
NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL

EQUATIONS

MARIA CAMERON

Contents

1. Introduction 2
1.1. Why do we need to study ODE solvers? 2
1.2. What will we study? 2
1.3. Types of ODE problems 3
1.4. Basic theory for IVP 4
1.5. Integral equations 5
1.6. Textbooks on ODE theory 5
1.7. Textbooks on ODE solvers 5
2. Construction of ODE solvers 5
2.1. Approach 1: Taylor expansion 6
2.2. Integral equation approach 6
2.3. Polynomial interpolation approach 7
2.4. Undetermined coefficients 8
3. Consistency, stability, and convergence 8
3.1. Standard assumptions about solvers for IVP 8
3.2. Classification of methods for IVP 8
3.3. Definition of convergence 9
3.4. Consistency 9
3.5. Stability 10
3.6. Convergence of one-step methods 11
4. Stiff problems 12
5. Linear stability theory 13
6. Runge-Kutta methods 15
6.1. Facts about RK methods 16
6.2. Consistency 16
6.3. Stability 18
6.4. Linear stability analysis 18
6.5. Stiff accuracy or L-stability 19
6.6. Stepsize control and dense output 22
7. Linear multistep methods 24
7.1. Adams and BDF families: setup 24

1

2 MARIA CAMERON

7.2. Lagrangian interpolation 25
7.3. The Newton interpolation polynomial 26
7.4. Adams methods: derivation 28
7.5. BDF methods: derivation 29
7.6. Theory for linear multistep methods with constant step and constant order 30
7.7. Plotting RAS 35

1. Introduction

Ref.: John Strain, Lecture 1.

1.1. Why do we need to study ODE solvers?

(1) Most ODEs except for very special cases, do not have analytical solutions and need
to be solved numerically.

(2) Several commonly used solvers are implemented in high-level languages such as
Matlab and Python,
● Matlab: https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html,
● Python, SciPy library:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve ivp.html.
Nonetheless, there are problems where these methods are not suitable. For ex-
ample, such problems are those where certain first integrals (e.g. energy, angular
momentum, etc.) need to be conserved.

(3) The built-in ODE solvers contain several useful features such as error control, dense
output, etc. We will learn what it is and how to use it.

(4) In some cases, we would like to accomplish a more elaborate task than built-in tools
allow us. Then we need to be able to implement an ODE solver ourselves.

(5) The theory for ODE solvers is very enlightening. Its study will allow us to under-
stand why methods might fail to compute a solution accurately and find a remedy
for it.

(6) ODE solvers are building blocks for PDE solvers and SDE solvers.

1.2. What will we study? Keywords:

● Basic theory for ODE problems: well-posedness: existence, uniqueness, stability
with respect to small perturbations;

● Basic concepts for ODE solvers: consistency, stability, convergence, order of the
method ;

● Stiff problems;
● Linear stability theory;
● Runge-Kutta methods;
● Linear Multistep methods;
● Extra features: error control, dense output ;
● Symplectic ODE solvers.

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 3

1.3. Types of ODE problems. The following types of problems involving ODEs are
typically considered:

● Initial Value Problem (IVP), y′ = f(t, y), y(t0) = y0;
● Boundary Value Problem (BVP), e.g. y′ = f(t, y), y1(t0) = y1,0, y1(t1) =
y1,1, where y1 is the first component of y;

● Optimal control problem: y = f(t, y, u), y(0) = y0, and there is either the target
destination y(t1) = y1 or a cost functional that needs to be minimized;

● Inverse problem: given a collection of solutions y(t), one needs to identify the
right-hand side function f(t, y).

In this course, we will focus on IVP. Find the solution to a given ODE with a given initial
condition:

(1) y′ = f(t, y), y(t0) = y0,

on the time interval [t0, T], where y ∶ [t0, T] → Rd, f ∶ [t0, T] × Rd → Rd. The examples
below show that the solution may fail to exist throughout [t0, T], or can be nonunique.

Example 1.

(2) y′ = y2, y(t0) = y0.

The solution is obtained by the following sequence of steps:

dy

y2
= dt, −1

y
= t −C, − 1

y0
= t0 −C, y = y0

1 + y0(t0 − t)
.

The solution blows up at time t∗ = t0 + 1/y0. Thus, in this example, the solution to IVP
(2) exists, it is unique, but it blows up at a finite time. Hence, we must choose T < t∗.

Example 2.

(3) y′ = 2
√
y, y(0) = 0.

One obvious solution is y(t) ≡ 0. The other solution, y(t) = t2, is obtained by the following
sequence of steps:

dy

2
√
y
= dt, √

y = t +C, 0 = C, y = t2.

Furthermore, there is a one-parameter family of solutions

y(t) =
⎧⎪⎪⎨⎪⎪⎩

0, 0 ≤ t ≤ t0,
(t − t0)2, t ≥ t0,

,

for any 0 ≤ t0 <∞. Thus, in this example, the solution to IVP (3) exists for 0 ≤ T <∞ but
it is not unique.

Example 3. Let us consider an IVP for a linear ODE:

(4) y′ = Ay + g(t), y(0) = y0,

4 MARIA CAMERON

where A ∈ Rd×d is a constant matrix and g ∶ R → Rd. One can check directly that the
solution to IVP (4) is given by

(5) y(t) = etAy0 + ∫
t

0
e(t−s)Ag(s)ds,

where the matrix exponential etA is defined as the fundamental solution matrix to

(6) Ψ′ = AΨ, Ψ(0) = Id×d,
or the sum of the infinite series

(7) etA =
∞

∑
n=0

(tA)n

n!
.

If A is diagonalizable, i.e., A = SDS−1, then etA = SetDS−1.
In this example, the solution is unique, exists at all times, and is given by an explicit

formula. However, this formula is not convenient for numerical evaluation unless g ≡ 0,
d is small, and A is diagonalizable. Therefore, it is still more convenient to compute the
solution numerically for all practical purposes.

1.4. Basic theory for IVP.

Theorem 1. Consider IVP (1). Suppose f is a continuous function of t and y defined on
the cylinder

Q ∶= {t0 ≤ t ≤ T, ∥y − y0∥ ≤ r}
and ∥f∥ ≤M on Q.

(1) Then IVP (1) has a solution which exists for 0 ≤ t − t0 ≤ min (r
M , T − t0).

(2) If, in addition, f is Lipschitz in y, i.e., for some constant L,

∥f(t, y1) − f(t, y2)∥ ≤ L∥y1 − y2∥,
then the solution is unique.

(3) If in addition the Jacobian matrix

Df(t, y) = {∂f
i

∂yj
}
d

i,j=1

is continuous in Q then the solution y is differentiable with respect to the initial
condition y0.

(4) Suppose f also depends on parameters u ∈ Rm and the Jacobian matrix with respect
to u,

Duf = {∂f
i

∂uj
} , i = 1, . . . , d, j = 1, . . . ,m,

exists and is continuous on Q for all u. Then the solution y is differentiable with
respect to u.

Exercise 1. Apply Theorem 1, part 1, to Example 1: fix r ∈ R, define the cylinder Q,
express M via r, and find the interval of time where the existence of the solution is guar-
anteed.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 5

Exercise 2. Apply Theorem 1, parts 1 and 2, to Example 2. As in the previous exercise,
find the interval where the existence of the solution is guaranteed. Then check that the
function f(y) = 2

√
y is not Lipschitz at y = 0.

1.5. Integral equations. IVP (1) is equivalent to the integral equation

(8) y(t) = y0 + ∫
t

t0
f(s, y(s))ds.

Integral equation (8) is used to construct various numerical methods including Runge-
Kutta, Adams and BDF. Moreover, integral equation (8) gives a useful tool for proving
Theorem 1 called the Picard iteration

(9) yn+1(t) = y0 + ∫
t

t0
f(s, yn(s))ds.

When f is Lipschitz, it is easy to show that the Picard iterates converge uniformly to a
unique continuous solution of the IVP on the interval of t specified in Theorem 1.

Exercise 3. Compute the first few Picard iterates starting from y(t) = 1 for the IVP

(10) y′ = y2, y(0) = 1.

Infer a general pattern and determine the interval on which the Picard iterates converge.
Does it match the interval guaranteed by Theorem 1?

1.6. Textbooks on ODE theory.

● Witold Hurewitz, Lectures on Ordinary Differential Equations, first published in
1958 and then replicated multiple times. This is a very nice, concise and fun to
read set of lectures on ODE covering a very good part of the ODE theory.

● Carmen Chicone, Ordinary Differential Equations with Applications, Springer,
1999. This is a nicely written book covering the ODE theory and its numerous
applications. It is freely available online.

● E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
1955. This is a large textbook on the ODE theory. You can look into it if you
cannot find something in the two textbooks above.

1.7. Textbooks on ODE solvers.

● E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Non-
stiff Problems, Springer, 2nd edition, 1993

● E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer, 2nd edition, 1996

2. Construction of ODE solvers

Ref: John Strain, Lecture 2, section 2. Starting from now, we will denote the exact
solution by y and the numerical solution by u. The time step will be denoted by h. In
addition, we will use short-hand notation replacing the time argument tn with the subscript
n: un ≡ u(tn), fn ≡ f(tn, un), etc.

https://www.amazon.com/exec/obidos/ASIN/0486495108/gemotrack8-20
https://link.springer.com/book/10.1007/0-387-35794-7
https://link.springer.com/book/10.1007/0-387-35794-7
https://www.amazon.com/Theory-Ordinary-Differential-Equations-Coddington/dp/0898747554
https://www.amazon.com/Theory-Ordinary-Differential-Equations-Coddington/dp/0898747554
https://www.amazon.com/Solving-Ordinary-Differential-Equations-Computational/dp/3642051634
https://www.amazon.com/Solving-Ordinary-Differential-Equations-Computational/dp/3642051634
https://www.amazon.com/Solving-Ordinary-Differential-Equations-Differential-Algebraic/dp/3642052207/ref=pd_bxgy_img_d_sccl_1/133-7612334-0545331?pd_rd_w=Y8Hic&content-id=amzn1.sym.839d7715-b862-4989-8f65-c6f9502d15f9&pf_rd_p=839d7715-b862-4989-8f65-c6f9502d15f9&pf_rd_r=XTERB1GQ2QJNQ6EHD6A7&pd_rd_wg=pZP3B&pd_rd_r=23b33fea-4cd3-4fc5-8c16-a8ba5a7f2abc&pd_rd_i=3642052207&psc=1
https://www.amazon.com/Solving-Ordinary-Differential-Equations-Differential-Algebraic/dp/3642052207/ref=pd_bxgy_img_d_sccl_1/133-7612334-0545331?pd_rd_w=Y8Hic&content-id=amzn1.sym.839d7715-b862-4989-8f65-c6f9502d15f9&pf_rd_p=839d7715-b862-4989-8f65-c6f9502d15f9&pf_rd_r=XTERB1GQ2QJNQ6EHD6A7&pd_rd_wg=pZP3B&pd_rd_r=23b33fea-4cd3-4fc5-8c16-a8ba5a7f2abc&pd_rd_i=3642052207&psc=1

6 MARIA CAMERON

2.1. Approach 1: Taylor expansion. A Taylor expansion of the solution y(t) at tn
yields:

(11) y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

Truncating this expansion at the first-order term in h we obtain the forward Euler
method:

(12) un+1 = un + hf(tn, un).

Do not use the forward Euler method unless there is no other choice. It is very
inaccurate!

Truncating the series in (11) at the second-order term we obtain the following second
order Taylor method which is hardly ever used:

(13) un+1 = un + hf(tn, un) +
h2

2
[∂f
∂t

(tn, un) + [Df(tn, un)]f(tn, un)] .

While this method is reasonably accurate (commonly used PDE solvers are approximately
as accurate as this method), it is not popular because it requires additional input: the time
derivative and the Jacobian matrix for the right-hand side function f . Other second-order
accurate options do not require such input.

2.2. Integral equation approach. Let us consider the ansatz

(14) y(tn+1) = y(tn) + ∫
tn+1

tn
f(s, y(s))ds.

We will approximate the integral using various quadrature rules. Applying the left-hand
rule we obtain the forward Euler method (12). The right-hand rule results in the back-
ward Euler method:

(15) un+1 = un + hf(tn+1, un+1).

While backward Euler is as inaccurate as forward Euler, backward Euler can be a reasonable
choice in some cases due to its very good stability properties which we will discuss later.

The trapezoidal rule with un+1 unknown in the right-hand side yields the method also
called the implicit trapezoidal rule:

(16) un+1 = un +
h

2
[f(tn, un) + f(tn+1, un+1)] .

The implementation of this method requires the use of a nonlinear solver for un+1. Another
option is to predict un+1 in the right-hand side of (16) using forward Euler. The resulting
method belongs to the Runge-Kutta family and is called the trapezoidal rule with Euler
predictor:

(17) un+1 = un +
h

2
[f(tn, un) + f(tn+1, un + hf(tn, un))] .

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 7

This method is not commonly used because, contrary to the implicit trapezoidal rule, its
stability properties are not good enough, and there are other more accurate methods with
stability properties similar to (17).

The midpoint rule gives the ansatz un+1 = un + hf(tn + h/2, un+1/2) where un+1/2 needs
to be defined. One option is to approximate it as the half-sum of un and un+1 resulting in
the implicit midpoint rule:

(18) un+1 = un + hf (tn +
h

2
,
un + un+1

2
) .

Another option resulting in a different version of the implicit midpoint rule is to approx-
imate k ≡ f(tn + h/2, un+1/2) from the relationship k = f(tn + h/2, un + (h/2)k):

(19) k = f (tn +
h

2
, un +

h

2
k) , un+1 = un + hk.

We will see later that method (19) is a good choice for integrating Hamiltonian systems
because it is symplectic. In particular, it conserves energy.

Another option is to predict un+1/2 using forward Euler. The resulting method, the
midpoint rule with Euler predictor

(20) un+1 = un + hf (tn +
h

2
, un +

h

2
f(tn, un)) ,

has properties similar to the trapezoidal rule with Euler predictor and hence is not used
much.

A famous and commonly used method based on Simpson’s quadrature rule

(21) ∫
tn+1

tn
g(t)dt ≈ h

6
(g(tn) + 4g(tn+1/2) + g(tn+1))

is the four-stage fourth-order Runge Kutta method (RK4).

k1 = f(tn, un),(22)

k2 = f (tn +
h

2
, un +

h

2
k1) ,(23)

k3 = f (tn +
h

2
, un +

h

2
k1) ,(24)

k4 = f(tn + h,un + hk3),(25)

un+1 =
h

6
(k1 + 2(k2 + k3) + k4) .(26)

2.3. Polynomial interpolation approach. Adams and BDF (backward differentiation
formula) families of methods are constructed with the aid of polynomial interpolation using
only values at grid point. These methods are often designed to have variable time step and
variable order.

https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Linear_multistep_method

8 MARIA CAMERON

The Adams-Bashforth family is constructed by writing an interpolating polynomial
through fn−k+1, fn−k+2, . . ., fn−1, and fn, integrating this polynomial and evaluating its
value at tn+1. As you see, it involves extrapolation. On the other hand, it is a family of
explicit methods, hence time-stepping is relatively cheap. The Adams-Moulton family
is constructed in a similar manner except for the interpolating polynomial also uses the
unknown value fn+1 making the methods implicit. Hence time marching requires the use
of a nonlinear solver. At the same time, the Adams-Moulton methods are more accurate
and have better stability properties than Adams-Bashforth.

The BDF family is obtained by writing an interpolating polynomial through un−k+1,
. . ., un, and un+1, differentiating it, and matching its derivative at tn+1 with fn+1.

2.4. Undetermined coefficients. The method of undetermined coefficients is a very gen-
eral approach for constructing ODE solvers. It works as follows. First, we choose the
general form of the method that contains a number of undetermined coefficients. Second,
we apply consistency and stability constraints and solve for the undetermined coefficients.
This method will be used to construct the Runge-Kutta methods and will be discussed in
more detail later.

3. Consistency, stability, and convergence

Consistency and stability imply convergence. This easy-to-remember claim is true for
ODE (and PDE) solvers. In this section, we will define these three concepts and prove the
convergence theorem for first-order methods.

3.1. Standard assumptions about solvers for IVP. We will start with specifying the
standard assumptions about a general ODE solver. Any ODE solver, i.e., a method for
solving IVP y′ = f(t, y), y(t0) = y0, t ∈ [t0, T], can be written of the form

(27) un+1 + a0un + . . . + ak−1un−k+1 = hF (un+1, un, . . . , un−k+1; tn+1, f, h).

We will make the following assumption about F .

Assumption 1. F vanishes identically whenever f does.

Assumption 2. F is a Lipschitz function of all u-arguments whenever f is Lipschitz.
Specifically, if f is Lipschitz with respect to y, there is a constant L such that

∥F (un+1, un, . . . , un−k+1; tn+1, f, h) − F (vn+1, vn, . . . , vn−k+1; tn+1, f, h)∥ ≤
L (∥un+1 − vn+1∥ + ∥un − vn∥ + . . . + ∥un−k+1 − vn−k+1∥) .(28)

3.2. Classification of methods for IVP. Look at the general IVP solver given by (27).

● If k = 1, the method is one-step, otherwise it is multi-step.
● If F does not depend on un+1, the method in explicit, otherwise it is implicit.
● If F is a linear function of the right-hand side f , the method is linear, otherwise,

it is nonlinear.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 9

3.3. Definition of convergence. Starting from this section, we will shift time so that
the starting time is zero. In this case, the total number of steps N and the time step h
satisfy a nice relationship Nh = T .

Definition 1. A method for IVP is convergent if for all sufficiently smooth right-hand
sides f , the numerical solution un converges to the true solution, i.e.,

(29) max
0≤tn≤T

∥un − y(tn)∥→ 0 as h→ 0 and uj → yj , 0 ≤ j ≤ k − 1.

The method is accurate of order p if

(30) max
0≤tn≤T

∥un − y(tn)∥ = O(hp) +O(∥u0 − y0∥) + . . . +O(∥uk−1 − yk−1∥)

as h→ 0 and the initial values converge.

3.4. Consistency.

Definition 2. The local truncation error τ of method (27) applied to a smooth solution y
of an IVP y′ = f(t, y), y(0) = y0, is the error committed in one step starting from exact
values:

(31) τn+1 = yn+1 + a0yn + . . . + ak−1yn−k+1 − hF (yn+1, yn, . . . , yn−k+1; tn+1, f, h).

Definition 3. Method (27) is consistent of order p if

(32) τn+1 = O(hp+1) ∀0 ≤ n ≤ T /h

Note that consistency does not imply convergence. Consistency only tells us about the
error committed over one step starting from the exact values.

Exercise 4. Show that methods (16), (17), (18), (19), and (20) are consistent of order 2.

Let us show that the trapezoidal rule with Euler predictor (17) is consistent of order 2.
We need to plug in the exact solution to the ODE into the method and Taylor-expand all
terms at tn. We note that f(tn, yn) = y′n and

f(tn+1, yn + hf(tn, yn)) = f(tn, yn) + h
∂f

∂t
+ [Df(tn, yn)]f(tn, yn)h +O(h2)

= y′n + hy′′n +O(h2).(33)

Here Df(tn, yn) is the Jacobian matrix consisting of the partial derivatives of the compo-
nents of f with respect to components of y evaluated at (tn, yn). For brevity, we will omit
subscript n. Plugging in y and (33) into (17) and Taylor-expanding yn+1 we obtain:

y + hy′ + h
2

2
y′′ − y − h

2
y′ − h

2
y′ − h

2

2
y′′ = O(h3).

Note that we did not check that the coefficient at h3 does not vanish. In order to do it,
we would need to write out more expansion terms in (33) which is quite tedious. We will
discuss how to simplify this process later in this chapter.

10 MARIA CAMERON

Exercise 5. Show that the three-step Adams-Bashforth method

(34) un+1 = un + h(23

12
f(tn, un) −

4

3
f(tn−1un−1) +

5

12
f(tn−2, un−2))

is consistent of order 3.

Exercise 6. Show that the three-step Adams-Moulton method

(35) un+1 = un + h(9

24
f(tn+1, un+1) +

19

24
f(tn, un) −

5

24
f(tn−1un−1) +

1

24
f(tn−2, un−2))

is consistent of order 4.

Exercise 7. What is the order of consistency of the following explicit two-step method?

(36) un+1 + 9un − 10un−1 =
h

2
(13f(tn, un) + 9f(tn−1un−1))

3.5. Stability. A consistent method might not be convergent because of the way numerical
errors accumulate over time steps. For example, consider the method (36). It is consistent
with order 2. However, it is unstable. An easy way to see it is to apply it to solving
the IVP y′ = 0, y(0) = a. To initiate the method, we need two initial values u(0) = u0
and u(h) = u1. Since the right-hand side is zero, the method becomes the following linear
recurrent relationship:

(37) un+1 + 9un − 10un−1 = 0.

The general solution to (37) is un = Arn1 + Brn2 where r1 and r2 are the roots to the
characteristic equation r2+9r−10 = 0, i.e., r1 = 1, r2 = −10. In order to obtain the constant
solution un = a, we need u1 = u2 = a. Then A = a and B = 0. If either of these values u1 or
u2, will be slightly perturbed, the coefficient B will be nonzero and hence the solution will
blow up. Note that the smaller the time step h will be, the more the solution will blow up
over a fixed interval of time.

This example shows that besides requiring that the errors committed at each time step
be small, they also need to accumulate stably.

Definition 4. An IVP method is stable if and only if the numerical solution is Lipschitz
with respect to perturbations of the initial values and the right-hand side. I.e., there is
a Lipschitz constant S such that for any sequence of vectors δn, the solution vn of the
perturbed method

(38) vn+1 + a0vn + . . . + ak−1vn−k+1 = hF (vn+1, vn, . . . , vn−k+1; tn+1, f, h) + hδn+1

with initial values v0 = u0 + δ0, ..., vk−1 = uk−1 + δk−1 satisfies

(39) max
0≤tn≤T

∥un − vn∥ ≤ S max
0≤tn≤T

∥δn∥.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 11

3.6. Convergence of one-step methods.

Theorem 2. A one-step method

(40) un+1 = un + hF (un+1, un; tn+1, h, f)
which is consistent of order p converges with order p of accuracy for any IVP where f is
sufficiently smooth (i.e., f ∈ Cp+1 in an appropriate cylinder).

This theorem implies that a consistent one-step method is always stable.

Proof. The local truncation error at step n + 1 is given by

(41) τn+1 = yn+1 − yn − hF (yn+1, yn; tn+1, h, f).
For the numerical solution u we have:

(42) 0 = un+1 − un − hF (un+1, un; tn+1, h, f).
Subtracting (42) from (41) we obtain

(43) τn+1 = [yn+1 − un+1] − [yn − un] − h [F (yn+1, yn; tn+1, h, f) − F (un+1, un; tn+1, h, f)] .
Introducing the notation en = ∥yn − un∥ and τ = maxn ∥τn∥, and using the fact that F is
Lipschitz with respect to all u-arguments by Assumption 2, we obtain

(44) en+1 ≤ en + hL(en + en+1) + τ.
Equation (44) can be rewritten as

(45) en+1 ≤ en
1 + hL
1 − hL

+ τ

1 − hL
.

We choose h small enough so that the coefficients in (45) are positive. By assumption, τ =
O(hp+1). To obtain a bound for en+1, we consider the corresponding linear inhomogeneous
recurrence relationship

(46) xn+1 = axn + b, where a = 1 + hL
1 − hL

, b = τ

1 − hL
.

The solution to (46) is

(47) xn = anx0 +
an − 1

a − 1
b.

Since the coefficients a and b are positive, we obtain the following bound on en:

(48) en ≤ (1 + hL
1 − hL

)
n

e0 +
(1+hL
1−hL

)n − 1

(1+hL
1−hL

) − 1

τ

1 − hL
.

You can easily check that if 3hL < 1 then

(49) a = 1 + hL
1 − hL

≤ 1 + 3hL.

It is convenient to simplify (48) using the following bound:

(50) a = 1 + hL
1 − hL

≤ 1 + 3hL ≤ e3hL for hL < 1

3
.

12 MARIA CAMERON

We observe that nh ≤ hN = T , where N is the total number of time steps. Hence an ≤ e3LT .
We also need to calculate a − 1:

(51) a − 1 = 1 + hL
1 − hL

− 1 = 2hL

1 − hL
.

Then the bound (48) can be simplified to

(52) en ≤ e3LT e0 +
(e3LT − 1)(1 − hL)

2hL

τ

1 − hL
= e3LT e0 +

e3LT − 1

2L

τ

h
.

Now we recall that τ = O(hp+1). Therefore, equation (52) shows that the error decays as
O(hp) +O(e0) as h→ 0 uniformly on the interval [0, T]. Hence, the method converges.

�

4. Stiff problems

The operational definition of stiff problems is the following: we call an IVP stiff if we need
to use an implicit method in order to obtain its solution at a reasonable computational cost.
Usually, stiff problems are associated with eigenvalues with large and negative real parts of
the matrix A in the linear part in the right-hand side of ODEs of the form y′ = Ay+N(y, t)
where N(t, y) is a nonlinear function. Often such ODEs come from PDEs discretized in
space. For example, consider the heat equation in 1D:

(53) yt = yxx + f(t, x), 0 < x < 1, y(0, t) = y(1, t) = 0, y(0, x) = y0(x).
We partition the interval [0,1] into N+2 points 0 = x0 < x1 < . . . < xN < xN+1 = 1 where xj =
jh, h = 1/(N +1). Since the solution at the boundary points is prescribed by the boundary
conditions, we need to compute the solution only along the interior grid lines x = hj. Let
uj(t) be the solution along the grid line xj = hj. We also set u(t) = [u1(t), . . . , uN](t)⊺.
We use the second-order central difference scheme to approximate yxx:

(54) yxx(t, xj) =
y(t, xj+1) − 2y(t, xj) + y(t, xj−1)

h2
+O(h2).

Written in the matrix form, the resulting system of ODEs takes the form:

(55) u′ = − 1

h2
Au + F

where

(56) A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(t, x1)
f(t, x2)

⋮
f(t, xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

Exercise 8. Show that the eigenvalues of A are λk = 4 (sin πk
2(N+1))

2
and the corresponding

eigenvectors are

(57) vk =
2

N + 1
[sin(πk

N + 1
) , sin(2πk

N + 1
) , . . . , sin(Nπk

N + 1
)]

⊺

, k = 1,2, . . . ,N.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 13

Therefore, the eigenvalues of the matrix −h−2A in the right-hand side of (55) are

−4h−2 (sin πk
2(N+1))

2
. k = 1,2, . . . ,N. For k = N , the sine is close to 1, and hence the

largest negative eigenvalue is about −4h−2. This number tends to −∞ as h→ 0.
A model problem designed to illuminate the effect of the large negative eigenvalues in

the linear part of the right-hand side of an ODE is the Prothero-Robinson problem

(58) y′ = −L(y − φ(t)) + φ′(t), y(0) = y0.

Its numerical investigation is detailed in J. Strain’s Lecture 4 04.ps.pdf.
Stiffness can be a nonlinear effect too. A classical example is the Van der Pol oscillator

⎧⎪⎪⎨⎪⎪⎩

ẋ = y,
ẏ = µ(1 − x2)y − x,

(59)

with µ being a large parameter.

5. Linear stability theory

Linear stability theory analyzes the action of methods for IVP on a very simple class of
problems:

(60) y′ = λy, y(0) = y0 ≠ 0, λ ∈ C, Re(λ) < 0, is a constant.

The requirement that Re(λ) < 0 means that the exact solution to this problem tends zero
as t→∞.

A method for IVP with a fixed time step h applied to (60) yields a numerical solution
un. With h fixed, we let n→∞ which means that t→∞.

Definition 5. The region of absolute stability (RAS) (a. k. a. the stability region) is the
region of the complex plane of values hλ such that un → 0 as n→∞, i.e.,

(61) RAS = {(hλ) ∈ C ∣ un → 0 as n→∞}.

Let us find the stability regions for some methods we have encountered. The forward
Euler method applied to (60) is

(62) un+1 = un + hλun = (1 + hλ)un.

The function R(z), z ∶= hλ, such that the numerical solver advances the solution according
to un+1 = R(z)un is called the stability function. Therefore, the numerical solution is the
geometric series

(63) un = (1 + hλ)nu0.

The numerical solution un tends to zero if and only if ∣1 + hλ∣ < 1. Let z = hλ ≡ a + ib ∈ C.
Then the RAS is defined by the condition

(64) ∣1 + hλ∣2 = ∣1 + z∣2 = (a + 1)2 + b2 < 1.

Hence, the RAS is the interior of the circle of radius 1 centered at −1 + 0i.

https://en.wikipedia.org/wiki/Van_der_Pol_oscillator

14 MARIA CAMERON

Exercise 9. Show that the RAS for the backward Euler is the exterior of the the circle of
radius 1 centered at 1 + 0i.

Exercise 10. Show that the RAS for the implicit trapezoidal rule

un+1 = un +
h

2
(f(tn, un) + f(tn+1, un+1)

is the the set Re(z) < 0.

Let us find the RAS for the midpoint rule with Euler predictor:

(65) un+1 = un + hf (tn +
h

2
, un +

h

2
f(tn, un)) .

Applying this method to (60) we obtain

(66) un+1 = un + hλ(un +
h

2
λun) = (1 + hλ + (hλ)2

2
)un.

Note that this method is second-order accurate and its stability function is the truncated
Taylor expansion for eλh at order 2. It is easy to check that this is not a coincidence. We
will see a bit later that the stability function of explicit s-stage Runge-Kutta methods are
polynomials of degree s. In the case if the number of stages s coincides with the order p
of the method, the stability function must be the truncated Taylor series of ehλ at order p
in order to satisfy the consistency requirement. Indeed, write the expansion

y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) + . . . = (1 + hλ + (hλ)2

2
+ . . .) yn

and finish the argument. Next, we use write a code to compute and visualize the RAS.
Here is my Python code:

import numpy as np

import matplotlib.pyplot as plt

nx = 100

ny = 160

x = np.linspace(-4,1,nx)

y = np.linspace(-4,4,ny)

xg,yg = np.meshgrid(x,y)

z = xg + 1j*yg

f = 1 + z + 0.5*z*z

absf = (f.real)**2 + (f.imag)**2

plt.rcParams.update({’font.size’: 22})

fig, ax = plt.subplots(figsize=(8,8))

plt.contourf(xg,yg,absf,np.arange(2))

plt.title("RAS")

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 15

plt.xlabel("Re(z)")

plt.ylabel("Im(z)")

ax.set_aspect(1)

plt.grid(color=’k’, linestyle=’--’, linewidth=0.5)

plt.savefig(’RK2_RAS.pdf’)

The resulting figure is displayed in Figure 1

4 2 0
Re(z)

4

3

2

1

0

1

2

3

4
Im

(z
)

RAS

.

Figure 1. The region of the absolute stability ofr the midpoint rule with
Euler predictor.

6. Runge-Kutta methods

Read Wiki article “List of Runge-Kutta methods” to learn what the Butcher array is and
to see numerous examples of Runge-Kutta methods and their classification: ERK (explicit)
vs IRK (implicit). ERK methods require s (the number of stages) evaluations of the right-
hand side f(t, y) per time step. IRK methods are much more expensive as one needs
to solve a nonlinear system of equations with sd (d is the space dimension) unknowns
at each time step. Usually, this is done by Newton’s method. The cost of inversion of
the Jacobian matrix at every Newton’s iteration is O(s3d3). Among IRK special cases
of interest are DIRK (diagonally implicit) where one can solve for each stage at a time
reducing the computational cost to O(sd3). The cost can be further reduced for SDIRK
methods (diagonally implicit with the same number along the diagonal). Many examples
of Runge-Kutta methods are found in the Wiki article List of Runge-Kutta methods.

https://en.wikipedia.org/wiki/List_of_Runge?Kutta_methods
https://en.wikipedia.org/wiki/List_of_Runge?Kutta_methods#Heun%27s_third-order_method

16 MARIA CAMERON

6.1. Facts about RK methods.

● All RK methods of order p ≤ 4 have the same order for y being vector or scalar
function. If p > 4, the order for y vector-function can be lower than for the single
1D ODE.

● Any s-stage ERK has order p ≤ s.

Exercise 11. Check this using the ODE y′ = y.

● Any ERK method of order p must have
– s ≥ p + 1 stages if p > 4,
– s ≥ p + 2 stages if p > 6, and
– s ≥ p + 3 stages if p > 7.

● The number of order conditions grows rapidly with the order p – see Table 1.

Table 1. The number of order conditions

p 1 2 3 4 5 6 7 8 9 10
N 1 2 4 8 17 37 85 200 480 1205

6.2. Consistency. First, we will show that

(67) cj =
s

∑
k=1

ajk, 1 ≤ j ≤ s.

Indeed, let us consider the ODE y′ = t and apply an RK method to it. At each stage j at
time step n, we have kj = tn + cjh. Now let us treat t as a function are rewrite the ODE in
the autonomous form:

(68)
d

dt̃
[y
t

] = [t
1

] .

Here t̃ is a new independent variable. At stage j at time step n, we have

(69) [(ky)j
(kt)j

] = [tn + h∑sl=1 ajl(kt)l
1

] = [tn + h∑sl=1 ajl
1

] .

Since (ky)j must coincide with kj above, we obtain (67).
Therefore, without the loss of generality, we can derive order conditions for autonomous

systems ODEs. These conditions will involve only A and b. Then the components of
the vector c are obtained using (67). Since the stages are nested functions, the direct
calculation of the truncation error becomes tedious for s > 2. Instead, we will use the
observation that the local truncation error can be written as a series in h:

(70) τn+1 = y(tn + h) − y(tn) − h
s

∑
l=1

blkl = C0 +C1h +C2
h2

2
+ . . . +Cp

hp

p!
+O(hp+1),

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 17

where

(71) Cr =
dr

dhr
τn+1(h = 0).

A method of order p must have C0 = C1 = . . . = Cp = 0. We see immediately that C0 =
τn+1(h = 0) = 0. Let us compute C1. We need the first derivative of τ . We will use the

Taylor expansion of y(tn + h) = y + y′h + y′′ h
2

2 + . . .:

d

dh
τn+1 = y′ + hy′′ +

h2

2
y′′′ + . . . − h

s

∑
l=1

bl
dkl
dh

−
s

∑
l=1

blkl.(72)

Then, taking into account that each stage k is equal to y′ at h = 0 we obtain

(73) C1 =
d

dh
τn+1(h = 0) = y′ −

s

∑
l=1

bly
′ = y′ (1 −

s

∑
l=1

bl) .

This gives us the single 1st order condition

(74)
s

∑
l=1

bl = 1

Next, we calculate the second derivative of τn+1:

d2

dh2
τn+1 = y′′ + hy′′′ + . . . − h

s

∑
l=1

bl
d2kl
dh2

− 2
s

∑
l=1

bl
dkl
dh

.(75)

We need to compute the derivatives of the stages and evaluate them at h = 0. The super-
script i denotes the ith component of the vector-function f .

d

dh
kil =

d

dh
f i

⎛
⎝
yn + h∑

q

alq
⎞
⎠

=∑
m

∂f i

∂ym
⎛
⎝∑q

alqk
m
q + h∑

q

alq
d

dh
kmq

⎞
⎠

(76)

Setting h = 0 in the derivative above we find:

d

dh
kil(h = 0) =∑

m

∂f i

∂ym
⎛
⎝∑q

alqf
m
q

⎞
⎠
= d2

dt2
yi∑

q

alq = (yi)′′∑
q

alq(77)

Then

(78) C2 =
d2

dh2
τn+1(h = 0) = y′′

⎛
⎝

1 − 2
s

∑
l=1

bl∑
q

alq
⎞
⎠
.

This gives us the second-order condition

(79) 2
s

∑
l=1

bl∑
q

alq = 1.

18 MARIA CAMERON

Proceeding similarly, one can obtain two third-order conditions:

(80) 3∑
l

bl∑
q

alq∑
r

alr = 1, 6∑
l

bl∑
q

alq∑
r

aqr = 1.

6.3. Stability. Since RK methods are one-step, they are stable as soon as the update
function F in

(81) un+1 = un + hF (un+1, un; tn+1, h, f) = un + h
s

∑
l=1

blkl

is Lipschits with respect to its u-arguments. We assume that f is Lipschitz with constant
Lf , i.e. ∥f(x) − f(y)∥ ≤ Lf∥x − y∥ ∀x, y ∈ Rd. F is Lipschitz if and only if the vector of

stages k is Lipschitz. Let us show that the vector of stages is Lipschitz. If y ∶ R→ Rd then
k ∈ Rsd. We have the following equation for the stage vector k:

(82) k(u) = f̂(t + ĉh, u + hÂk(u)), where ĉ = c⊗ 1d×1, Â = A⊗ Id×d,

(83) f̂ = [[f1, . . . , fd], . . . , [f1, . . . , fd]
´¹¹¹¸¹¹¶

s times

]⊺,

and the symbol ⊗ denotes the Kronecker product. To check that k is Lipschitz, we consider
the difference k(u)−k(v) and show that its norm is bounded by some constant times ∥u−v∥:

k(u) − k(v) = f̂(t + ĉh, u + hÂk(u)) − f̂(t + ĉh, v + hÂk(v));

∥k(u) − k(v)∥ = ∥f̂(t + ĉh, u + hÂk(u)) − f̂(t + ĉh, v + hÂk(v))∥

≤ sLf ∥u − v + hÂ(k(u) − k(v))∥

≤ sLf∥u − v∥ + hsLf∥Â∥∥k(u) − k(v)∥.
Therefore,

(84) ∥k(u) − k(v)∥ ≤
sLf

1 − hsLf∥Â∥
∥u − v∥,

which shows that the stage vector is Lipschitz if h is small enough.

6.4. Linear stability analysis. Linear stability analysis means that the application to
the ODE y′ = λy where λ ∈ C is examined. Applying RK method to y′ = λy we get:

k = λ (un + hAk) , k = λun(Is×s − hλA)−11s×1
un+1 = un + hb⊺k = [1 + hλb⊺(Is×s − hλA)−11s×1]un.(85)

Therefore, the stability function is

(86) R(z) = 1 + zb⊺(Is×s − zA)−11s×1.
Note that the following series expansion is valid if ∣z∣ is small enough:

(87) (Is×s − zA)−1 = 1 + zA + z2A2 + z3A3 +

https://en.wikipedia.org/wiki/Kronecker_product

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 19

You can check this identity directly by multiplying both sides by Is×s − zA. If the RK
method is explicit, i.e., it is an ERK method, then the Butcher matrix A is nilpotent.
Specifically Aq = 0 for q ≥ s.

Exercise 12. Show that if an s × s A is of the form

(88) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
∗ 0
∗ ∗ 0
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

i.e., it is strictly lower triangular and has nonzeros on the first subdiagonal, then A2 has
all zeros on the first subdiagonal and above it, A3 has zeros on the second subdiagonal and
above it, and so on, and As = 0.

This means that the stability function is a polynomial of degree s:

(89) R(z) = 1 + zb⊺ [Is×s + zA + z2A2 + . . . + zs−1As−1]1s×1.

This means that the stability region defined by

(90) RAS = {z ∈ C ∣ ∣R(z)∣ < 1}
is bounded for any ERK.

6.5. Stiff accuracy or L-stability. The minimal stability condition for stiff problems is
A-stability that requires that the numerical solution to y′ = λy tends to zero as t → ∞
whenever the exact one does.

Definition 6. A method for solving IVPs is A-stable if its region of absolute stability
includes the half-plane {Re(z) < 0}. A method for solving IVPs is A(α)-stable if its region
of absolute stability includes the sector of angle 2α around the negative semiaxis Re(z).

Linear stability analysis shows that none of the ERK methods is A-stable or A(α)-stable.
Hence ERK methods are not suitable for stiff problems.

Nonetheless, the condition of A-stability that the negative half-plane belongs to the RAS
is not strong enough for stiff problems. Let us consider the implicit trapezoidal rule (not
an RK method):

(91) un+1 = un +
h

2
[f(tn, un) + f(tn+1, un+1)] .

Its stability function is

(92) R(z) = 1 + z/2
1 − z/2

,

and its RAS is the negative half-plane {z ∣ Re(z) < 0}. However, in the stiff limit ∣z∣→∞,
the stability function for the trapezoidal rule tends to −1, which means that if λ is large,
real, and negative, the numerical solution to y′ = λy will not decay rapidly. Moreover, if
the time step h is fixed, the larger is ∣λ∣ (along the negative real semiaxis), the slower the
numerical solution to y′ = λy decays.

20 MARIA CAMERON

To address this problem, the requirement of L-stability was introduced.

Definition 7. An RK method is L-stable (or stiffly accurate) if it is A-stable and the
stability function satisfies

(93) lim
∣z∣→∞

R(z) = 0.

Note that the stability function of the RK methods is a rational function. Hence an RK
method is L-stable if it is A-stable and the degree of the numerator of the stability function
is less than the degree of its denominator.

Exercise 13. Show that the DIRK method with the Butcher array of the form
γ γ 0
1 1 − γ γ

1 − γ γ
and γ = 1 − 1/√2 is L-stable (or stiffly accurate) and 2nd order accurate. This method is
often referred to as DIRK2.

Exercise 14. (1) Show that the family of DIRK methods with the Butcher array of the
form

γ γ 0
1 − γ 1 − 2γ γ

1/2 1/2
is 2nd order accurate for any γ ∈ (0,1].

(2) Check that γ = 1/2 +√3/6 renders this method 3rd order accurate.
(3) Find γ such that this method is L-stable. A-stability can be checked, e.g., by plotting

the region of absolute stability.

The level sets from 0 to 1 with step 0.05 for the methods in the exercises above with
γ = 1 − 1/√2 and γ = 1/2 +√3/6 respectively are displayed in Fig. 2 (a) and (b), respectively.
While both of these methods are A-stable, the stability function only of the first of them
decays to zero as ∣z∣→∞.

6.5.1. Implementation of DIRK methods. We will discuss the implementation of DIRK
methods on the example of DIRK2 in Exercise 13. Let y′ = f(t, y), y ∈ Rd, be the ODE that
we need to solve. To advance the solution from time tn to time tn+1 we need to compute
stages k1 and k2. Then un+1 = un + (1 − γ)k1 + γk2.

To find k1, we set up the following equation:

(94) k1 = f(tn + γh, un + hγk1).

● It the function f is linear in y, i.e., f(t, y) = A(t)y + b(t), equation (94) becomes

(95) k1 = A(tn + γh)(un + hγk1) +B(tn + γh).

Then k1 is found by solving the linear system of equations

(96) (Id×d − hγA(tn + γh))k1 = A(tn + γh)un +B(tn + γh).

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 21

(a)

10 0 10 20
Re(z)

15

10

5

0

5

10

15

Im
(z

)

RAS

0.05

0.10

0.1
0

0.15

0.
20

0.25

0.3
0

0.35

0.
40

0.
45

0.50

0.5
5

0.60

0.
65

0.70

0.75

0.8
0

0.85

0.9
0

0.95

(b)

10 0 10 20
Re(z)

15

10

5

0

5

10

15

Im
(z

)

RAS

0.20

0.25

0.30

0.350.4
0

0.45

0.50

0.55
0.60

0.65 0.70

0.75
0.800.85

0.9
0

0.95

Figure 2. The level sets of the stability functions of the DIRK methods
in exercises 13 and 14.

● If the function f is nonlinear in y, (94) is nonlinear in k1 as well. In this case, often
Newton’s solver is used. We set:

(97) F (k1) ∶= k1 − f(tn + γh, un + hγk1) = 0.

We take f(tn, un) as the initial guess and iterate:

(98) k
(0)
1 = f(tn + γh, un), k

(l+1)
1 = k(l)1 −DF (k(l)1)−1F (k(l)1),

where DF (k(l)1) is the Jacobian matrix of the function F evaluated at un + hγk(l)1 . The
Jacobian DF is related to the Jacobian Df as follows:

(99) DF (k) = Id×d − hγDf(un + hγk), Df = (∂fi
∂yj

)
d

i,j=1

.

As k1 is computed, we set up the following equation for k2:

(100) k2 = f(tn + h,un + h(1 − γ)k1 + hγk2).

● If f is linear in y, we find k2 by solving the following linear system:

(101) (Id×d − hγA(tn + h))k2 = A(tn + h)(un + h(1 − γ)k1) +B(tn + h).

● If f is nonlinear in y, we find k2 by solving the nonlinear system for k2,

(102) F (k2) ∶= k2 − f(tn + h,un + h(1 − γ)k1 + hγk2) = 0,

e.g. using Newton’s iteration:

(103) k
(0)
2 = k1, k

(l+1)
2 = k(l)2 −DF (k(l)2)−1F (k(l)2),

22 MARIA CAMERON

where DF relates to Df via

(104) DF (k) = Id×d − hγDf(un + h(1 − γ)k1 + hγk), Df = (∂fi
∂yj

)
d

i,j=1

.

6.6. Stepsize control and dense output. Read J. Strain’s Lecture 9 09.ps.pdf.

6.6.1. Stepsize control. Step size control in good modern RK solvers is accomplished due
to the use of two methods sharing the Butcher array. For example, consider the Butcher
array for DOPRI5(4):

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

b 35
384 0 500

1113
125
192 −2187

6784
11
84 0

b̂ 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

The vector b makes the method of order 4, while b̂ makes it of order 5. At each step, the
solution of the method of order 5 is used as the output. In addition, the solution by the
method of order 4 is also evaluated starting from the output of the previous time step and
used for error estimate:

(105) e = h(bk − b̂k),
where k is the vector of stages. The step is accepted if

(106) abs(e) < atol + rtol ∗ abs(û),
where atol and rtol are the absolute and relative error tolerances, and û is the solution of
the higher order method at the given step. Otherwise, the step is rejected and the stepsize
is reduced.

Looking at the DOPRI5(4) Butcher array you can notice that the last row of the top part
of the array is evaluated at tn+1 and the coefficients in it match the vector b for the 4th-
order method. This property is called first same as last (FSAL) allows one to eliminate

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 23

the extra computation of the lower-order solution because it is the last stage computed
anyway.

Also notice that the last two stages are both evaluated at tn+1. This gives rise to an
automatic stiffness detector described in Strain’s Lecture 9.

6.6.2. Dense output. The high orders of RK methods lead to their high efficiency: a highly
smooth accurate solution can be computed with a few time steps. However, suppose the
user needs to know the solution at time values in between the time steps. The dense output
feature is designed to address this need. The solution between time steps can be found
using interpolation. The interpolation can be always chosen to be the Hermite interpolation
as both u and u′ are known at the end of the time interval.

Let us recall how to construct a Hermite interpolant on [0,1] with the data u(0) = u0,
u(1) = u1, u′(0) = u′0, u′(1) = u′1. Now suppose that we want to construct a polynomial
such that its values and its derivatives match with those of f at given points. Following
Lagrange’s idea, we design a polynomial p0(x) such that

p0(0) = 1, p′0(0) = 0, p0(1) = 0, p′0(1) = 0.

Note that then the polynomial p1(x) ∶= p0(1 − x) satisfies:

p1(0) = 0, p′1(0) = 0, p1(1) = 1, p′1(1) = 0.

We also need to design a polynomial g0(x) such that

g0(0) = 0, g′0(0) = 1, g0(1) = 0, g′0(1) = 0.

Then the polynomial g1(x) ∶= −g0(1 − x) satisfies

g1(0) = 0, g′1(0) = 0, g1(1) = 0, g′1(1) = 1.

For each polynomial p0(x) and g0(x) we have four conditions to meet. Hence they should
have four coefficients which means that they should be cubic. We can find p0(x) by setting
it to

p0(x) = a0 + a1x + a2x2 + a3x3, and, respectively, p′0(x) = a1 + 2a2x + 3a3x
2,

and solving the system of four linear equations:

p0(0) = a0 = 1,

p′0(0) = a1 = 0,

p0(1) = a0 + a1 + a2 + a3 = 0,

p′0(1) = a1 + 2a2 + 3a3 = 0.

We find:
p0(x) = 1 − 3x2 + 2x3.

Similarly, we find
g0(x) = x(1 − x)2.

Now we write out the desired interpolating polynomial:

(107) H[0,1](x) = u0p0(x) + u1p0(1 − x) + u′0g0(x) − u′1g0(1 − x).

24 MARIA CAMERON

Now we rescale this polynomial to the interval [0, h]:
(108) H[0,h](x) = u0p0(x/h) + u1p0(1 − x/h) + h [u′0g0(x/h) − u′1g0(1 − x/h)] .

The interpolation error for this polynomial is O(h4).
RK methods facilitate the construction of higher-order interpolation polynomials because

the stages provide approximations to u and u′ at the points tn + cjh.

7. Linear multistep methods

Linear multistep methods are of the form

(109) un+1 + α0un + α1un−1 + . . . + αk−1un−k+1 = hn (β−1fn+1 + β0fn + . . . + βk−1fn−k+1) ,
where fj = f(tj , uj) and hn = tn+1 − tn.

Linear multistep methods are cheaper than RK methods of the same order as they require
only one function evaluation per step if the method is explicit, and only one solution to a
d × d generally nonlinear system per step, if the method is implicit.

Linear multistep methods are implemented in professionally written routines allowing
for a variable timestep and a variable order.

On the downside, there are two issues associated with linear multistep methods.

● First, k-step methods with k ≥ 2 require to initialize the solution at times t0, ...,
tk−1, while only the solution at t0 is defined by the initial condition to the ODE.
Hence, another method, e.g. RK of the same order should be used to get started.

● Second, linear multistep methods have inferior stability issues in comparison with
RK methods. As you have seen in the homework, the RASs of ERK methods tend
to grow as their order grows, while the RASs of linear multistep methods of the
Adams family shrink with the increase of the order and the RASs of the BDF family
lose a region around the origin as their order increases. In fact, the only A-stable
linear multistep method is the trapezoidal rule, which, as we discussed is not a
good choice for stiff problems. Higher-order linear multistep methods at best can
be A(α)-stable, i.e., their RASs contain a sector of angle 2α around the negative
real semiaxis in the complex plane.

7.1. Adams and BDF families: setup. The Adams family of linear multistep methods
is constructed from the ansatz

(110) yn+1 = yn + ∫
tn+1

tn
f(t, y(t))dt.

The function f(t, y(t)) in a k-step method is approximated by an interpolation poly-
nomial through (tn−k+1, fn−k+1), ..., (tn, fn) if the method is explicit, and, additionally,
through f(tn+1, yn+1), if the method is implicit. The explicit methods comprise the Adams-
Bashforth subfamily, while the implicit methods constitute the Adams-Moulton subfamily.
Then this polynomial is integrated exactly resulting in methods of the form

un+1 = un + hn (β0fn + . . . + βk−1fn−k+1) , Adams-Bashforth(111)

un+1 = un + hn (β−1fn+1 + β0fn + . . . + βk−1fn−k+1) , Adams-Moulton(112)

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 25

For the case where the timestep is fixed, the coefficients for Adams-Bashforth and
Adams-Moulton methods can be looked up in the Wiki article “Linear multistep meth-
ods”.

The BDF (backward differentiation formula) family is derived from the ansatz

(113)
d

dt
y(tn+1) = f(tn+1, y(tn+1).

The function y(t) in the left-hand side of (113) in a k-step BDF method is approximated
by an interpolation polynomial through tn+1, tn, ..., tn−k+1.

Let us recall how to derive the interpolation polynomial. This can be done in two ways,
Lagrange’s and Newton’s.

7.2. Lagrangian interpolation. Suppose a continuous function f(x) defined on the in-
terval [a, b] is given at a finite number of points xj , j = 0,1,2, . . . , n, a total of n+1 points.
We will denote f(xj) by fj . The task of interpolation is to find a polynomial of degree at
most n passing through all these points. Lagrange’s approach to this task is to construct
n + 1 polynomials Lj(x) of degree n such that each Lj(x) is 1 at xj and zero at all other
xk’s. Then the linear combination

P (x) = f0L0(x) + f1L1(x) + . . . + fnLn(x)
is a polynomial of degree at most n, and P (xj) = fj for all j = 0,1, . . . , n. The polynomial
P (x) written in the form above is called the Lagrange interpolation polynomial. The
polynomials Lj(x) are easily constructed. The error of interpolation can also be found.
These results are summarized in the following theorem.

Theorem 3. Given a function f that is defined at n + 1 points x0 < x1 < . . . < xn ∈ [a, b]
there exists a unique polynomial of degree ≤ n such that

Pn(xj) = f(xj), j = 0,1,2, . . . , n.

This polynomial is given by

Pn(x) =
n

∑
j=0

f(xj)Lj(x),

where Lj(x) is defined by

Lj(x) =
πn+1(x)

(x − xj)π′n+1(xj)
=
∏nk=0,k≠j(x − xk)
∏nk=0,k≠j(xj − xk)

,

πn+1(x) being the nodal polynomial

πn+1(x) =
n

∏
k=0

(x − xk).

Additionally, if f is n + 1 times continuously differentiable in (a, b), then for any x ∈ [a, b]
there exists a value ζx ∈ (a, b) depending on x, such that

(114) En(x) = f(x) − Pn(x) =
f (n+1)(ζx)
(n + 1)!

πn+1(x).

https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Linear_multistep_method

26 MARIA CAMERON

Proof. (1) Existence By construction, Pn is a polynomial of degree n passing through
xj , j = 0,1,2, . . . , n.

(2) Uniqueness Suppose that there are two such polynomials, Pn(x) and Qn(x). Then
the polynomial d(x) ∶= Pn(x)−Qn(x) is at most of degree n. On the other hand, it
has at least n + 1 roots xj , j = 0,1,2, . . . , n. Therefore, it must be identically zero.

(3) Error formula Consider the function

F (z) = f(z) − Pn(z) − [f(x) − Pn(x)]
πn+1(z)
πn+1(x)

.

This function has n + 2 zeros at z = xj , j = 0,1,2, . . . , n, and z = x. Recall Rolle’s
theorem that says that if a function f(z) is continuously differentiable on [a, b]
and f(a) = f(b) then there is c ∈ (a, b) such that f ′(c) = 0. Therefore, if we apply
Rolle’s theorem n + 1 times we get that the function

F (n+1)(z) = f (n+1)(z) − P (n+1)
n (z) − [f(x) − Pn(x)]

(n + 1)!
πn+1(x)

has at least one zero in (x0, xn). We denote this zero by ζx. Therefore, taking into

account that P
(n+1)
n (z) ≡ 0, we get

0 = f (n+1)(ζx) − [f(x) − Pn(x)]
(n + 1)!
πn+1(x)

,

and Eq. (114) follows.
�

Example 4. Let us find the Lagrange interpolant p(x) passing through the points (0, f0),
(1, f1), and (2, f2). The polynomial p(x) is of the form

p(x) = f0
(x − 1)(x − 2)
(0 − 1)(0 − 2)

+ f1
(x − 0)(x − 2)
(1 − 0)(1 − 2)

+ f2
(x − 0)(x − 1)
(2 − 0)(2 − 1)

= 1
2f0(x

2 − 3x + 2) − f1(x2 − 2x) + 1
2f2(x

2 − x)
= f0 + 1

2(−3f0 + 4f1 − f2)x + 1
2(f0 − 2f1 + f2)x2.(115)

7.3. The Newton interpolation polynomial. Lagrangian interpolation is convenient
because it gives an explicit formula for the interpolant. However, it does not provide a con-
venient way to modify the polynomial to accommodate additional interpolation points. An
alternative form of the interpolation polynomial, the Newton form, gives such a way. The
Newton interpolation formula is used, for example, for deriving linear multistep methods
with varying time step for solving ODE’s. The Newton interpolation formula is defined via

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 27

the divided differences. We set

f[x0] = f(x0),

f[x0, x1] =
f[x1] − f[x0]

x1 − x0
,

f[x0, x1, x2] =
f[x1, x2] − f[x0, x1]

x2 − x0
,

. . .

f[x0, x1, . . . , xk] =
f[x1, . . . , xk] − f[x0, x1, . . . , xk−1]

xk − x0
,

. . . .

Theorem 4. The polynomial interpolating f(x) at xj, j = 0,1,2, . . . , n is given by

Pn(x) = f[x0] + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1) + . . .
+ f[x0, x1, . . . , xn](x − x0)(x − x1) . . . (x − xn−1).(116)

Example 5. Let us find the Newton interpolant p(x) passing through the points (0, f0),
(1, f1), and (2, f2). The polynomial p(x) is of the form

(117) p(x) = f[0] + f[0,1](x − 0) + f[0,1,2](x − 0)(x − 1),

where

f[0] = f0, f[0,1] = f1 − f0
1 − 0

= f1 − f0, f[1,2] = f2 − f1
2 − 1

= f2 − f1,

f[0,1,2] = f[1,2] − f[0,1]
2 − 0

= 1

2
(f2 − f1 − (f1 + f0)) =

1

2
(f0 − 2f1 + f2).

Plugging these coefficients into Eq. (117) we get

p(x) = f0 + (f1 − f0)x + 1
2(f0 − 2f1 + f2)x(x − 1)

= f0 + 1
2 (−3f0 + 4f1 − f2)x + 1

2(f0 − 2f1 + f2)x2.(118)

The polynomial p(x) in Eq. (118) coincides with the one in Eq. (115) as it should.

Proof. We will proceed by induction. For n = 1 Eq. (116) holds. Suppose the polynomials
P [x0, . . . , xn−1](x) and P [x1, . . . , xn](x) of the form of Eq. (116) interpolate f at the
points x0, . . . , xn−1 and x1, . . . , xn respectively. Note that both of them are of degree n− 1.
Hence they differ by a polynomial of degree at most n − 1, and this polynomial has zeros
at x1, ..., xn−1. Therefore,

P [x1, . . . , xn](x) − P [x0, . . . , xn−1](x) = a(x − x1) . . . (x − xn−1)

where a is a number. Obviously, a is the difference of the leading coefficients of the
polynomials P [x0, . . . , xn−1](x) and P [x1, . . . , xn](x), i.e.,

a = f[x1, . . . , xn] − f[x0, x1, . . . , xn−1].

28 MARIA CAMERON

At the same time,

a = P [x1, . . . , xn](x) − P [x0, . . . , xn−1](x)
(x − x1) . . . (x − xn−1)

.

Now consider the polynomial

(119) P [x0, x1, . . . , xn](x) = P [x0, . . . , xn−1](x) +
a

xn − x0
(x − x0)(x − x1) . . . (x − xn−1).

The last term of this polynomial is chosen so that it is zero at x0, . . . , xn−1, and the coeffi-
cient a/(xn−x0) is our guess that we will verify below. By construction, P [x0, x1, . . . , xn](x)
interpolates f at x0, . . . , xn−1. Let us verify that it also does so at x = xn. We evaluate
P [x0, x1, . . . , xn](x) at xn and obtain:

P [x0, x1, . . . , xn](xn)

=P [x0, . . . , xn−1](xn) +
a

xn − x0
(xn − x0)(xn − x1) . . . (xn − xn−1)

=P [x0, . . . , xn−1](xn)

+P [x1, . . . , xn](xn) − P [x0, . . . , xn−1](xn)
(xn − x0)(xn − x1) . . . (xn − xn−1)

(xn − x0)(xn − x1) . . . (xn − xn−1)

=P [x1, . . . , xn](xn) = f(xn).

Therefore, the polynomial given by Eq. (119) interpolates f at xj , j = 0,1,2, . . . , n. �

Remark The function f[x0, . . . , xn] is a symmetric function of its arguments i.e., it does
not change if we permute x0, ..., xn. This is because the interpolation polynomial is
independent of the order of nodes.

7.4. Adams methods: derivation. As an example, we will derive a three-step Adams-
Bashforth method with a variable timestep. Newton’s interpolant through tn, tn−1, and
tn−2 is

(120) p(t) = fn + f[tn, tn−1](t − tn) + f[tn, tn−1, tn−2](t − tn)(t − tn−1),

where

(121) f[tn, tn−1] =
fn − fn−1
hn−1

, f[tn, tn−1, tn−2] =
fn−fn−1
hn−1

− fn−1−fn−2
hn−2

hn−1 + hn−2
.

We integrate the polynomial p(t) on the interval [tn, tn+1] and get the 3-step Adams-
Bashforth method:

un+1 = un + ∫
tn+1

tn
[fn + f[tn, tn−1](t − tn) + f[tn, tn−1, tn−2](t − tn)(t − tn−1)]dt

= un + hn [fn + f[tn, tn−1]
hn
2
+ f[tn, tn−1, tn−2] (

h2n
3
+ hn−1hn

2
)] .(122)

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 29

Now let us calculate the coefficients of this method in the case where the timestep h is
constant. We have:

(123) f[tn, tn−1] =
fn − fn−1

h
, f[tn, tn−1, tn−2] =

fn − 2fn−1 + fn−2
2h2

,

un+1 = un + h [fn + (fn − fn−1)
1

2
+ fn − 2fn−1 + fn−2

2

5

6
]

= un + h [23

12
fn −

4

3
fn−1 +

5

12
fn−2] .(124)

Exercise 15. Derive a three-step Adams-Moulton method with a variable timestep. Then
compute its coefficients for the case where the timestep is constant.

The interpolation error allows us to predict the order of the Adams methods. The
interpolation error f(t, y(t)) − p(t) is O(hk+1) for a k-step Adams-Moulton method and
O(hk) for a k-step Adams-Bashforth method. The integration increases the order of error
by 1 predicting that the local truncation errors for k-step Adams-Moulton and Adams-
Bashforth methods are, respectively, O(hk+2) and O(hk+1). Hence, k-step Adams-Moulton
and Adams-Bashforth methods are of ordersp = k + 1 and p = k respectively. Soon we will
see that all Adams methods are stable.

7.5. BDF methods: derivation. As an example, we will derive a BDF method with
variable timestep. Newton’s interpolant through tn+1, tn, tn−1, and tn−2 is

p(t) = un+1 + u[tn+1, tn](t − tn+1) + u[tn+1tn, tn−1](t − tn+1)(t − tn)
+ u[tn+1, tn, tn−1, tn−2](t − tn+1)(t − tn)(t − tn−1),(125)

where

(126) u[tn+1, tn] =
un+1 − nn

hn
, u[tn+1, tn, tn−1] =

un+1−un
hn

− un−un−1
hn−1

hn + hn−1
,

(127) u[tn+1, tn, tn−1, tn−2] =

un+1−un
hn

−
un−un−1

hn−1

hn+hn−1
−

un−un−1
hn−1

−
un−1−un−2

hn−2

hn−1+hn−2

hn + hn−1 + hn−2
.

Then we differentiate the polynomial p(t), evaluate its derivative at t = tn+1, and equate it
with fn+1:

p′(tn+1) = u[tn+1, tn] + u[tn+1tn, tn−1]hn
+ u[tn+1, tn, tn−1, tn−2]hn(hn + hn−1) = fn+1,(128)

The interpolation error y(t) − p(t) is O(hk+1) for a k-step BDF. Hence, the local trun-
cation error for a k-step BDF is

(129) τn+1 = h(y′(tn+1) − p′(tn+1)) = h(f(tn+1) − p′(tn+1)) = O(hk+1).
Hence a k-step BFD method is of order p = k. Soon we will see that BDF methods will
lose stability as k increases.

30 MARIA CAMERON

7.6. Theory for linear multistep methods with constant step and constant order.
Despite linear multistep methods being mostly implemented with variable timestep and
variable order (VSVO), the theory for fixed timestep and fixed order is still useful because
its conclusions accurately predict the behavior of VSVO.

7.6.1. Notation. A general linear multistep method with fixed timestep h is of the form

(130) un+1 + α0un + α1un−1 + . . . + αk−1un−k+1 = h (β−1fn+1 + β0fn + . . . + βk−1fn−k+1) ,
where fj = f(tj , uj) and h = tn+1 − tn, n ≥ 0. We define the polynomials ρ(z) and σ(z) by

ρ(z) ∶= α−1zk + α0z
k−1 + α1z

k−2 + . . . + αk−1,(131)

σ(z) ∶= β−1zk + β0zk−1 + β1zk−2 + . . . + βk−1.(132)

Usually, the normalization is chosen so that α−1 = 1.

7.6.2. Dahlquist barrier theorems. These theorems show that stiff stability properties are
mostly irrelevant for linear multistep methods.

Theorem 5. A stable k-step method has order p ≤ k + 2 if k is even, p ≤ k + 1, if k is odd,
and p ≤ k, if it is explicit.

This theorem is consistent with our order calculation for the Adams and BDF methods.

Theorem 6. An A-stable k-step method has order p ≤ 2. Among A-stable 2-step methods,
the most accurate is the trapezoidal rule.

7.6.3. The main theorem.

Theorem 7. (1) A k-step method is consistent iff

ρ(1) = 0, ρ′(1) = σ(1).
(2) A k-step method is consistent of order p iff

ρ(eh) − hσ(eh) = O(hp+1).
(3) A k-step method is stable iff ρ satisfies the root condition: all roots z of ρ(z) = 0

have ∣z∣ ≤ 1 and those with ∣z∣ = 1 have multiplicity 1 (i.e., ρ′(z) ≠ 0).
(4) The region of absolute stability of a k-step method is

RAS = {hλ ∈ C ∣ ρ(z) − hλσ(z) satisfies the root condition}.

Remark Note that this definition of the RAS is different from the one we used earlier:
this one is the closure of the previously defined RAS.

The polynomial ρ(z) has degree k, hence it has k roots. The total number of coefficients
of a k-step linear multistep is 2k + 1 (taking into account the normalization). One of the
roots is 1 required by the consistency criterion. The remaining k − 1 roots must be kept
inside the unit circle in the complex plane. Hence we need to use k−1 degrees of freedom to
meet the root condition and only k+2 degrees of freedom can be used to satisfy consistency
conditions of order p. This explains the first Dahlquist barrier theorem.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 31

For Adams methods, we have ρ(z) = zk−1(z − 1). Hence they are stable according to
Theorem 7. On the other hand, BDF methods do not have to be stable.

For Forward Euler, we have ρ(z) = z − 1 and σ(z) = 1. Hence for its RAS we have:
z − 1 − hλ must satisfy the root condition. The only root of this polynomial is z = 1 + hλ.
The root condition requires ∣z∣ = ∣1 + hλ∣ ≤ 1. Hence hλ must belong to the unit circle
centered at −1 + 0i.

7.6.4. Proof of Theorem 7, parts (1) and (2).

Proof. Let us calculate the local truncation error at step n. We will do Taylor expansion
at tn−k+1 and set α−1 = 1:

τn+1 = α−1y(tn+1) + α0y(tn) + . . . + αk−1y(tn−k+1)
− h (β−1y′(tn+1) + β0y′(tn) + . . . + βk−1y′(tn−k+1))

= α−1 (y + hky +
(hk)2

2
y′′ + . . . + (hk)p

p!
y(p))

+ α0 (y + h(k − 1)y + (h(k − 1))2

2
y′′ + . . . + (h(k − 1))p

p!
y(p)) + . . . + αk−1y

− hβ−1 (y′ + hky′′ +
(hk)2

2
y′′′ + . . . + (hk)p−1

(p − 1)!
y(p))

− hβ0 (y′ + h(k − 1)y′′ + (h(k − 1))2

2
y′′′ + . . . + (h(k − 1))p−1

(p − 1)!
y(p))

=
⎛
⎝

k−1

∑
j=−1

αj
⎞
⎠
y +

⎛
⎝

k−1

∑
j=−1

[(k − 1 − j)αj − βj]
⎞
⎠
hy′ + . . .

+
⎛
⎝

k−1

∑
j=−1

(k − 1 − j)p

p!
αj −

(k − 1 − j)p−1

(p − 1)!
βj

⎞
⎠
hpy(p) +O(hp+1)

=∶ C0y +C1hy
′ + . . . +Cphpy(p) +O(hp+1).

The method is consistent if and only if the first two terms in the last expression vanish,
i.e.

ρ(1) ≡ C0 ≡
k−1

∑
j=−1

αj = 0 and ρ′(1) − σ(1) ≡ C1 ≡
k−1

∑
j=−1

(k − j − 1)αj − βj = 0

The method is consistent of order p iff C0 = C1 = . . . = Cp = 0. The coefficients Cl, 0 ≤ l ≤ p,
are independent of the function y, hence the method is consistent of order p for any ODE
iff it is consistent of order p for y′ = y. Plugging the exact solution yn = ehny0 to y′ = y,
y(0) = y0 into the method we obtain

ρ(eh)yn−k+1 − hσ(eh)yn−k+1 = [C0 +C1h + . . . +Cphp] yn−k+1 +O(hp+1).

32 MARIA CAMERON

The method is consistent of order p iff C0 = C1 = . . . = Cp = 0, i.e., the right-hand side of
the last equation is O(hp+1). Hence its left-hans side must be also O(hp+1), i.e.,

ρ(eh) − hσ(eh) = O(hp+1).
�

To prove parts (3) and (4) we will need some background on the theory of linear difference
equations.

7.6.5. Linear difference equations. We consider a difference equation of the form

(133) un+1 + α0un + . . . + αk−1un−k+1 = 0.

The characteristic equation for (133) is

(134) ρ(z) = zk + α0z
k−1 + . . . + αk−1 = 0.

Theorem 8. The difference equation (133) has k linearly independent solutions, and these
solutions are of the form

(135) un = n(n − 1) . . . (n − l + 1)rn,
where r is a root of (134) of multiplicity m, and l = 0,1, . . . ,m − 1. The general solution
to (133) is a linear combination of these solutions.

To prove this theorem, we need to

● check that (135) is a solution via direct substitution.
● Then use the fact that (134) has k roots counting multiplicities.
● Then form k column vectors where entries of vector j are the values of the jth

linearly independent solution of the form (134) at n = 0,1, . . . , k − 1 and show that
these vectors are linearly independent.

The last step in this proof relies on the well-known fact that the generalized Vandermonde
matrix is nonsingular – see e.g. https://www.jstor.org/stable/2690290?seq=7.

Exercise 16. Check that (135) is a solution to (133).

7.6.6. Companion matrix. It is convenient to rewrite a linear multistep method in a vector
form. We introduce k-component vectors for n ≥ k − 1

(136) Un ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

un−k+1
⋮
un−1
un

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Un+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

un−k+2
⋮
un
un+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
β−1fn+1 + . . . + βk−1fn−k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and a k × k matrix A that is called the companion matrix for the polynomial ρ(z)

(137) A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

⋮ ⋱ ⋱
0 1

−αk−1 −αk−2 . . . −α0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0(k−1)×1 I(k−1)×(k−1)

−αk−1 . . . −α0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

https://www.jstor.org/stable/2690290?seq=7

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 33

Then the linear multistep method

(138) un+1 + α0un + α1un−1 + . . . + αk−1un−k+1 = h (β−1fn+1 + β0fn + . . . + βk−1fn−k+1) ,
can be rewritten as

(139) Un+1 = AUn + hGn.

Exercise 17. Prove that the companion matrix for a polynomial ρ has exactly the same
set of characteristic roots as ρ with the same multiplicities.

Exercise 18. Prove that all powers of the companion matrix A are uniformly bounded,
i.e., ∥Am∥ ≤K for all m ∈ Z where the constant K depends on A but not on the power m,
if ρ satisfies the root condition.

Hint: use the Jordan decomposition of A.

Exercise 19. Check that the solution to (139) is

(140) Un = An−k+1Uk−1 + h
n−k

∑
j=0

AjGn−j−1, where Uk−1 is the vector of initial data.

7.6.7. Proof of Theorem 7, part (3).

Proof. To show that a linear multistep method is stable we need to prove that the numerical
solution is a Lipschitz function with respect to perturbations of the initial conditions and
the right-hand side. This means that we need to prove that if {un} satisfies

(141) un+1 + α0un + . . . + αk−1un−k+1 = h (β−1f(tn+1, un+1) + . . . + βk−1f(tn−k+1, un−k+1)) ,
and {vn} satisfies

(142)

vn+1+α0vn+. . .+αk−1un−k+1 = h [β−1f(tn+1, vn+1) + . . . + βk−1f(tn−k+1, vn−k+1) + δn+1] ,
and

(143) vj = uj + δj , 0 ≤ j ≤ k − 1,

Then

(144) max
0≤n≤T /h

∥un − vn∥ ≤ S max
0≤n≤T /h

∥δn∥, where S is a constant independent of h.

We will conduct the proof for the case where y is a scalar function. The case where y is a
vector function can be proven similarly. In the vector form, difference equations (141) and
(142) are

Un+1 = AUn + hGn(u),(145)

Vn+1 = AVn + h[Gn(v) +Dn],(146)

where Dn = [0, . . . ,0, δn+1]⊺. By Lipschitz continuity of f we have:

(147) ∥Gn(u) −Gn(v)∥ ≤ BL(∥Vn −Un∥ + ∥Vn+1 −Un+1∥),

34 MARIA CAMERON

where B = ∣β−1∣ + ∣β0∣ + . . . + ∣βk−1∣, and L is the maximal Lipschitz constant for f on
[0, T]. Subtracting (145) from (146) and introducing the notation Vn − Un =∶ En and

G̃n = Gn(v) +Dn −Gn(u) we get

(148) En+1 = AEn + hG̃n.
By Lipschitz continuity of f we have:

(149) ∥Gn(v) +Dn −Gn(u)∥ ≤ BL(∥En∥ + ∥En+1∥) + δ, δ = max
n

∣δn∣

The solution to (148) is

(150) En = An−k+1Ek−1 + h
n−k

∑
j=0

AjG̃n−j−1.

Taking norms and using (149) we obtain:

∥En∥ ≤ ∥An−k+1∥∥Ek−1∥ + h
n−k

∑
j=0

∥Aj∥ [BL(∥En−j−1∥ + ∥En−j∥) + δ] .

Since the polynomial ρ satisfies the root condition, the powers of A are uniformly bounded
by some constant K: ∥Am∥ ≤K for all m ∈ N. Therefore,

∥En∥ ≤K∥Ek−1∥ + h
n−k

∑
j=0

K [BL(∥En−j−1∥ + ∥En−j∥) + δ] .

Now we move ∥En∥ from the right-hand side to the left-hand side and get:

∥En∥(1 − hKBL) ≤K∥Ek−1∥ + h
n−k

∑
j=1

K [BL(∥En−j−1∥ + ∥En−j∥) + δ] +BKL∥En−1∥ +KTδ.

Assuming that h is small enough so that hBKL ≤ 1/2 and hence [1 − hKBL]−1 ≤ 2 we
obtain

∥En∥ ≤ 2

⎡⎢⎢⎢⎢⎣
K∥Ek−1∥ + 2h

n−k

∑
j=1

BKL∥En−j−1∥ +KTδ
⎤⎥⎥⎥⎥⎦

≤ [2K∥Ek−1∥ + 2KTδ] + 4BKLh
n−1

∑
j=k−1

∥Ej∥.(151)

In the last equation, we used the fact that hn ≤ T , the maximal time till which we integrate
the solution. Lastly, we will use the discrete Gronwall inequality :

Lemma 1. Let

(152) 0 ≤ xn ≤ a + b
n−1

∑
j=0

xj where a > 0, b > 0.

Then

(153) xn ≤ aebn ∀n ≥ 0.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 35

Proof. Indeed, according to (153),

x̂n = a + b
n−1

∑
j=0

xj ≥ xn.

Then
x̂n+1 − x̂n = bxn ≤ bx̂n.

Hence,
x̂n+1 = x̂n + bxn ≤ (1 + b)x̂n.

Therefore,
x̂n ≤ (1 + b)x̂n−1 ≤ . . . ≤ (1 + b)nx̂0 ≤ a(1 + b)n ≤ aebn.

�

Applying Lemma 1 to (151) we obtain a bound for ∥En∥:
(154) ∥En∥ ≤ [2K∥Ek−1∥ + 2KTδ] e4BKLT .
This shows that the numerical solution is a Lipschitz function with respect to perturbations
of the right-hand side of the ODE (the term δ) and the initial data (the term ∥Ek−1∥). �

7.6.8. Proof of Theorem 7, part (4).

Proof. Applying a linear multistep method to y′ = λy we obtain:

(155) un+1 + α0un + . . . + αk−1un−k+1 − hλ [β−1un+1 + β0un + . . . + βk−1un−k+1] = 0.

Equation (155) is a linear difference equation. To find its solutions, we must write the
characteristic equation and find roots with their multiplicities. All solutions to (155) will
be bounded provided that its characteristic polynomial

(156) P (z) = ρ(z) − hλσ(z)
satisfies the root condition. This completes the proof of part (4). �

7.7. Plotting RAS. The regions of absolute stability for linear multistep methods are
plotted using the boundary locus technique. Since the roots of (156) have absolute value 1
on the boundary of RAS, the boundary of the RAS is a subset of the following set:

(157) ∂RAS ⊂ {hλ ∣ ρ(eiθ) − hλσ(eiθ) = 0, 0 ≤ θ < 2π} .
Thus, to find the RAS, we first plot

{hλ = ρ(e
iθ)

σ(eiθ)
∣ 0 ≤ θ < 2π} .

This set is a closed curve that divides the complex plane into several components. Then it
is sufficient to check one point in each component for being in the RAS or not by verifying
the root condition. J. Strain’s Matlab code ras.m plots the regions of absolute stability
for Adams-Bashforth, Adams-Moulton, and BDF methods of orders from 2 up to 9. The
results are displayed in Fig. 3, 4, and 5 respectively.

36 MARIA CAMERON

-1 -0.8 -0.6 -0.4 -0.2 0
-1

-0.5

0

0.5

1
e-2

-0.6 -0.4 -0.2 0 0.2
-1

-0.5

0

0.5

1
e-3

-0.4 -0.2 0 0.2 0.4
-1

-0.5

0

0.5

1
e-4

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
e-5

0 5 10 15
-15

-10

-5

0

5

10

15
e-6

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1
e-7

-0.6 -0.4 -0.2 0 0.2
-1

-0.5

0

0.5

1
e-8

-500 0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1
e-9

Figure 3. Regions of absolute stability for k-step Adams-Bashforth meth-
ods with 2 ≤ k ≤ 9. The orders of these methods are equal to their number
of steps, i.e. p = k. Note how the RASs shrink as the number of steps
increases.

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 37

-6 -5 -4 -3 -2 -1 0
-4

-2

0

2

4
i-2

-3 -2.5 -2 -1.5 -1 -0.5 0
-2

-1

0

1

2
i-3

-2 -1.5 -1 -0.5 0
-2

-1

0

1

2
i-4

-1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5
i-5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-1.5

-1

-0.5

0

0.5

1

1.5
i-6

-0.4 -0.2 0 0.2 0.4 0.6
-2

-1

0

1

2
i-7

-0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3
i-8

-2 0 2 4 6
-6

-4

-2

0

2

4

6
i-9

Figure 4. Regions of absolute stability for k-step Adams-Moulton methods
with 2 ≤ k ≤ 9. The orders of these methods are one plus their number of
steps, i.e. p = k + 1. The RASs are bounded despite these methods being
implicit but larger than the RASs of Adams-Bashforsth methods with the
same number of steps. As RASs for Adams-Bashforth, the RASs shrink as
the number of steps increases.

38 MARIA CAMERON

0 1 2 3 4
-3

-2

-1

0

1

2

3
b-2

0 2 4 6 8
-4

-2

0

2

4
b-3

0 2 4 6 8 10
-10

-5

0

5

10
b-4

-5 0 5 10 15 20
-15

-10

-5

0

5

10

15
b-5

-10 0 10 20 30
-30

-20

-10

0

10

20

30
b-6

-20 0 20 40 60
-40

-20

0

20

40
b-7

-40 -20 0 20 40 60 80
-60

-40

-20

0

20

40

60
b-8

-100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
b-9

Figure 5. Regions of absolute stability for k-step BDF methods with 2 ≤
k ≤ 9. The orders of these methods are their number of steps i.e. p = k. The
RASs are unbounded. None of these methods is A-stable. BDF methods of
orders 2,3,4,5, and 6. BDF methods become unstable for k ≥ 7.

	1. Introduction
	1.1. Why do we need to study ODE solvers?
	1.2. What will we study?
	1.3. Types of ODE problems
	1.4. Basic theory for IVP
	1.5. Integral equations
	1.6. Textbooks on ODE theory
	1.7. Textbooks on ODE solvers

	2. Construction of ODE solvers
	2.1. Approach 1: Taylor expansion
	2.2. Integral equation approach
	2.3. Polynomial interpolation approach
	2.4. Undetermined coefficients

	3. Consistency, stability, and convergence
	3.1. Standard assumptions about solvers for IVP
	3.2. Classification of methods for IVP
	3.3. Definition of convergence
	3.4. Consistency
	3.5. Stability
	3.6. Convergence of one-step methods

	4. Stiff problems
	5. Linear stability theory
	6. Runge-Kutta methods
	6.1. Facts about RK methods
	6.2. Consistency
	6.3. Stability
	6.4. Linear stability analysis
	6.5. Stiff accuracy or L-stability
	6.6. Stepsize control and dense output

	7. Linear multistep methods
	7.1. Adams and BDF families: setup
	7.2. Lagrangian interpolation
	7.3. The Newton interpolation polynomial
	7.4. Adams methods: derivation
	7.5. BDF methods: derivation
	7.6. Theory for linear multistep methods with constant step and constant order
	7.7. Plotting RAS

