Enhanced sampling with auxiliary models: from coarse-graining to rare events

Grant M. Rotskoff with Shriram Chennakesavalu and David Toomer University of Maryland 2 March 2023 <u>arxiv:2205.01205</u> + <u>GitHub</u>

https://statmech.stanford.edu

State of the art

- LLMs:
 - Data acquisition: entire internet
 - Training costs: ~1m GPU hours
 - Achievement: Seinfeld Forever

State of the art

an image of coarse grain

- LLMs:
 - Data acquisition: entire internet
 - Training costs: ~1m GPU hours
 - Achievement: Seinfeld Forever
- Computer Vision:
 - Data acquisition: 3-5 billion images
 - Training costs: ~150k GPU hours
 - Achievement: See lefthand side

State of the art

an image of coarse grain

- LLMs:
 - Data acquisition: entire internet
 - Training costs: ~1m GPU hours
 - Achievement: Seinfeld Forever
- Computer Vision:
 - Data acquisition: 3-5 billion images
 - Training costs: ~150k GPU hours
 - Achievement: See lefthand side
- AlphaFold:
 - Data acquisition: 50 years of beam time
 - Training costs: ? ("about a week" + finetuning)
 - Achievement: Real scientific progress

Acknowledgements

Shriram Chennakesavalu Graduate Student Machine Learning, Nonequilibrium Control

Grant M. Rotskoff Assistant Professor of Chemistry Nonequilibrium Dynamics, Biophysics, Machine Learning, theory and practice

Andy Mitchell Graduate Student Driven Sampling, Transition States and Committors, Machine Learning

Clay Batton Postdoctoral Researcher Coarse Graining, Nonequilibrium Control

David Toomer Undergraduate Researcher Machine Learning

Emmit Pert Graduate Student

Molecular Dynamics, Importance Sampling

Isaac Applebaum Undergraduate Researcher Machine Learning, CARTs, (joint with Waymouth Group)

Sherry Li Graduate Student Machine Learning, Enhanced Sampling Methods

Opportunities afforded by high-d learning

Opportunities afforded by high-d learning

- High-dimensional committor
- On the fly data acquisition
- *NO* collective variables
- Accurate rates (with bias $\overline{\ensuremath{\varnothing}}$)

Adaptive Importance Sampling $X_i^n \sim e^{-\beta_{\text{sampling}}(U(X_i^n) + \frac{k}{2}(q_{\theta}(X_i^n) - q_i^{\text{target}})^2)}$

2 March. 2023

GMR, Mitchell, Vanden-Eijnden PMLR 145:757-780, 2022. Mitchell, GMR, In preparation.

Opportunities afforded by high-d learning

- High-dimensional committor
- On the fly data acquistion
- NO collective variables
- Accurate rates (with bias $\ensuremath{\mathfrak{S}}$)

Cf. Strahan, John, Justin Finkel, Aaron R. Dinner, and Jonathan Weare. "Forecasting Using Neural Networks and Short-Trajectory Data." arXiv, August 2, 2022. <u>http://arxiv.org/abs/2208.01717</u>.

GMR, Mitchell, Vanden-Eijnden PMLR 145:757-780, 2022. Mitchell, GMR, In preparation.

Embeddings / nonlinear dimensionality reduction / ansatzë

Limitations of coarse-graining in biomolecular systems

Representation

Marrink and Tieleman Chem. Soc. Rev., 2013, 42, 6801-6822

Linear projections Independent of fine-grained state Empirical potential (or delta ML)

2 March. 2023

Limitations of coarse-graining in biomolecular systems

Interpretation

rained state overy lt to map

Stanford University 10

Z ' $x_i \sim p(x|z_i)$ Limitations of coarse-graining in biomolecular systems

No access to fine-grained state Imperfect recovery Dynamics difficult to map

Quality of generalization? Need relevant rare configurations Limited opportunities for feedback

Transferabilit

z

Long list of efforts to address these issues

Representation

- M. Stieffenhofer, M. Wand, and T. Bereau, Mach. Learn.: Sci. Technol. **1**, 045014 (2020).
- A. E. P. Durumeric and G. A. Voth, J. Chem. Phys. 151, 124110 (2019).
- M. Giulini, M. Rigoli, G. Mattiotti, R. Menichetti, T. Tarenzi, R. Fiorentini, and R. Potestio, Front. Mol. Biosci. 8, 676976 (2021).
- G. Sivaraman and N. E. Jackson, J. Chem. Theory Comput. **18**, 1129 (2022).
- E. Pretti and M. S. Shell, J. Chem. Phys. **155**, 094102 (2021).
- J. C. Maier and N. E. Jackson, J. Chem. Phys. **157**, 174102 (2022).
- M. Giulini, R. Menichetti, M. S. Shell, and R. Potestio, J. Chem. Theory Comput. 16, 6795 (2020).
- M. Chakraborty, C. Xu, and A. D. White, The Journal of Chemical Physics **149**, 134106 (2018).

• J. W. Wagner, J. F. Dama, A. E. P. Durumeric, and G.

Interpretation

- A. Voth, The Journal of Chemical Physics **145**, 044108 (2016).
- K. M. Kidder, R. J. Szukalo, and W. G. Noid, Eur. Phys. J. B **94**, 153 (2021).
- K. M. Lebold and W. G. Noid, J. Chem. Phys. **151**, 164113 (2019).
- Z. Zhang, L. Lu, W. G. Noid, V. Krishna, J. Pfaendtner, and G. A. Voth, Biophysical Journal 95, 5073 (2008).
- J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. R. Dinner, and G. A. Voth, J. Chem. Theory Comput. 9, 2466 (2013).
- C. Clementi, Current Opinion in Structural Biology 18, 10 (2008).

Transferability

- M. Stieffenhofer, M. Wand, and T. Bereau, Mach. Learn.: Sci. Technol. **1**, 045014 (2020).
- A. E. P. Durumeric and G. A. Voth, J. Chem. Phys. **151**, 124110 (2019).
- E. Pretti and M. S. Shell, J. Chem. Phys. **155**, 094102 K.
- M. Schöberl, N. Zabaras, and P.-S. Koutsourelakis, J. Chem. Phys. **150**, 024109 (2019).
- T. T. Foley, K. M. Kidder, M. S. Shell, and W. G. Noid, Proc. Natl. Acad. Sci. U.S.A. **117**, 24061 (2020).
- Z. Zhang, L. Lu, W. G. Noid, V. Krishna, J. Pfaendtner, and G. A. Voth, Biophysical Journal 95, 5073 (2008).
- W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. **128**, 244114 (2008).
- H. Kenzaki, N. Koga, N. Hori, R. Kanada, W. Li, K. Okazaki, X.-Q. Yao, and S. Takada, J. Chem. Theory Comput. 7, 1979 (2011).

Long list of efforts to address these issues

Representation

- M. Stieffenhofer, M. Wand, and T. Bereau, Mach. Learn.: Sci. Technol. **1**, 045014 (2020).
- A. E. P. Durumeric and G. A. Voth, J. Chem. Phys. 151, 124110 (2019).
- M. Giulini, M. Rigoli, G. Mattiotti, R. Menichetti, T. Tarenzi, R. Fiorentini, and R. Potestio, Front. Mol. Biosci. 8, 676976 (2021).
- G. Sivaraman and N. E. Jackson, J. Chem. Theory Comput. **18**, 1129 (2022).
- E. Pretti and M. S. Shell, J. Chem. Phys. **155**, 094102 (2021).
- J. C. Maier and N. E. Jackson, J. Chem. Phys. **157**, 174102 (2022).
- M. Giulini, R. Menichetti, M. S. Shell, and R. Potestio, J. Chem. Theory Comput. 16, 6795 (2020).
- M. Chakraborty, C. Xu, and A. D. White, The Journal of Chemical Physics **149**, 134106 (2018).

W. Wagner, J. F. Dama, A. E. P. Durumeric, an

Interpretation

- J. W. Wagner, J. F. Dama, A. E. P. Durumeric, and G. A. Voth, The Journal of Chemical Physics 145, 044108 (2016).
- K. M. Kidder, R. J. Szukalo, and W. G. Noid, Eur. Phys. J. B **94**, 153 (2021).
- K. M. Lebold and W. G. Noid, J. Chem. Phys. **151**, 164113 (2019).
- Z. Zhang, L. Lu, W. G. Noid, V. Krishna, J. Pfaendtner, and G. A. Voth, Biophysical Journal 95, 5073 (2008).
- J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. R. Dinner, and G. A. Voth, J. Chem. Theory Comput. 9, 2466 (2013).
- C. Clementi, Current Opinion in Structural Biology 18, 10 (2008).

Transferability

- M. Stieffenhofer, M. Wand, and T. Bereau, Mach. Learn.: Sci. Technol. **1**, 045014 (2020).
- A. E. P. Durumeric and G. A. Voth, J. Chem. Phys. **151**, 124110 (2019).
- E. Pretti and M. S. Shell, J. Chem. Phys. **155**, 094102 K.
- M. Schöberl, N. Zabaras, and P.-S. Koutsourelakis, J. Chem. Phys. **150**, 024109 (2019).
- T. T. Foley, K. M. Kidder, M. S. Shell, and W. G. Noid, Proc. Natl. Acad. Sci. U.S.A. **117**, 24061 (2020).
- Z. Zhang, L. Lu, W. G. Noid, V. Krishna, J. Pfaendtner, and G. A. Voth, Biophysical Journal 95, 5073 (2008).
- W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. **128**, 244114 (2008).
- H. Kenzaki, N. Koga, N. Hori, R. Kanada, W. Li, K. Okazaki, X.-Q. Yao, and S. Takada, J. Chem. Theory Comput. 7, 1979 (2011).

Few integrated strategies... few statistical guarantees

Specific models not important for framework... pick your poison

Learning \mathcal{M} --- physical inductive bias

Translation invariance

$$m_{ij} = f_{e}(\|\boldsymbol{x}_{j} - \boldsymbol{x}_{i}\|) \cdot \phi(\|\boldsymbol{x}_{j} - \boldsymbol{x}_{i}\|)$$

Permutation invariance

$$|\boldsymbol{u}_i| = f_g(\sum_j m_{ij})$$

Rotation equivariance

$$rac{oldsymbol{u}_i}{|oldsymbol{u}_i|} = \sum_j R\left[f_ heta(\|oldsymbol{x}_j - oldsymbol{x}_i\|)
ight] rac{oldsymbol{x}_j - oldsymbol{x}_i}{\|oldsymbol{x}_j - oldsymbol{x}_i\|}$$

Learning \mathcal{M} ----

Learning \mathcal{M} --- building embeddings

Interpreting \mathcal{M} --- necessary sacrifices

Interpretability of the CG representation

Flexible, learned embeddings (potentially nonlinear)

• Noid & Voth (CG-space criterion) :

$$\hat{F}(z) \equiv -\beta^{-1} \log Z^{-1} \int_{\Omega} e^{-\beta U(x)} \delta(\Theta(x) - z) dx \leftrightarrow \hat{U}(z).$$
Potential of mean force
Coarse-grained potential

if for every observable $f \in \mathcal{F}$,

$$\int f(\boldsymbol{x}) p_{\text{inv}}(\boldsymbol{x}|\boldsymbol{z}) \hat{\rho}(\boldsymbol{z},\boldsymbol{\theta}) \, d\boldsymbol{x} d\boldsymbol{z} \longrightarrow \int f(\boldsymbol{x}) \rho(\boldsymbol{x}) \, d\boldsymbol{x}$$

Inverted CG samples

Boltzmann

 \mathcal{F} – weak thermodynamic consistency

Learning p_{inv} --- rigorously sampling FG space

 $T \sharp \varrho(\boldsymbol{x}) = \varrho(T^{-1}(\boldsymbol{x})) |\nabla T^{-1}(\boldsymbol{x})|$

Rigorously inverting the CG sampling

Rational quadratic neural spline flow

Compute
$$\phi^{\text{seed}}$$
 from $\tilde{x}_i = \Theta^{\text{dec}}(z_i)$
Sample $\phi_{b_i} \sim \varrho$
for $j = 0...m$ do
Compute $\theta_i^j = \text{FCN}(\phi_i^{0:j-1}, \phi^{\text{seed}})$
Compute $\phi_i^j = g_{\theta_i^j}(\phi_{b_i}^j)$

end for

Reconstruct x_i from \tilde{x}_i and ϕ_i

$T \sharp \varrho(\boldsymbol{x}) = \varrho(T^{-1}(\boldsymbol{x})) |\nabla T^{-1}(\boldsymbol{x})|$

Compulsory example: alanine dipeptide

Error in basins is low, mixing is fast, expectations \bigcirc

Folding of chignolin

ECN

Large- and small-scale observables well-captured

Stanford University 28

2) $x_i \sim p(x|z_i)$ Challenges in coarse-graining biomolecular systems

Quality of generalization? Need relevant rare configurations Limited opportunities for feedback

Thanks!

Google Research

Shriram Chennakesavalu Graduate Student

Grant M. Rotskoff Assistant Professor of Chemistry Andy Mitchell

Graduate Student

Clay Batton Postdoctoral Researcher

David Toomer Undergraduate Researcher

Emmit Pert Graduate Student

Isaac Applebaum Undergraduate Researcher Sherry Li Graduate Student

2 March. 2023