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Introduction to inverse problems

e =0 a is the parameter of interest
gl = 2l i
g is the boundary condition
u is the PDE solution

given multiple measurements of solution u,
find PDE parameter a

B = q
given PDE parameters and boundary condition,
find the PDE solution u




Solving inverse problems




Optical Tomography
(photon transport)

Full wave inversion

Electric Impedance
Tomography:
Calderén problem

Applications

Y. Hoshi, Progress in Brain Research, 2016

incident field

s fo(a:, U) = O‘S(CC)/:,[f](ZE,?}) = O‘a(ﬂf)f(ﬂf, U)
f|F_ = gb(az,v)

photon intensity -> attenuation and scattering

(-a-

far field wave -> wave speed function

—V - (a(x)Vu(x)) =0

electric current -> conductivity function



Challenges

EIT:
Calderén
problem

Uniqueness: Sylvester and Uhlmann, 1987, Haberman and Tataru 2011
Stability: logarithmic estimate Alessandrini, 1988

C

5 HAal —Aa2H
log [[Ag, — Ag,|l]

la1 — azf| <

 Challenges
Most inverse problems are nonlinear and ill-posed.

A large number of data is needed to obtain uniqueness.
prior information is needed to tackle the ill-posedness and noises.
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Solving inverse problems

Given experimental measurement data:

S {(gi,hi), =L ‘ h, — N, q —|—noise}

* l

setup of the i-th ekperiment BE o)

v
measurements of the i-th experiment

. o . 2 1
e Optimization method min ﬁ Z ||Aa,gz' — hz HQ - R(CL)
1

solve PDE 2n times solve PDE 2n times solve PDE 2n times
ol > a1 > > QN

a large number N of iteration is needed due to ill-posedness
each iteration requires a large number n of PDE solves for unique reconstruction
each PDE solve requires re-assembling due to updating PDE parameters



Solving inverse problems

Given experimental measurement data:

S {(gi,hi), =L ‘ h, — N, q —|—noise}

* l

setup of the i-th ekperiment BE o)

v
measurements of the i-th experiment

* Bayesian method 7T(CL ‘ Sa) B/ Wprior(a)ﬂ'(Sa | CL)

MCMC sampling MCMC sampling MCMC sampling
ao > a’l X G » N

N is around 250 in practice to obtain posterior samples
each MCMC sampling = 2n PDE solves
each iteration requires a large number n of PDE solves for unique reconstruction

each PDE solve requires re-assembling due to updating PDE parameters
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Operator learning

solve PDE 2n times solve PDE 2n times solve PDE 2n times
ao » (1 > .- » AN

1

lOQ(g

) n x (forward + adjoint

Or worse PDE)
n = # of measurements

a large number of PDE
solves and assembles

Construction of PDE solvers and solving PDEs are expensive.
A fast parametric PDE solver is needed.



Learning the forward PDE

solve PDE 2n times solve PDE 2n times solve PDE 2n times
ao » (1 > .- » AN

1
&
Oor worse

)

log(

large number of PDE
solves and assembles

neural network surrogate for the forward PDE operator

A neural network is used to learn the “forward PDE operator”
* the forward operator maps (PDE parameter, experiment setup) to measurement
* the NN will be evaluated many times to obtain the target parameter function



Learning the forward PDE operator



Deep learning

e © O

POSITIVE NEUTRAL NEGATIVE

“Great service for “Just booked “Horrible service.

an affordable price. two nights The room was dirty

We will definitely at this hotel.” and unpleasant.

be booking again.” Not worth the money.”

L J

Classification: Large Language model: = Natural Language Processing:
Chihuahua or muffin ~ ChatGPT Sentiment Analysis

Deep neural network
Input layer Multiple hidden layers Output layer

* a flexible representation for nonlinear

O functions
&,

e automatic feature finder
 hardware support: CUDA, GPUs
* efficient training: SGD, ADAM,, ...
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Learning a function

Goal:
Given a randomly generated data set {%;,y; = f(%:)}i—
for an unknown function f

1

T2

Find a DNN h(z;6) that best fits f

Tq

Methods: training stage
Train a neural network via an optimization problem

B(L) Yy

1 n
9*: in — h Z@ = 7;2
argmemn;_lﬁﬂ e =

Validation: testing stage
Test the trained neural network h(-;6%) on an unseen randomly generated data set
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Discretization: encoder and decoder

We need encoder and decoder to
discretize the PDE operator

X -

Typical encoder-decoder method:
PCA (SVD)

e truncated Fourier basis

e data-driven encoder-decoder

By R D, RYe s v

Ey:Y >R Dy :R% -y

d
target operator
decoder
—> — n
Dy

encoded vector encoded vector
input function output function
U ()
Training a PDE operator:

1 mn
I'ny € argmin— Eo B (u,) — B2 (v; 2
I‘E}"NNTL;H x (i) y(vi)ll2
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Challenges: Curse of Dimensionality

function learning

fRiog s yecR

- o o
d w® 174

w® p1

o L) ,(2) (L) Yy

Learning error is at the order »
=&
Oln 7 )

n is the number of training data

d is the input dimension .

PDE operator learning

®:L%(Q) > f—ue H(Q)

‘\> ‘ e
@ ®

w® p

.{v ‘ o

f@a) m‘

i pL) 2 B (L)

U
infinite dimension d implies infinitely large

NN sizes!

d is the number of discretization points, not
the domain dimension of PDEs



Main results: learning a Lipschitz operator

Theorem (informal version)

Consider a Lipschitz operator ® : X — )Y with pre-trained encoders and
decoders, there exists a neural network I'nn such that

4—d

ASdy e
the number of neurons is bounded by O (d;ﬂd?‘ n T Fedx )

and the generalization error EgE, | Dy o I'ny 0 By (u) — ®(u)]?

is bounded by
O (n_ Tz log n) + O(n~ 1) + encoding errors

CoD: large number of training data is required for a large input dimension

T C, C. Wang, H. Yang, TMLR 2022



Main results: learning a Lipschitz operator

Theorem (informal version)

Consider a Lipschitz operator ® : X — )Y with pre-trained encoders and
decoders, if the operator is either of low dimension or low complexity

then there exists a neural network I'ny such that
4—d0 ~

the number of neurons is bounded by O (d;“do n TG )

and the generalization error EgE,||Dy o 'y 0 Ey(u) — ®(u)||?

is bounded by

O (n_ﬁ log n) + O(n~ 1) + encoding errors

The CoD caused by the input dimension is removed

do < dy depends on the structure of PDE

T C, C. Wang, H. Yang, TMLR 2022



| .ow dimension structure

An operator is of low dimension dp if its domain is a dyp dimensional manifold.

Examples: Electric impedance tomography Shepp-Logan Phantoms

Conductivity functions of elliptic equation:

» The phantoms consist of ellipses of different shapes, angles, and locations.
* Each ellipse is parametrized by five numbers.
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Low complexity structure

L1

o i) ‘ ‘
o .7.
d w® p® w®, p@ v

one-layer low complexity operator feedforward NN

* Low complexity structure means compositions of atfine transform and low
dimensional nonlinear functions.
* FNN can be considered a low-complexity operator with dp = 1
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Low complexity structure

D —

Ly —_—

L] il

— —_—

— — —

affine low dim affine low dim affine low dim
transform  nonlinearity transform  nonlinearity ~ transform  nonlinearity

—_—

Examples: Burgers equation

U = vt = A

Cole-Hopf transformation W=
u(x,0) = ug(x) a= ln/ (z,0) = vo(x)

The solution operator ® : ug — u(-,7T") has is of low complexity with dy = 2
T o i W, k)
Vg = exp (—2—/ uo(S)ds> e Sl it )
~Jo
one dim nonlinearity no nonlinearity two dim nonlinearity
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Learning the inverse PDE operator



Learning the immverse PDE

solve PDE 2n times solve PDE 2n times solve PDE 2n times
ao » (1 > .- » AN

neural network surrogate of the inverse PDE operator

* A neural network is used to learn the “inverse operator”
* the inverse operator maps all measurement data to the target parameter
* the NN will be evaluated only once to obtain a reconstructed image

21



Learning forward and inverse operators

Learning forward PDE

79 ‘ training
data [ >

(a'i 9 mz)
Learning inverse PDE

(M, a;)

4 QU000
S QOO0

D

training

5 Q0000
S QOO00

)
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How to regularize the inverse problem

Learning forward PDE

O ‘ training
data [ >

(a'i 9 mz)
Learning inverse PDE

(M, a;)

¢

f:a—m

5 Q0000
S QOO0

)

training

T

penalize NN output

= O

» 2. QOOO0
X
L)

)

design special NN

hard to learn by NN due to ill-posedness
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T'raining on regularized data

Learning forward PDE

training

data :llh s

(a'i 9 mz)
Learning inverse PDE

training

4 QU000
S QOO0

D

(M, a;)

T

Regularize the training data
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Data-Regularized Operator Learning

Learning forward PDE

4 QU000
S QOO0

D

training
data
(a'i 9 mz)
Learning inverse PDE
training
data
(mi 9 ai)
Learning regularized inverse PDE
training

5 Q0000
S QOO00

)

data
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= Q0000

=~

00

hard to learn
sometimes not well-defined

o X
s e

better regularity
easy to learn



Learning with regularized data

1
Lasso as an example Z = arg min —||Ax —pllE el

target operator f..:b i

i rA -4
train_mse_per_epoch I 13 val_mse n :

0.0015 \'\)\{-\\

0.001

\\N~§-5_¥ ‘;\A\--__‘ 5e-4

0

N

0 100 200 300 400 500

training error testing error

Black curve: learning on raw data
other curves: learning on various regularized data
learning on regularized data -> better generalization
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T'ikhonov regularization

Tikhonov Regularization

6 = argmin || f(a) — m|]* + AR (a) .

Example: LASSO e arg min 5“1433 = bH2 e )\HZZ?Hl .

Theorem. If the LASSO problem satisfies the non-degeneracy condition for all £,
then the regularized inverse fres : b — & is Lipschitz with the following Lipschitz
constant
P Cond(A) 1
St | 9 .
O min (A) o (A)

min

Non-degeneracy condition: the LASSO problem is non-degenerate at & if
1. Ar has full column rank, I = supp(Z)
e — difles =

- C, C. Wang, H. Yang 2023



Bayesian Inversion

Bayesian Regularization

: 2
el ol

Example: empirical mean estimate G :=E, | m) [a]
Maximum a posterior estimate g := argmaxq(a | m)
a

—

reg M = 4, where a is the empirical

Theorem. Consider the regularized inverse
mean, if
1. the measurement noises ¢ are independently sampled from Gaussian A (0,T",)

2. the posterior g(a/m) has a bounded second moment for all measurements

Jf_l(a)| = O

3. the forward map f is distinguishable,

sup
Then the regularized inverse is Lipschitz with Lipschitz constant
LB el

= C, C. Wang, H. Yang 2023



Contributions & Summary

e In the forward problem setting, we theoretically explained why the low complexity
and low dimension structure of PDE operators do not suffer from CoD.

* Instead of adding regularization in the training stage, we propose to train NN on a
regularized data set for inverse problems

* We show that the regularized inverse map is Lipschitz for the LASSO
regularization and Bayesian regularization (empirical mean estimate).
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Thank you!

Questions
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