 1.

2. Modified equations

Consideration of modified equations is a convenient tool for the analysis of finite dif-
ference schemes for PDEs. A modified equation is an equation that is satisfied by the
numerical solution more exactly than the original PDE. The extra terms in a modified
equation explain the behavior of the numerical error.

2.1. A derivation of the modified equation for the Lax-Wendroff scheme. We
consider the linear advection equation

(13) ut + aux = 0.

The Lax-Wendroff scheme for it is

(14) Un+1
j = Unj −

ak

2h
(Unj+1 −U

n
j−1) +

a2k2

2h2
(Unj+1 − 2Unj +U

n
j−1) .

Assume that a smooth function v(t, x) satisfies the Lax-Wendroff scheme, i.e.,

v(t + k, x) = v(t, x) −
ak

2h
(v(t, x + h) − v(t, x − h))(15)

+
a2k2

2h2
(v(t, x + h) − 2v(t, x) + v(t, x − h)) .
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To find a PDE for v we use Taylor expansions around (t, x):

v + kvt +
k2

2
vtt +

k3

6
vttt +O(k4

)

=v −
ak

2h
(2hvx + 2

h3

6
vxxx +O(h5

)) +
a2k2

2h2
(2
h2

2
vxx + 2

h4

24
vxxxx +O(h6

))

Canceling v and dividing by k we get:

(16) vt + avx =
k

2
(a2vxx − vtt) −

k2

6
(vttt +

ah2

k2
vxxx) +O(k3

).

Here we have taken into account that the Courant number ν ∶= ak
h is constant.

Equation (16) implies that vt+avx is at most O(k). Let us show that it is actually O(k2)

and that vtt − a
2vxx is also O(k2). The next two equations are obtained by differentiating

(16) with respect to t and x, respectively:

vtt + avxt =
k

2
(a2vxxt − vttt) +O(k2

),(17)

vtx + avxx =
k

2
(a2vxxx − vttx) +O(k2

).(18)

Multiplying (18) by a and subtracting it from (17) we obtain:

(19) vtt − a
2vxx =

k

2
[(a2vxx − vtt)t − a (a

2vxx − vtt)x] +O(k2
).

Equation (19) implies that vtt − a
2vxx is at most O(k). But this means that

(20) vtt − a
2vxx =

k

2
([O(k)]t − a[O(k)]x) +O(k2

) = O(k2
).

Therefore, vtt − a
2vxx = O(k2) which, together with (16) implied that vt + avx = O(k2).

Plugging the relationship vtt − a
2vxx = O(k2) into (16) we get

(21) vt + avx = −
k2

6
(vttt +

ah2

k2
vxxx) +O(k3

).

We would like to express the third derivative in t via the third derivative in x on the
right-hand side in (21). We have:

(∂t + a∂x)v = O(k2
).

We apply the differential operator (∂tt−a∂tx+a
2∂xx) to both parts of the last equality and

obtain:

(22) (∂tt − a∂tx + a
2∂xx)(∂t + a∂x)v = (∂ttt + a

3∂xxx)v = O(k2
).

We still have O(k2) in the right-hand side because the differential operator (∂tt − a∂tx +
a2∂xx) does not contain k and hence at least cannot lower the order in k. Hence

(23)
∂3

∂t3
= −a3 ∂

3

∂x3
+O(k2

).
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This means that, in (21), the term in the large parensethes on the right-hand side is:

vttt +
ah2

k2
vxxx = a(−a

2
+
h2

k2
) vxxx.

From the fact that ν = ak
h is constant we get k = νh

a and h
k = a

ν . Therefore, (21) can be
rewritten as

(24) vt + avx = −
ν2h2

6a2
a(−a2

+
a2

ν2
) vxxx +O(h3

) = −
ah2

6
(−ν2

+ 1) vxxx +O(h3
).

Equation (24) is the modified equation whose solution satisfies the Lax-Wendroff scheme
exactly. If we are willing to truncate the higher-order terms on the right-hand side of (24),
we obtain a simpler modified equation that the numerical solution satisfies approximately,
but more exactly than the original PDE (13):

(25) vt + avx +
ah2

6
(1 − ν2) vxxx = 0.

The modified equations (24) and (25) have a leading-order extra term in comparison with
the original advection equation (13) which is of the order O(h2) and dispersive, i.e., pro-
portional to vxxx. This indicates that the Lax-Wendroff scheme is second-order accurate
and the numerical error in its numerical solution will be oscillatory.

2.2. Fourier analysis of the modified equation for Lax-Wendroff. The numerical
solution to the advection equation ut +

√
2ux = 0 with ν = 0.8 at times t = 25, t = 50, t = 75,

and t = 100 is displayed in Fig. 1. The initial condition is u(x,0) = exp(−20(x − 5)2). The
space interval is 0 ≤ x ≤ 25. The boundary conditions are periodic. We observe that the
numerical error is oscillatory and the oscillatory tail is traveling behind the main hump.
Furthermore, the numerical solution broadens with time and gets more and more behind
the exact one. These phenomena can be explained using Fourier analysis tools.

The modified equation (25) contains only odd derivatives in x. Hence the error is
primarily dispersive. Subjecting the modified equation for Lax-Wendroff (25) to the Fourier
transform we obtain:

(26) v̂t = [−aiξ + iξ3ah
2

6
(1 − ν2

)] v̂.

Hence, the Fourier mode coefficient with index ξ evolves in time as

(27) v̂(t) = e
−aiξ(1−h

2

6
(1−ν2)ξ2)t

v̂ ≡ e−iω(ξ)tv̂.

The function ω(ξ) in (27) is called the dispersion relation (see Appendix E3 in R. LeVeque
“Finite difference methods for ordinary and partial differential equations” for more details).
The phase velocity for the numerical solution by Lax-Wendroff, i.e., the velocity with which
the ξ’s Fourier mode is traveling, is

(28) cp ≡
ω(ξ)

ξ
= a(1 −

h2

6
(1 − ν2

)ξ2
) .

https://epubs.siam.org/doi/book/10.1137/1.9780898717839
https://epubs.siam.org/doi/book/10.1137/1.9780898717839
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The group velocity for the numerical solution by Lax-Wendroff, i.e., the velocity with which
the wave packet is traveling as a whole, is

(29) cp ≡
dω(ξ)

dξ
= a(1 −

h2

2
(1 − ν2

)ξ2
) .

Therefore, we have

(30) cg < cp < a.

Hence, the wave packet, i.e., the numerical solution, is traveling slower than the exact
solution and gradually is getting behind it. At the same time, the peaks of the numerical
solution travel faster than the numerical solution as a whole but slower than the exact
solution. This is what we see in Fig. 1.

0 5 10 15 20 25
x

0

0.5

1

u

t = 75.0

0 5 10 15 20 25
x

0

0.5

1

u

t = 25.0

0 5 10 15 20 25
x

0

0.5

1

u

t = 50.0

0 5 10 15 20 25
x

0

0.5

1

u

t = 100.0

Figure 1. The numerical solution (black) by Lax-Wendroff and the exact

solution (red) to the advection equation ut +
√

2ux = 0 on the time interval
0 ≤ t ≤ 100.

3. Burgers’s equation

Ref. R. LeVeque, “Numerical Methods for Conservation Laws”, Birkhauser, 1992.
Burgers’s equation

(31) ut + uux = νuxx

https://link.springer.com/book/10.1007/978-3-0348-8629-1
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is a successful, though rather simplified, mathematical model of the motion of a viscous
compressible gas, where

● u = the speed of the gas,
● ν = the kinematic viscosity,
● x = the spatial coordinate,
● t = the time.

3.1. Solution of the Burgers equation with nonzero viscosity. Let us look for a
solution of Eq. (31) of the form of traveling wave [1], i.e.,

u(x, t) = w((x − x0) − st) ≡ w(y).

Then ut = −sw
′, ux = w

′, and uxx = w
′′. Plugging this into Eq. (31) we obtain

−sw′
+ww′

= νw′′

−sw′
+ (

w2

2
)

′

= νw′′

−sw +
w2

2
= νw′

+C.

We also impose conditions at the ±∞: w(−∞) = uL, w(∞) = uR, where uL > uR, and
w′(±∞) = 0. Then we have

−suL +
u2
L

2
= C = −suR +

u2
R

2
.

Therefore, s must be (uL +uR)/2. Thus, the shock speed is the same as in the case of zero
viscosity. Hence C = −uLuR/2. Then we continue.

νw′
=
w2

2
−
uL + uR

2
w +

uLuR
2

dy

2ν
=

dw

w2 − (uL + uR)w + uLuR
dy

2ν
=

dw

w2 − (uL + uR)w +
(uL+uR)2

4 −
(uL−uR)2

4

dy

2ν
=

dw

(w −
uL+uR

2
)

2
−
(uL−uR)2

4

Integrating the both parts using

∫
dw

(w − a)2 − b2
=

1

2b
log

w − a − b

w − a + b

we obtain

y

2ν
+C =

1

uL − uR
log

w −
uL+uR

2 −
uL−uR

2

w −
uL+uR

2 +
uL−uR

2

=
1

uL − uR
log

w − uL
w − uR

=
1

uL − uR
log

uL −w

w − uR
.
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In the last equality we used the fact that uL > w > uR. Hence,

uL −w

w − uR
= e

y(uL−uR)

2ν
+C

uL −w = weA − uRe
A, where A = y(uL − uR)/(2ν) +C

w(eA + 1) = (uL + uRe
A
)

w =
uL + uRe

A

eA + 1
= uR +

uL − uR
2

2

eA + 1
.

Multiplying and dividing by exp(−A/2) and using the identity

2e−A/2

eA/2 + e−A/2
= 1 −

eA/2 − e−A/2

eA/2 + e−A/2
= 1 − tanh

A

2

we get

w(y) =
uR + uL

2
−
uL − uR

2
tanh(

y(uL − uR)

4ν
+C) .

Hence,

(32) u(x, t) =
uR + uL

2
−
uL − uR

2
tanh(

([x − x0] − st)(uL − uR)

4ν
) .

The profiles w(y) for various values of ν are shown in Fig. 2. As ν → 0, u(x, t) tends to a
step function of the argument x − st.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
ν=0.25
ν=0.1
ν=0.02

Figure 2. The profiles of the solution of the viscous Burgers equation for
uR = 0, uL = 1, x0 = 0, and ν equal to 0.25, 0.1, and 0.02. Note that w(y)
tends to a step function as ν → 0.
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3.2. Shock speed. If the viscosity ν = 0, or neglected, Eq. (31) can be rewritten as

(33) ut + [1
2u

2
]x = 0

Eq. (33) is easier to study theoretically and numerically than Eq. (31). From now on,
unless indicated otherwise, we will refer to Eq. (33) as the Burgers equation.

Equation (33) has a solution in the form of the traveling wave [2]

(34) u(x, t) = V (x − st),

where V (y) is a step function:

(35) V (y) = {
uL y < 0
uR y > 0

} ,

where uL > uR. This wave is called the shock wave and s is the speed of propagation of
the shock wave. It can be obtained from the following reasoning. Let M be some large
number. Consider the integral

∫

M

−M
u(x, t)dx.

Then

Figure 3. Finding the shock speed using the law of conservation of momentum.

d

dt
∫

M

−M
u(x, t)dx = ∫

M

−M
−uuxdx = −

u2

2

M

−M
=
u2
L

2
−
u2
R

2
.

On the other hand,

∫

M

−M
u(x, t)dx = (M + st)uL + (M − st)uR.
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Therefore,

d

dt
∫

M

−M
u(x, t)dx = s(uL − uR).

Hence, the speed of propagation of the wave is

(36) s = (
u2
L

2
−
u2
R

2
) /(uL − uR) =

uL + uR
2

.

Remark The argument above is valid for a more general equation of the form

(37) ut + [f(u)]x = 0.

Such equations are called hyperbolic conservation laws. The shock speed is given by

(38) s =
f(uL) − f(uR)

uL − uR
=

jump in f(u)

jump in u
.

This equation is called the Rankine-Hugoniot condition.

3.3. Characteristics of the Burgers equation. The characteristics of Eq. (33) are
given by

(39)
dx

dt
= u(x, t).

Let us show that u is constant along the characteristics. Let (x(t), t) be a characteristic.
Then

d

dt
u(x(t), t) =

∂u

∂t
+
∂u

∂x

dx

dt
= ut + uux = 0.

Therefore, the solution of Eq. (39) is given by

(40) x(t) = u(x(0),0)t + x(0) = u0(x0)t + x0, where x0 = x(0), u0(x) = u(x,0).

Eq. (40) shows that

● the characteristics are straight lines,
● they may intersect,
● they do not necessarily cover the entire (x, t) space.

This is a new phenomenon in comparison with the linear advection equation ut + aux = 0.
For the linear advection equation, there is a unique characteristic passing through every
point of the (x, t) space. Thus, its characteristics never intersect and cover the entire space.

Moreover, even for a smooth initial speed distribution u0(x) the solution of the Burgers
equation may become discontinuous in a finite time. This happens when u′0(x) is negative
somewhere. Then the characteristics intersect, i.e., the wave breaks. Let us find the break
time. Consider two characteristics x(t) = u0(x1)t + x1 and x(t) = u0(x2)t + x2. Then we
equate

x(t) = u0(x1)t + x1 = u0(x2)t + x2.
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Then the time at which they intersect is

t = −
x2 − x1

u0(x2) − u0(x1)
.

Therefore, the break time is

Tb = min
x1,x2∈R

(−
x2 − x1

u0(x2) − u0(x1)
) =

1

maxx1,x2∈R (
u0(x1)−u0(x2)

x2−x1
)

=
1

maxx1,x2∈R (− 1
x2−x1 ∫

x2
x1
u′0(x)dx)

=
1

maxx∈R[−u
′
0(x)]

.

In words, the breaking time is the reciprocal of the maximal negative slope of u′0. An
example is shown in Figure 4. The initial data u0(x) = exp(−16x2) and the corresponding
characteristics of the Burgers equation are shown in Fig. 4 (a) and (b) respectively. The
breaking time is found by taking the derivative of u0(x) and finding a point at which it

has the most negative slope which is x∗ = 1/
√

32. The breaking time is

Tb = [32x∗ exp(−16(x∗)2
)]
−1

≈ 0.2915.

The solution at times t = 0.5 and t = 0.8 obtained by the method of characteristics is
shown in Fig. 4 (c) and (e). The numerical solution computed by Godunov’s method
(see Section 5) is shown in Fig. 4 (d) and (f). The solution obtained by the method of
characteristics is triple-valued at some values of x and non-physical in the sense that it is
not the vanishing viscosity solution (see Section 3.1). In contrast, the solution computed
by Godunov’s method tends to the vanishing viscosity solution as we refine the mesh.

3.4. Weak solutions. We have seen in the previous section that a solution to the Burgers
equation can become discontinuous even if the initial data are smooth. Then the disconti-
nuity travels with a certain speed, the shock speed s, given by Eq. (36). In Section 3.2 we
found s using the underlying integral conservation law. However, at this point, we can only
call the step function given by Eqs (34), (35), and (36) a solution to the integral conserva-
tion law rather than the solution to Eq. (33). In order to validate discontinuous solutions
for differential equations, the concept of the weak solutions was introduced (see e.g. [3]).
This extension of the concept of the solution must satisfy the following requirements:

● a smooth function is a weak solution if and only if it is a regular solution,
● a discontinuous function can be a weak solution,
● only those discontinuous functions that satisfy the associated integral equation can

be weak solutions.

Motivation. Let φ(x, t) be an infinitely smooth function with a compact support, i.e.,
it is different from zero only within some compact subset of the space (x, t) = R × [0,+∞).
Let u(x, t) be a smooth solution of a hyperbolic conservation law given by Eq. (37). Then

(41) 0 = ∫
∞

0
∫

∞

−∞
(ut + [f(u)]x)φdxdt = (∫

∞

−∞
φudx)

∞

0
− ∫

∞

0
∫

∞

−∞
[φtu + φxf(u)]dxdt.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. (a) The initial data u0(x) = exp(−16x2). (b) The corresponding
characteristics of the Burgers equation.(c-d) The solution at time t = 0.5
obtained by the method of characteristics (c) and computed numerically
(by Godunov’s method) (d). (e-f) The solution at time t = 0.8 obtained by
the method of characteristics (e) and computed numerically (by Godunov’s
method) (f).
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Therefore, here is the definition [3].

Definition 1. u(x, t) is a weak solution of the conservation law ut + [f(u)]x = 0 if for any
infinitely differentiable function φ(x, t) with a compact support

(42) ∫

∞

0
∫

∞

−∞
φtu + φxf(u)dxdt = (∫

∞

−∞
φudx)

∞

0
= −∫

∞

−∞
φ(x,0)u(x,0)dx.

Such a function φ(x, t) is called a test function.

4. The Riemann problem

In this section, we consider the following initial value problem for the hyperbolic con-
servation law ut + [f(u)]x = 0 :

u(x,0) = {
uL x < 0
uR x > 0

} .

This problem is called the Riemann problem. We will consider two cases.

4.1. Case 1: uL > uR. In this case, the characteristics cover the entire (x, t) space but also
cross. Hence the construction of the solution using only the characteristics is ambiguous.
Let us show that in this case,

(43) u(x, t) = {
uL x < st
uR x > st

}

is a weak solution if and only if the shock speed is given by the Rankine-Hugoniot condition

(44) s =
f(uL) − f(uR)

uL − uR
.

The characteristics of this solution are shown in Fig. 5(a).
Let φ(x, t) be a test function. First, suppose that support U lies entirely in one of the

sets {x < st} or {x > st}. Then since u(x, t) is constant in each of these sets, it satisfies
the Burgers equation on the support of φ. Then using Eq. (41) we conclude that Eq. (42)
holds.

Now suppose that the support U of φ is divided by the line x = st into two sets UL and
UR (Fig. 5(b)). Then we have

∫

∞

0
∫

∞

−∞
(φtu + φxf(u))dxdt =

x

UL

[φtu + φxf(u)]dxdt +
x

UR

[φtu + φxf(u)]dxdt.

Applying Green’s Identity

(45)
x

D

(Px −Qt)dxdt = ∫
∂D

Pdt +Qdx
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(a) (b)

Figure 5. (a) The characteristics for the shock wave. (b) Illustration for
the proof that the shock wave is the unique weak solution.

and noting that u is constant within UL and within UR, hence (φu)t = φtu and (φf(u))x =
φxf(u), we continue

=∫
∂UL

φ (f(uL)dt − uLdx) + ∫
∂UR

φ (f(uR)dt − uRdx)

=∫
x=st

φ(
f(uL)

s
− uL)dx − ∫

x=st
φ(

f(uR)

s
− uR)dx − ∫

0

−∞
φuLdx − ∫

∞

0
φuRdx

=∫
x=st

(
f(uL) − f(uR)

s
− (uL − uR))φdx − ∫

∞

−∞
φ(x,0)u(x,0)dx

The first integral in the last equality is zero for any test function φ iff s is given by (44)
Furthermore, the discussion in Section 3.1 indicates that the solution given by Eq. (43) is
the vanishing viscosity solution, i.e. the limit of the solutions of Eq. (31) as ν → 0.

Remark Note that we did not use the fact that uL > uR is while checking that (43) is a
weak solution. This means that this is also a weak solution if uL < uR which is nonphysical!

4.2. Case 2: uL < uR. Then the characteristics do not cross but do not cover the entire
space (x, t). There are many weak solutions. Two of them are shown in Fig. 6. The one
in Fig. 6(a) called the rarefaction fan or the transonic rarefaction is given by

(46) u(x, t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

uL, x < uLt
x/t, uLt ≤ x ≤ uRt
uR, x > uRt

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.
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(a) (a)

Figure 6. The characteristics for the rarefaction fan (a) and the rarefaction
shock (b). Both of these are weak solutions. However, the rarefaction wave
is the physical vanishing viscosity solution, while the rarefaction shock is
not.

Another weak solution given by (43), shown in Fig. 6 (b), is called the rarefaction shock.
A family of weak solutions with rarefaction fans starting at some point of the shock line
can be constructed out of these two weak solutions.

Despite there being many weak solutions, only one of them is “physical”, i.e., the vanish-
ing viscosity solution. It is the rarefaction fan solution. One can reject all of the nonphysical
weak solutions by analyzing Eq. (31). However, the analysis of the equation with nonzero
viscosity is harder than the analysis of the one with zero viscosity. Then an additional
simpler-to-verify condition, the so-called entropy condition was introduced to eliminate
nonphysical weak solutions. There are several variations of the entropy condition. We will
state only the simplest one.

Definition 2. A discontinuity propagating with speed s given by Eq. (38) satisfies entropy
condition if f ′(uL) > s > f

′(uR).

For the Burgers equation, this entropy condition reduces to the requirement that if a
discontinuity is propagating with speed s then uL > uR.
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4.3. Finding the exact solution to the Burgers equation. In this section, we work
out an exact solution to the Burgers equation ut + [0.5u2]x = 0 for the initial condition

(47) u(x,0) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, x < 0

1, 0 < x < 1

0, x > 1

.

The solution is constructed using the fact that the shock speed is given by the Rankine-

-1 0 1 2 3 4 5
x

-1

-0.5

0

0.5

1

u

initial condition

-1 0 1 2 3 4 5
x

0

2

4

6

t u = 0 u = 0

u = 1

u = x/t

x= 1 + t/2

x= (2t)1/2

Figure 7. The exact solution to the Burgers equation (bottom) for the
initial condition given by a pulse (top).

Hugoniot condition whenever there is a discontinuity in u, and that the gaps between the
characteristics are filled with rarefaction fans. A rarefaction fan originating at a point x0

at time 0 gives u(x, t) = (x − x0)/t.
It is evident from the initial condition (47) that there will be a rarefaction fan emanating

from the origin and a shock line emanating from (1,0) on the (x, t)-plane – see Fig. 7.
The shock line separates the region with u = uL = 1 and u = uR = 0. Hence the shock speed
is 0.5(uL + uR) = 0.5. The shock line is given by

x(t) = 1 + t/2.

However, we note that the shock line collides with the rarefaction fan. This happens at
x found by equating the shock line x(t) = 1 + t/2 and the boundary characteristic of the
rarefaction fan x(t) = t:

t = 1 + t/2.
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Hence, the collision point is x = 2, t = 2. Therefore, for time t ≥ 2, the shock line will result
from the collision of u = x/t on the left and u = 0 on the right. The Rankine-Hugoniot
condition gives:

s(t) =
1
2(x/t)

2 − 0

x/t − 0
=
x

2t
.

Hence, to find the shock line, we need to solve the following ODE:

dx

dt
= s(t) =

x

2t
, x(2) = 2.

Its solution is given by

x =
√

2t.

The resulting shock diagram is depicted in Fig. 7(bottom). The exact solution is given by
the following formulas. If t ≤ 2,

(48) u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0

x/t, 0 ≤ x ≤ t

1, t < x < 1 + t/2,

0, x > 1 + t/2

.

If t > 2,

(49) u(x, t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, x < 0

x/t, 0 ≤ x ≤
√

2t

0, x >
√

2t

.

5. Numerical methods for hyperbolic conservation laws

Numerical solution of the Burgers equation is a challenging problem because perfectly
consistent and stable schemes might propagate discontinuities with wrong speeds and hence
fail to converge to the physically correct vanishing viscosity solution with the mesh re-
finement. In order to address this issue, additional requirements have been imposed on
numerical schemes for conservation laws that guarantee that they propagate discontinuities
with the right speeds [2].

5.1. Conservative methods for nonlinear problems. A specific difficulty in comput-
ing discontinuous solutions of hyperbolic conservation laws can be illustrated by the fol-
lowing simple example.

Example Consider the Burgers equation written in the quasi-linear form

ut + uux = 0.

Let

u(x,0) = u0(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1, x < 0,

0, x ≥ 0.
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A generalization of the left upwind method for the case where the speed a = u gives

Un+1
j = Unj −

k

h
Unj (U

n
j −U

n
j−1).

The initial condition gives U0
j = 1 for j < 0 and U0

j = 0 for j ≥ 0. Then

U1
j =

⎧⎪⎪
⎨
⎪⎪⎩

1 − k
h1(1 − 1) = 1, j < 0,

0 − k
h0(0 −U0

j−1) = 0, j ≥ 0.

Hence, U1
j = U

0
j . Therefore, Unj = U0

j for all j. This means that the method propagates the
discontinuity with a wrong speed s = 0.

How can we guarantee that a method propagates the discontinuity at the correct speed?
Let us recall what a conservation law is. A hyperbolic conservation law

(50) ut + [f(u)]x = 0

means that the conserved quantity

∫

R

L
u(x, t)dx

can only change due to the flux through the boundaries, i.e.

∫

R

L
u(x, t + k)dx − ∫

R

L
u(x, t)dx = ∫

k

0
f(u(L, t + τ))dτ − ∫

k

0
f(u(R, t + τ))dτ.

Definition 3. A numerical method for a hyperbolic conservation law ut + [f(u)]x = 0 is
conservative if it can be rewritten in the conservation form

(51) Un+1
j = Unj −

k

h
[F (Unj−p, . . . , U

n
j+q) − F (Unj−p−1, . . . , U

n
j+q−1)] ,

for some function F which is called the numerical flux.

5.2. Discrete conservation. The basic principle of a conservation law is that the con-
served quantity in a given interval [L,R] can change only due to the flux through the
boundaries, i.e.

∫

R

L
u(x, t2)dx = ∫

R

L
u(x, t1)dx − (∫

t2

t1
f(u(R, t))dt − ∫

t2

t1
f(u(L, t))dt) .

A similar identity holds for conservative methods due to telescoping the sums. If we sum
a conservative method (51) from j = jL to j = jR we get

h
jR

∑
j=jL+1

Un+1
j = h

jR

∑
j=jL+1

Unj − k
jR

∑
j=jL+1

[F (Un; j) − F (Un; j − 1)] .

Here, for brevity, we have used the notation F (Un; j) ≡ F (Unj−p, . . . , U
n
j+q). The sum

telescopes and only boundary fluxes remain as a result:

h
jR

∑
j=jL+1

Un+1
j = h

jR

∑
j=jL+1

Unj − k [F (Un; jR) − F (Un; jL)] .



AMSC661/CMSC661

Therefore, the numerical solution, like the exact solution, allows the conserved quantity

h∑
jR
j=jL+1U

n
j to change only due to the flux through the boundaries.

5.3. Consistency. A method of the form (51) is consistent with the original conservation
law (50) if the numerical flux function F reduces to the true flux function f (the one in
the equation ut + [f(u)]x = 0) for the case of constant flow. I.e., if u(x, t) ≡ ū then

(52) F (ū, . . . , ū) = f(ū).

Furthermore, if the arguments of F approach some constant value ū, F should approach
f(ū) smoothly, i.e.

(53) lim
v1,...,vr→ū

F (v1, . . . , vr) = f(ū).

It is sufficient to require the Lipschitz continuity of F whenever f is Lipschitz-continuous
in order to satisfy the smoothness condition given by Eq. (53). Recall that F (v1, . . . , vr)
is Lipschitz continuous if

(54) ∣F (v1, . . . , vr) − F (w1, . . . ,wr)∣ ≤Kmax{∣v1 −w1∣, . . . , ∣vr −wr ∣} ,

where K is a constant depending on F but not on its arguments called the Lipschitz
constant.

Therefore, sufficient consistency conditions are given by

F (ū, . . . , ū) = f(ū),(55)

∣F (v1, . . . , vr) − F (ū, . . . , ū)∣ ≤Kmax{∣v1 − ū∣, . . . , ∣vr − ū∣} .(56)

5.4. Generalization of methods developed for the advection equation. Now we
generalize some methods developed for the advection equation ut + aux = 0 for hyper-
bolic conservation laws (50) making sure that these generalizations are conservative and
consistent.

Lax-Friedrichs
The generalization of the Lax-Friedrichs method to Eq. (50) takes the form

(57) Un+1
j =

1

2
(Unj−1 +U

n
j+1) −

k

2h
(f(Unj+1) − f(U

n
j−1)) .

Observe that this method can be rewritten in the conservative form as

Un+1
j = Unj −

k

h
[F (Unj+1, U

n
j ) − F (Unj , U

n
j−1)] , where

F (Uj+1, Uj) =
h

2k
(Uj −Uj+1) +

1

2
(f(Uj) + f(Uj+1)) .(58)
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Consistency check:

F (U,U) =
h

2k
(U −U) +

1

2
(f(U) + f(U)) = f(U),

∣F (V,W ) − F (U,U)∣ = ∣
h

2k
(V −U) −

h

2k
(W −U) +

1

2
(f(V ) − f(U)) +

1

2
(f(W ) − f(U))∣

≤ (
h

k
+Kf)max{∣V −U ∣, ∣W −U ∣} ,

where Kf is the Lipschitz constant for the true flux f (we have assumed that f is Lipschitz-
continuous).

Lax-Wendroff
Recall that the Lax-Wendroff method for the advection equation ut + aux = 0 is given by

Un+1
j = Unj −

ak

2h
(Unj+1 −U

n
j−1) +

a2k2

2h2
(Unj+1 − 2Unj +U

n
j−1) .

The most straightforward generalization requires the evaluation of the Jacobian f ′(u)
(in the multidimensional case this is especially unpleasant). Two alternative extensions
were developed by Richtmyer and MacCormack. Both of them are two-step procedures.

Richtmyer:

U
n+1/2
j+1/2

=
1

2
(Unj +U

n
j+1) −

k

2h
[f(Unj+1) − f(U

n
j )] ,

Un+1
j = Unj −

k

h
[f(U

n+1/2
j+1/2

) − f(U
n+1/2
j−1/2

)] ,(59)

MacCormack:

U∗
j = Unj −

k

h
[f(Unj+1) − f(U

n
j )] ,

Un+1
j =

1

2
(Unj +U

∗
j ) −

k

2h
[f(U∗

j ) − f(U
∗
j−1)] ,(60)

Exercise Show that the methods (59) and (60) reduce to the Lax-Wendroff method for
f(u) ≡ au. Show that methods (59) and (60) are second-order consistent on smooth
solutions. Determine numerical flux functions for the methods (59) and (60) and show
that they are conservative.

5.5. Convergence. Lax and Wendroff have proven that a consistent and conservative
method converges to a weak solution of the conservation law almost everywhere as k, h→ 0
and k/h satisfies stability conditions.

However, as we know from Section 4, a weak solution might be non-unique in the case
where uL < uR at the discontinuity. The entropy condition (see Definition 2) allows us to
reject all physically irrelevant weak solutions and select the physically correct one, which
is consistent with the limit of the solutions of the viscous equation ut + [f(u)]x = εuxx as
ε → 0. There is a danger that the numerical solution of ut + [f(u)]x = 0 by a conservative
method converges to a weak but physically irrelevant solution. The following example
demonstrates that a seemingly reasonable method can fall into this trap.
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Example Consider the Burgers equation ut + [u2/2]x = 0 with the initial data

u0(x) =

⎧⎪⎪
⎨
⎪⎪⎩

−1, x < 0,

1, x > 0.

The physically relevant solution to this problem (the vanishing viscosity solution) is a
transonic rarefaction given by

u(x, t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1, x < −t,

x/t, −t ≤ x ≤ t,

1, x > t.

The stationary discontinuity u(x, t) = u0(x) is another weak solution (note, the shock speed
is zero: s = (uL + uR)/2 = (1 + (−1))/2 = 0).

Let us set the numerical initial velocity to

U0
j =

⎧⎪⎪
⎨
⎪⎪⎩

−1, j ≤ 0,

1, j > 0

and consider a conservative method obtained by a generalization of the upwind scheme:

Un+1
j = Unj −

k

h
[F (Unj+1, U

n
j ) − F (Unj , U

n
j−1)] , where

F (v,w) =

⎧⎪⎪
⎨
⎪⎪⎩

f(v), if (f(v) − f(w))/(v −w) ≥ 0,

f(w), if (f(v) − f(w))/(v −w) < 0,
.

For the problem above, we have f(v) = v2/2 and

F (1,1) = f(1) = 1/2, F (−1,−1) = f(−1) = 1/2, F (1,−1) = f(1) = 1/2.

Therefore,

U1
j = U

0
j −

k

h
[1/2 − 1/2] = U0

j .

Hence Unj = U0
j for all n and j. Thus, the numerical solution will converge to the physically

irrelevant “stationary discontinuity” weak solution. On the other hand, if we set

U0
j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1, j < 0,

0, j = 0,

1, j > 0,

then the numerical solution by the same method will be the transonic rarefaction. Check
this.

In order to outlaw conservative methods that might produce discrete approximations
to physically irrelevant weak solutions, we need a discrete analog of the entropy condition
(Definition 2). Unfortunately, the simple version of the entropy condition in Definition 2 is
not extended to the discrete case. Another, more involved version, requiring an introduction
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of an entropy function, has a discrete analog. I will not discuss this topic here. Instead, I
refer curious students to Ref. [2], Sections 3.8.1, 12.5, and 13.4.

In the next section, we will discuss a different class of methods for conservation laws for
which the version of the entropy condition involving an entropy function can be readily
verified. (We will not verify it here. You are welcome to read Section 13.4 in [2]).

5.6. Godunov’s method. The idea of Godunov’s method (1959) is the following. Let
Unj be a numerical solution at time tn = kn. We define a function ũ(x, t) for tn ≤ t ≤ tn+1

as follows. At t = tn,

ũ(x, tn) = U
n
j , xj −

h

2
< x < xj +

h

2
, j = 2, . . . , n − 1.

Then ũ(x, t) is the solution to the collection of the Riemann problems on the interval
[tn, tn+1]. If the time step k is small enough so that the characteristics starting at the
points xj + h/2 do not intersect within this interval (i.e., the CFL condition is satisfied),
then ũ(x, tn+1) is determined unambiguously. Then the numerical solution on the next
layer, Un+1

j is defined by averaging ũ(x, tn+1) over the intervals xj − h/2 < x < xj + h/2:

(61) Un+1
j =

1

h
∫

xj+h/2

xj−h/2
ũ(x, tn+1)dx.

This idea is illustrated in Fig. 8.
In practice, the cell averages (61) can be easily calculated using the integral form of

conservation law:

1

h
∫

xj+h/2

xj−h/2
ũ(x, tn+1)dx =

1

h
∫

xj+h/2

xj−h/2
ũ(x, tn)dx

−
1

h
[∫

tn+1

tn
f (ũ(xj + h/2, t))dt − ∫

tn+1

tn
f (ũ(xj − h/2, t))dt] .

Observing that ũ(xj +h/2, t) and ũ(xj −h/2, t) are constant over the time interval [tn, tn+1]

we obtain

Un+1
j = Unj −

k

h
[F (Unj , U

n
j+1) − F (Unj−1, U

n
j )] ,

where F (uL, uR) = f (u∗(uL, uR)) .(62)

Therefore, Godunov’s method is conservative.
The analysis below will be done for a scalar conservation law, i.e., for the case where

u is a scalar function. The value u∗(uL, uR) in the numerical flux function F (uL, uR) =

f (u∗(uL, uR)) is defined so that the entropy condition is satisfied and hence the weak
solution, to which the numerical solution converges, is the vanishing viscosity solution. If
f(u) is convex (if f is twice differentiable then f ′′(u) > 0), the following four cases must
be considered:

(1) f ′(uL) ≥ 0 and f ′(uR) ≥ 0. Then u∗ = uL.
(2) f ′(uL) ≤ 0 and f ′(uR) ≤ 0. Then u∗ = uR.
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Figure 8. Top: The function ũ(tn) obtained by setting its value in the
intervals xj − h/2 < x < xj + h/2 to Unj . Middle: The diagram on the (x, t)-
plane showing lines of discontinuity and the critical characteristics. It allows
us to obtain ũ(tn+1). Bottom: ũ(tn+1) obtained using the diagram on the
(x, t)-plane.

(3) f ′(uL) ≥ 0 ≥ f ′(uR). Then

(63) u∗ =

⎧⎪⎪
⎨
⎪⎪⎩

uL, if
f(uL)−f(uR)

uL−uR
> 0,

uR, if
f(uL)−f(uR)

uL−uR
< 0.

(4) f ′(uL) < 0 < f ′(uR). Then u∗ = us (transonic rarefaction), where the value us is
such that f ′(us) = 0. It is called the sonic point. For example, for the Burgers
equation ut + [u2/2]x = 0, us = 0.

In the first three cases, the value u∗ is either uL and uR, and it can be simply determined
by Eq. (63). Note that in Cases 1 and 2, u∗ is the same whether the physically correct
weak solution to the Riemann problem is a shock wave or a rarefaction. Only in Case 4,
the transonic rarefaction, the value of u∗ differs from the one determined by Eq. (63). This
is the value of u for which the characteristic speed is zero.
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Note that the numerical flux determined by Cases 1 - 4 can be rewritten more compactly
as

(64) F (uL, uR) =

⎧⎪⎪
⎨
⎪⎪⎩

minuL≤u≤uR f(u), if uL ≤ uR,

maxuR≤u≤uL f(u), if uL > uR.

It was proven that the numerical flux given by Eq. (64) gives the physically correct flux
for scalar conservation laws even if f(u) is non-convex.

Here we considered only the methods for scalar conservation laws. In applications rele-
vant to gas and fluid dynamics the conservation laws are non-scalar. Further reading: R.
LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
2002.
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