Towards efficient deep operator learning for forward and inverse PDEs

Ke Chen Mathematics University of Maryland

February 21, Scientific Machine Learning: Theory and Algorithm, Brin Mathematics Research Center

Introduction to inverse problems

$$\mathcal{L}_a u = 0$$
$$\mathcal{B}u = g$$

a is the parameter of interest g is the boundary condition u is the PDE solution

Forward Problem

given PDE parameters and boundary condition, find the PDE solution u

Inverse Problem

given multiple measurements of solution u, find PDE parameter a

Solving inverse problems

Physical Model

$$\mathcal{L}_a u = 0$$
$$\mathcal{B}u = g$$

Data Collection

choose experiment setup g_i obtain measurement data $h_i = \mathcal{M}u_i$ repeat for g_{i+1}

Reconstruction

given dataset $(g_i, h_i)_{i=1}^n$ find the parameter function a

Applications

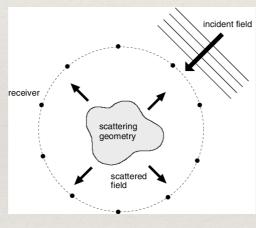
Optical Tomography (photon transport)

Y. Hoshi, Progress in Brain Research, 2016

 $\begin{cases} v \cdot \nabla_x f(x, v) = \sigma_s(x) \mathcal{L}[f](x, v) - \sigma_a(x) f(x, v) \\ f|_{\Gamma_-} = \phi(x, v) \end{cases}$

photon intensity -> attenuation and scattering

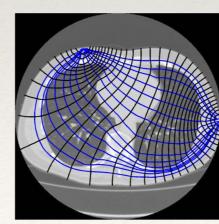
Full wave inversion



$$(-\Delta - \frac{\omega^2}{c(x)^2})u = 0$$

far field wave -> wave speed function

Electric Impedance Tomography: Calderón problem

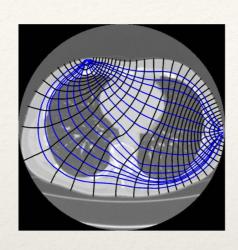


$$-\nabla \cdot (a(x)\nabla u(x)) = 0$$

electric current -> conductivity function

Challenges

EIT: Calderón problem



$$-\nabla \cdot (a(x)\nabla u(x)) = 0$$

$$u|_{\partial\Omega} = g$$

$$\Lambda_a : g \mapsto h := a\frac{\partial u}{\partial n}|_{\partial\Omega}$$

Uniqueness: Sylvester and Uhlmann, 1987, Haberman and Tataru 2011 Stability: logarithmic estimate Alessandrini, 1988

$$||a_1 - a_2|| \le \frac{C}{|\log ||\Lambda_{a_1} - \Lambda_{a_2}||^{\sigma}} + ||\Lambda_{a_1} - \Lambda_{a_2}||$$

Challenges

Most inverse problems are nonlinear and ill-posed.

A large number of data is needed to obtain uniqueness. prior information is needed to tackle the ill-posedness and noises.

Solving inverse problems

Given experimental measurement data:

$$S_a = \{(g_i, h_i), \ i = 1, \dots, n \mid h_i = \Lambda_a g_i + \text{noise}\}$$
 setup of the i-th experiment PDE model

measurements of the i-th experiment

• Optimization method
$$\min \frac{1}{n} \sum_{i} \|\Lambda_a g_i - h_i\|^2 + R(a)$$
 solve PDE 2n times and an analysis of the Tail experiment. Solve PDE 2n times and solve PDE 2n

a large number N of iteration is needed due to ill-posedness each iteration requires a large number n of PDE solves for unique reconstruction each PDE solve requires re-assembling due to updating PDE parameters

Solving inverse problems

Given experimental measurement data:

$$S_a = \{(g_i, h_i), \ i=1,\ldots,n \mid h_i = \Lambda_a g_i + \text{noise}\}$$
 setup of the i-th experiment PDE model

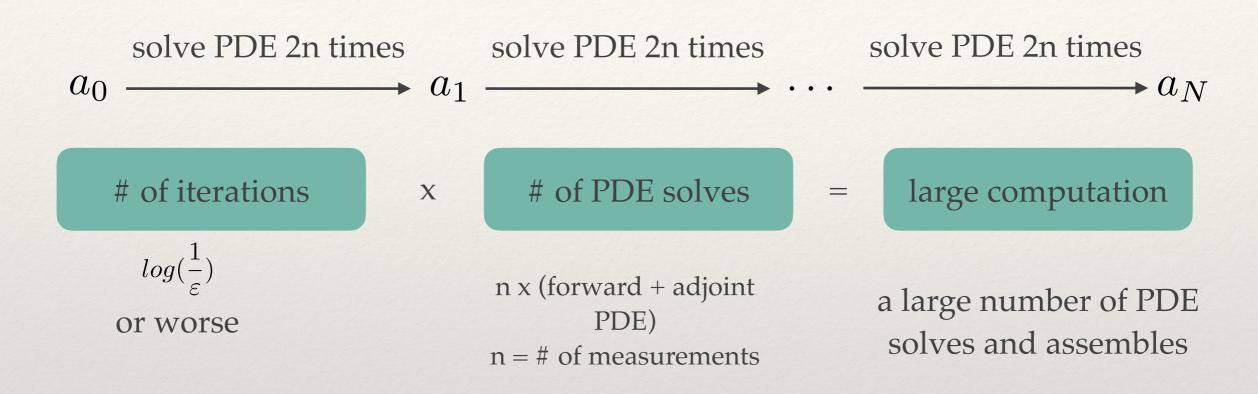
measurements of the i-th experiment

• Bayesian method
$$\pi(a \mid S_a) \sim \pi_{\mathrm{prior}}(a)\pi(S_a \mid a)$$

MCMC sampling MCMC sampling MCMC sampling MCMC sampling $a_0 \xrightarrow{} a_1 \xrightarrow{} \dots \xrightarrow{} a_N$

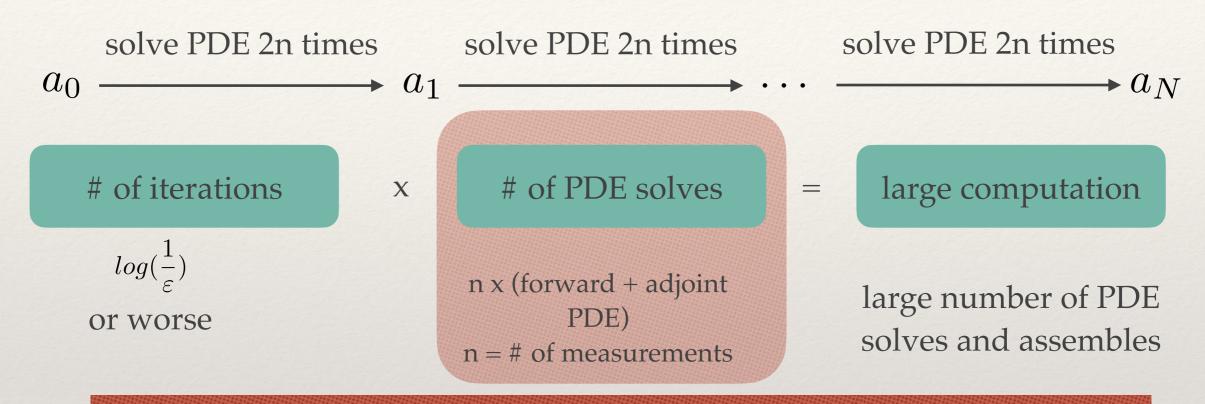
N is around 250 in practice to obtain posterior samples each MCMC sampling = 2n PDE solves each iteration requires a large number n of PDE solves for unique reconstruction each PDE solve requires re-assembling due to updating PDE parameters

Operator learning



Construction of PDE solvers and solving PDEs are expensive. A fast parametric PDE solver is needed.

Learning the forward PDE

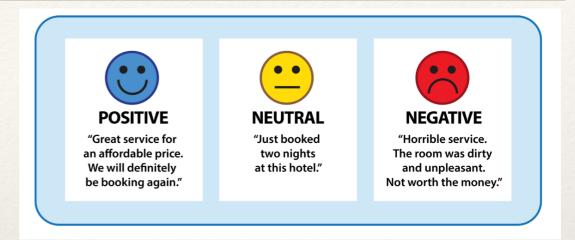


neural network surrogate for the forward PDE operator

- A neural network is used to learn the "forward PDE operator"
- the forward operator maps (PDE parameter, experiment setup) to measurement
- the NN will be evaluated many times to obtain the target parameter function

Learning the forward PDE operator

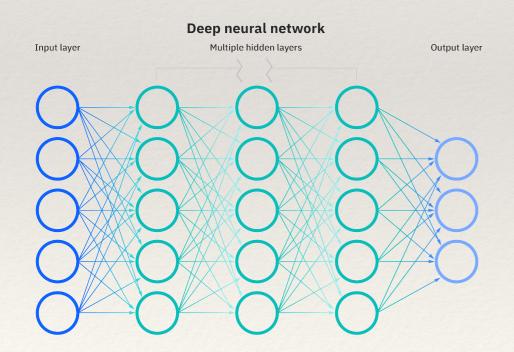
Deep learning



Classification: Chihuahua or muffin

Large Language model: ChatGPT

Natural Language Processing: Sentiment Analysis



- a flexible representation for nonlinear functions
- automatic feature finder
- hardware support: CUDA, GPUs
- efficient training: SGD, ADAM,...

Learning a function

Goal:

Given a randomly generated data set $\{x_i, y_i = f(x_i)\}_{i=1}^n$ for an unknown function f

Find a DNN $h(x;\theta)$ that best fits f

x_1 x_2 x_3 x_4 x_4 x_4 x_4 x_5 x_6 x_7 x_7

Methods: training stage

Train a neural network via an optimization problem

$$\theta^* = arg \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} ||h(x_i; \theta) - y_i||^2$$

Validation: testing stage

Test the trained neural network $h(\cdot; \theta^*)$ on an unseen randomly generated data set

Discretization: encoder and decoder

We need encoder and decoder to discretize the PDE operator

$$\Phi: \mathcal{X} \to \mathcal{Y}$$

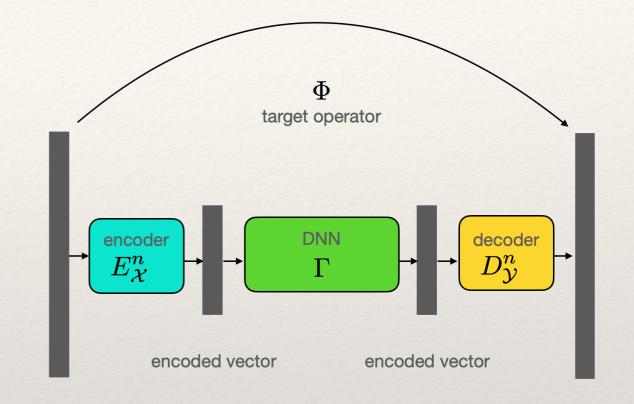
Typical encoder-decoder method:

- PCA (SVD)
- truncated Fourier basis
- data-driven encoder-decoder

•

$$E_{\mathcal{X}}: \mathcal{X} \to \mathbb{R}^{d_{\mathcal{X}}} \qquad D_{\mathcal{X}}: \mathbb{R}^{d_{\mathcal{X}}} \to \mathcal{X}$$

$$E_{\mathcal{Y}}: \mathcal{Y} \to \mathbb{R}^{d_{\mathcal{Y}}} \qquad D_{\mathcal{Y}}: \mathbb{R}^{d_{\mathcal{Y}}} \to \mathcal{Y}$$



input function u

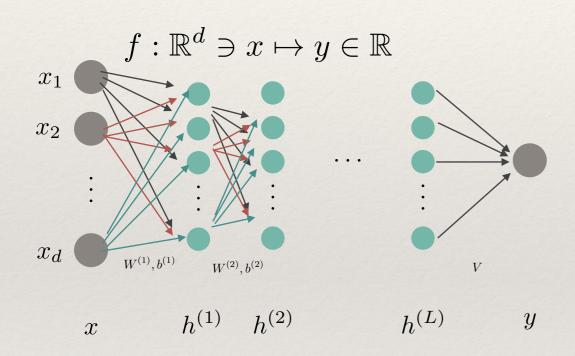
output function v

Training a PDE operator:

$$\Gamma_{\text{NN}} \in \underset{\Gamma \in \mathcal{F}_{NN}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \|\Gamma \circ E_{\mathcal{X}}^{n}(u_{i}) - E_{\mathcal{Y}}^{n}(v_{i})\|_{2}^{2}$$

Challenges: Curse of Dimensionality

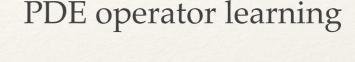
function learning



Learning error is at the order

$$\mathcal{O}(n^{-\frac{1}{d}})$$

n is the number of training data d is the input dimension



infinite dimension d implies infinitely large NN sizes!

d is the number of discretization points, not the domain dimension of PDEs

Main results: learning a Lipschitz operator

Theorem (informal version)

Consider a Lipschitz operator $\Phi: \mathcal{X} \to \mathcal{Y}$ with pre-trained encoders and decoders, there exists a neural network Γ_{NN} such that

the number of neurons is bounded by $\mathcal{O}\left(d_{\mathcal{Y}}^{\frac{4-d_{\mathcal{X}}}{4+2d_{\mathcal{X}}}}n^{\frac{d_{\mathcal{X}}}{4+2d_{\mathcal{X}}}}\right)$ and the generalization error $\mathbb{E}_{S}\mathbb{E}_{u}\|D_{\mathcal{Y}}\circ\Gamma_{\mathrm{NN}}\circ E_{\mathcal{Y}}(u)-\Phi(u)\|^{2}$ is bounded by

$$\mathcal{O}\left(n^{-\frac{2}{2+d_{\mathcal{X}}}}\log n\right) + \mathcal{O}(n^{-1}) + \text{encoding errors}$$

CoD: large number of training data is required for a large input dimension

Main results: learning a Lipschitz operator

Theorem (informal version)

Consider a Lipschitz operator $\Phi: \mathcal{X} \to \mathcal{Y}$ with pre-trained encoders and decoders, if the operator is either of low dimension or low complexity then there exists a neural network $\Gamma_{\rm NN}$ such that

the number of neurons is bounded by
$$\mathcal{O}\left(d_{\mathcal{Y}}^{\frac{4-d_0}{4+2d_0}}n^{\frac{d_0}{4+2d_0}}\right)$$

and the generalization error $\mathbb{E}_S \mathbb{E}_u \| D_{\mathcal{Y}} \circ \Gamma_{NN} \circ E_{\mathcal{Y}}(u) - \Phi(u) \|^2$ is bounded by

$$\mathcal{O}\left(n^{-\frac{2}{2+d_0}}\log n\right) + \mathcal{O}(n^{-1}) + \text{encoding errors}$$

The CoD caused by the input dimension is removed

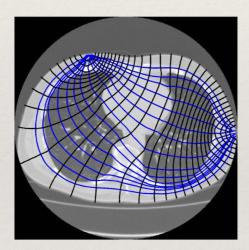
 $d_0 \ll d_{\mathcal{X}}$ depends on the structure of PDE

Low dimension structure

An operator is of low dimension d_0 if its domain is a d_0 dimensional manifold.

Examples: Electric impedance tomography

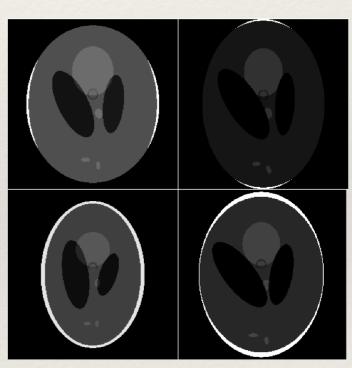
Conductivity functions of elliptic equation:



$$\begin{cases} -\mathrm{div}(a(x)\nabla_x u(x)) = 0 \,, & \text{in } \Omega \subset \mathbb{R}^2, \\ u = f \,, & \text{on } \partial \Omega. \end{cases}$$

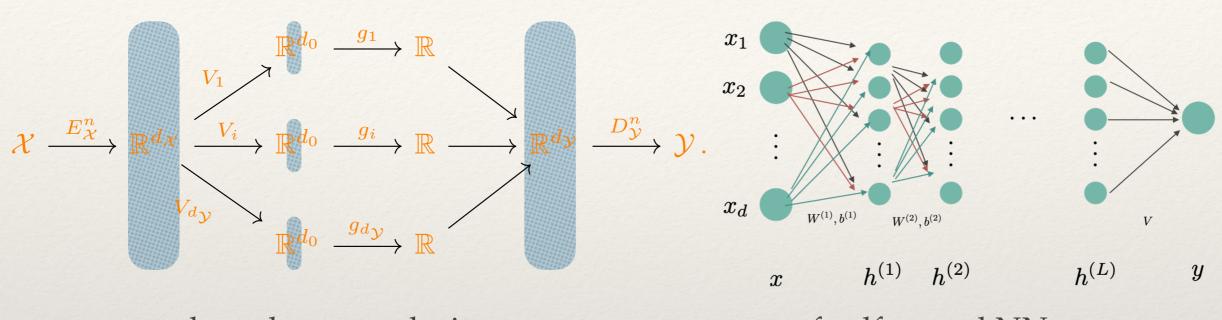
$$\Phi: a \mapsto u$$

Shepp-Logan Phantoms



- The phantoms consist of ellipses of different shapes, angles, and locations.
- Each ellipse is parametrized by five numbers.

Low complexity structure

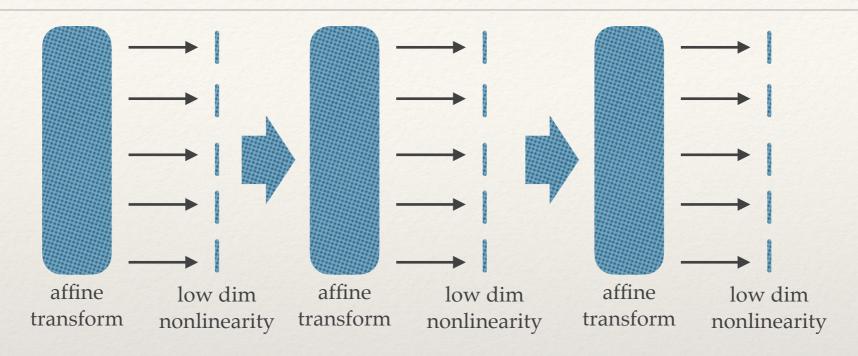


one-layer low complexity operator

feedforward NN

- Low complexity structure means compositions of affine transform and low dimensional nonlinear functions.
- FNN can be considered a low-complexity operator with $d_0 = 1$

Low complexity structure



Examples: Burgers equation

$$u_t + uu_x = \kappa u_{xx}$$
 Cole-Hopf transformation
$$u(x,0) = u_0(x)$$

$$v_t = \kappa v_{xx}$$

$$v(x,0) = v_0(x)$$

The solution operator $\Phi: u_0 \mapsto u(\cdot, T)$ has is of low complexity with $d_0 = 2$

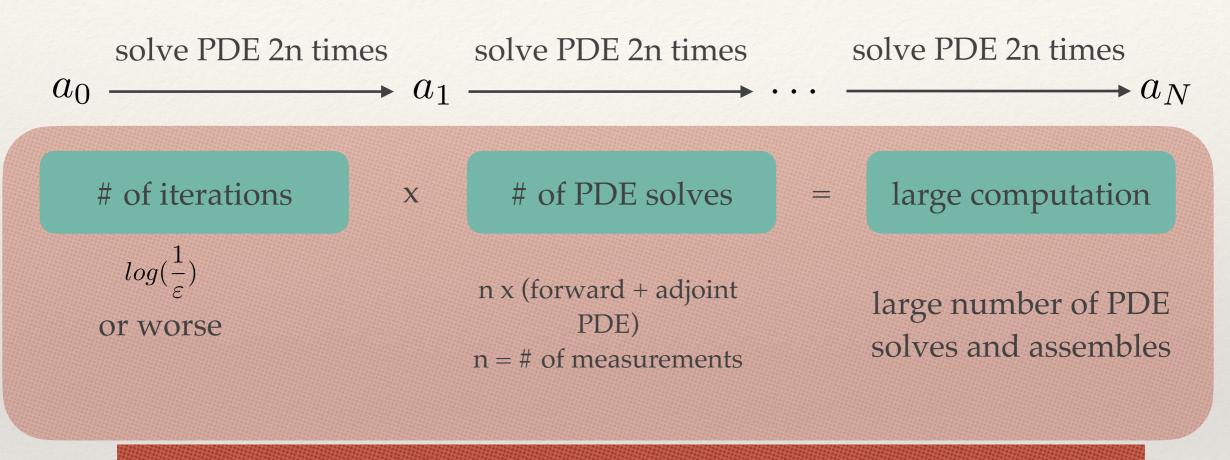
$$v_0 = \exp\left(-\frac{1}{2\kappa} \int_0^x u_0(s)ds\right) \qquad v = \mathcal{K}(\cdot, T) * v_0 \qquad u(x, T) = -2\kappa \frac{v_x(x, T)}{v(x, T)}$$

one dim nonlinearity

no nonlinearity two dim nonlinearity

Learning the inverse PDE operator

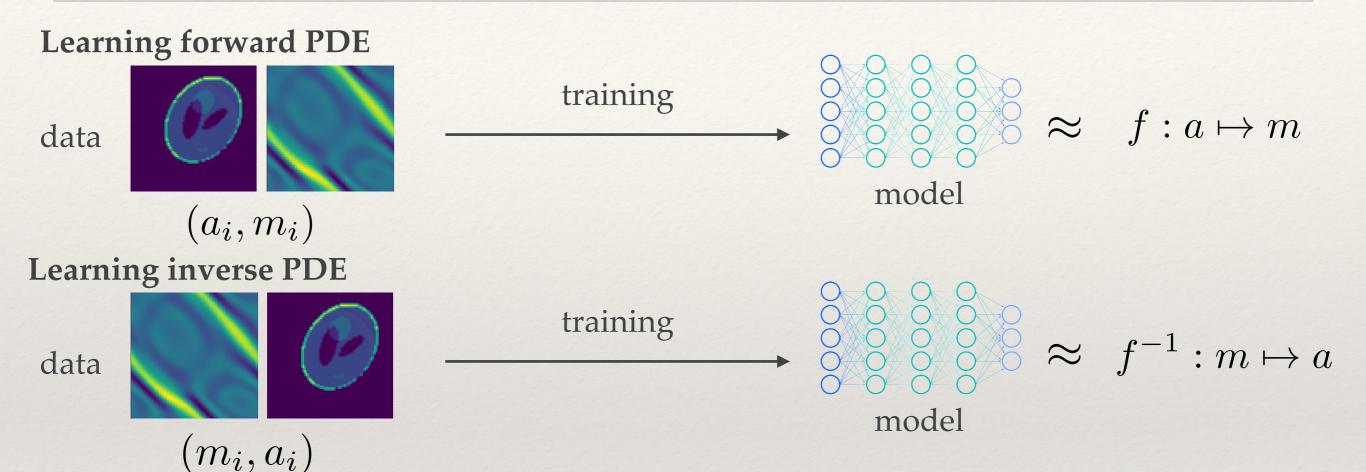
Learning the inverse PDE



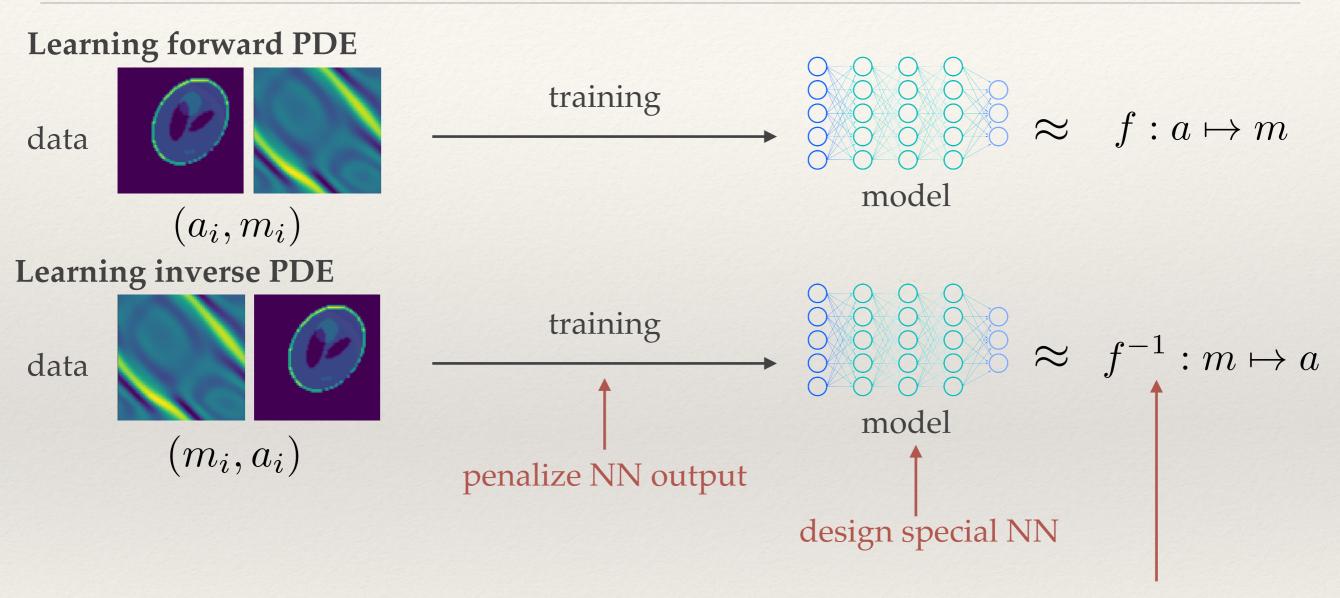
neural network surrogate of the inverse PDE operator

- A neural network is used to learn the "inverse operator"
- the inverse operator maps all measurement data to the target parameter
- the NN will be evaluated only once to obtain a reconstructed image

Learning forward and inverse operators

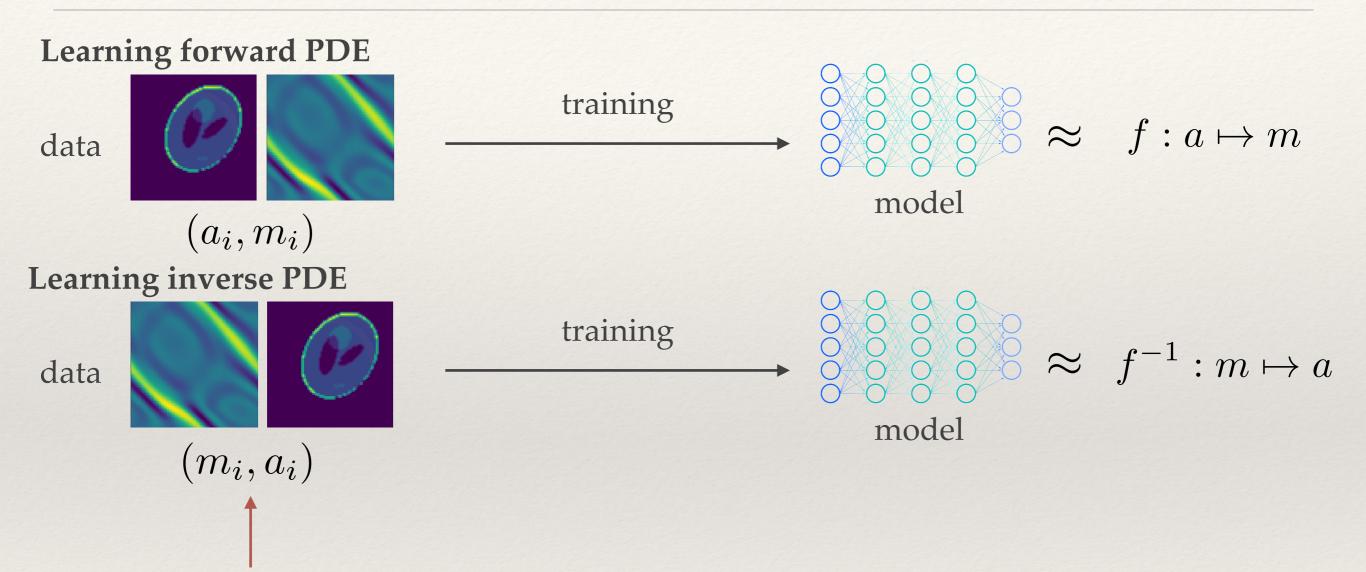


How to regularize the inverse problem



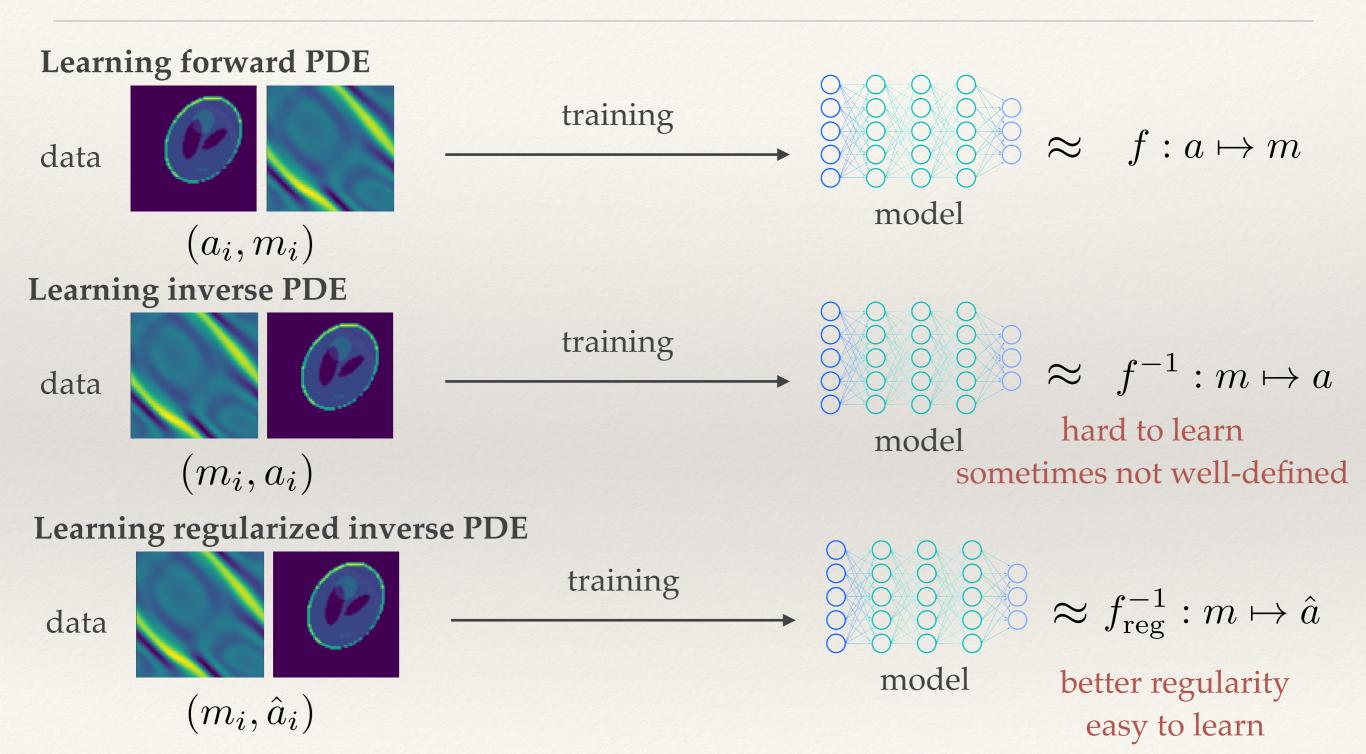
hard to learn by NN due to ill-posedness

Training on regularized data



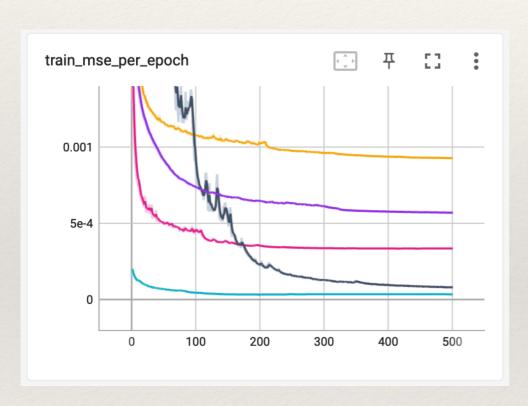
Regularize the training data

Data-Regularized Operator Learning



Learning with regularized data

Lasso as an example $\hat{x}=\arg\min\frac{1}{2}\|Ax-b\|^2+\lambda\|x\|_1$. target operator $f_{\mathrm{reg}}^{-1}:b\mapsto\hat{x}$



val_mse

0.0015

0.001

5e-4

0

1 13 8

training error

testing error

Black curve: learning on raw data

other curves: learning on various regularized data

learning on regularized data -> better generalization

Tikhonov regularization

Tikhonov Regularization

$$\hat{a} = \arg\min \|f(a) - m\|^2 + \lambda \mathcal{R}(a).$$

Example: LASSO
$$\hat{x} = \arg\min\frac{1}{2}\|Ax - b\|^2 + \lambda \|x\|_1 \,.$$

Theorem. If the LASSO problem satisfies the non-degeneracy condition for all \hat{x} , then the regularized inverse $f_{\text{reg}}^{-1}: b \mapsto \hat{x}$ is Lipschitz with the following Lipschitz constant

$$L \le \frac{\operatorname{Cond}(A)}{\sigma_{\min}(A)} + \frac{1}{\sigma_{\min}^2(A)}$$
.

Non-degeneracy condition: the LASSO problem is non-degenerate at \hat{x} if

1.
$$A_I$$
 has full column rank, $I = \text{supp}(\hat{x})$

2.
$$||A_{I^C}^{\top}(b - A_I \hat{x}_I)||_{\infty} < \lambda$$

Bayesian Inversion

Bayesian Regularization

$$q(a \mid m) = \frac{1}{C} p_0(a) \exp\left(-\frac{\|m - f(a)\|_{\Gamma_{\varepsilon}}^2}{2}\right),$$

Example: empirical mean estimate $\hat{a} := \mathbb{E}_{q(a \mid m)}[a]$

Maximum a posterior estimate $\hat{a} := \arg \max_{a} q(a \mid m)$

Theorem. Consider the regularized inverse $f_{\text{reg}}^{-1}: m \mapsto \hat{a}$, where \hat{a} is the empirical mean, if

- 1. the measurement noises ε are independently sampled from Gaussian $\mathcal{N}(0,\Gamma_{\varepsilon})$
- 2. the posterior q(a|m) has a bounded second moment for all measurements
- 3. the forward map f is distinguishable, $\sup_{a} \left| J_f^{-1}(a) \right| \leq C_f$

Then the regularized inverse is Lipschitz with Lipschitz constant

$$L \le C_{\varepsilon} B^{1/2} C_f^{1/2}$$

Contributions & Summary

- In the forward problem setting, we theoretically explained why the low complexity and low dimension structure of PDE operators do not suffer from CoD.
- Instead of adding regularization in the training stage, we propose to train NN on a regularized data set for inverse problems
- We show that the regularized inverse map is Lipschitz for the LASSO regularization and Bayesian regularization (empirical mean estimate).

Thank you!

Questions