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Scientific computing

® Neural networks successfully approximate high-dimensional functions.
® In scientific computing, the goal is often to approximate an operator.
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Problem setting

e Function spaces X, ), Goal:
e OperatorG: X = Y, u— G(u), = Find approximation
o Data{u;,G(u)}Y, V(u; 0) = G(u).

® Approach: extend neural networks to co-dims, e.g.

® Deep operator networks [Lu, Karniadakis++]
® Neural operators [Li, Anandkumar, Stuart++]
® PCA-Net [Bhattacharya, Kovachki, Stuart]

® Random Feature Model [Nelsen, Stuart]

® Empirically: Feasible; potential for model discovery.
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® Empirically: Feasible; potential for model discovery.
® Lack of theory: When can these methods be effective?
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Numerical weather prediction

Figure: FourCastNet (NVIDIA)

© Efforts to apply Al for NWP:
® Google, Microsoft, NVIDIA, Huawei, ...

® Promise especially for ensemble
forecasting,
— “45°000x speedup”.

{1111 The Washington Post

How Big Tech Al models nailed forecast

for Hurricane Lee a week in advance

Story by Dan Stillman « 3w

Ensemble forecasts from conventional models can miss extreme
events, such as excessive rainfall or heat, because they are limited to
about 50 simulations due to the time and cost of generating them. Al
could enable the generation of much larger ensembles in as little as a
few minutes, potentially leading to more useful forecasts and risk
assessments for emergency managers, the general public and
numerous industries.

"Our hypothesis is we can easily now scale up with Al models to
thousands or tens of thousands of ensemble members,” Anima
Anandkumar, senior director of Al Research at NVIDIA, said in an

interview.
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Example: Fourier neural operator’

e composition V(u;0) = L 0--- 0 Lq(u),
® hidden layers, £y : v(x) — L;(v)(x), with vector-valued functions v(x), £¢(v)(x) € R%,

£ = (W) + [ stx= ) ay).

TLi, Kovachki et al,, “Fourier neural operator for parametric partial differential equations”, ICLR (2021)
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Example: Fourier neural operator’

e composition V(u;0) = L 0--- 0 Lq(u),
hidden layers, £ : v(x) — L¢(v)(x), with vector-valued functions v(x), L,(v)(x) € R<%,

£ = (W) + [ stx= ) ay).

® convolution as Fourier multiplier matrix: F~'( F(x) -F(v)),
~——

FMM

® parameter § € RY collects components of matrices (W, F(k)) across layers,

® optimize via loss (empirical risk):

N
1
fg = argmin > 16(u) = W(u; 0)?
j=1

TLi, Kovachki et al,, “Fourier neural operator for parametric partial differential equations”, ICLR (2021)
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Approximation Theory

® non-linear operator of interest: G : u — G(u)

e distribution of inputs: u ~ p (u: probability measure on functions)

Approximate
Eun [1G(u) = V(s 0)[P]'7 < e,

® using parametric model: V(u; ), 0 € RY,
® from sample data: (ur, G(w1)), ..., (un, G(un)).
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Approximation Theory

Questions: Parametric complexity Data complexity

How many parameters § € RY? How many samples {u;, g(u,)}f’:ﬁ

Given

® non-linear operator of interest: G : u — G(u)

e distribution of inputs: u ~ p (u: probability measure on functions)

Approximate
Eun [1G(u) = V(s 0)[P]'77 < e,

® using parametric model: V(u; ), 0 € RY,
e from sample data: (ur, G(w1)), ..., (un, G(un)).
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Prior work — Parametric complexity

Eyp [[|G(u) — V(y; 9)||”]1/P <, How large is size(W(-;6)) = [10]l¢?

Results Required size(V( -; 6))
Universal approximation size > 1 sufficient

Lipschitz operators

Holomorphic operators [4]

PDE operators (case-by-case)

[1] Liu et al., “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Lanthaler, Stuart, “The parametric complexity of operator learning”, (2023)
[3] Schwab, Stein, and Zech, “Deep operator network approximation rates for Lipschitz operators”, (2023)

[4] Hermann, Schwab, and Zech, “Neural and gpc operator surrogates: Construction and expression rate bounds” (2022)
7/19



Prior work — Parametric complexity

Eyp [[|G(u) — V(y; 9)||”]1/P <, How large is size(W(-;6)) = [10]l¢?

Results Required size(V( -; 6))
Universal approximation size > 1 sufficient
Lipschitz operators
Upper bounds (1] | size < exp(ce™) exponential
Lower bounds (ReLU) [2]

Non-standard architectures  [3]

Holomorphic operators [4]

PDE operators (case-by-case)

[1] Liu et al., “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Lanthaler, Stuart, “The parametric complexity of operator learning”, (2023)
[3] Schwab, Stein, and Zech, “Deep operator network approximation rates for Lipschitz operators”, (2023)

[4] Hermann, Schwab, and Zech, “Neural and gpc operator surrogates: Construction and expression rate bounds” (2022)
7/19



Prior work — Parametric complexity

Eyp [[|G(u) — V(y; 9)||”]1/P <, How large is size(W(-;6)) = [10]l¢?

Results Required size(V( -; 6))
Universal approximation size > 1 sufficient
Lipschitz operators
Upper bounds (1] | size < exp(ce™) exponential
Lower bounds (ReLU) [2] | size > exp(ce™?) exponential
Non-standard architectures  [3] | size < e 7 algebraic
Holomorphic operators [4]

PDE operators (case-by-case)

[1] Liu et al., “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Lanthaler, Stuart, “The parametric complexity of operator learning”, (2023)
[3] Schwab, Stein, and Zech, “Deep operator network approximation rates for Lipschitz operators”, (2023)

[4] Hermann, Schwab, and Zech, “Neural and gpc operator surrogates: Construction and expression rate bounds” (2022)
7/19



Prior work — Parametric complexity

Eyp [[|G(u) — V(y; 9)||”]1/P <, How large is size(W(-;6)) = [10]l¢?

Results Required size(V( -; 6))
Universal approximation size > 1 sufficient
Lipschitz operators
Upper bounds (1] | size < exp(ce™) exponential
Lower bounds (ReLU) [2] | size > exp(ce™?) exponential
Non-standard architectures  [3] | size < e 7 algebraic
Holomorphic operators [4] | size Se? algebraic
PDE operators (case-by-case) size S e algebraic

[1] Liu et al., “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Lanthaler, Stuart, “The parametric complexity of operator learning”, (2023)
[3] Schwab, Stein, and Zech, “Deep operator network approximation rates for Lipschitz operators”, (2023)

[4] Hermann, Schwab, and Zech, “Neural and gpc operator surrogates: Construction and expression rate bounds” (2022)
7/19



Prior work — Data complexity

Euvye [|G(u) = W(w:0)|P]'" <&, How many samples (u1,G(un)), ..., (un, G(un))?

Results ‘ Required # samples N
Lipschitz operators

(1]
Holomorphic operators [3]

[1] Liu et al,, “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Mhaskar and Hahm, “Neural networks for functional approximation and system identification”, (1997)
[3] Adcock, Dexter, and Moraga, “Optimal approximation of infinite-dimensional holomorphic functions”, (2023)
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Prior work — Data complexity

Euvye [|G(u) = W(w:0)|P]'" <&, How many samples (u1,G(un)), ..., (un, G(un))?

Results ‘ Required # samples N
Lipschitz operators
Upper bounds (] | N < exp(ce™) exponential
Lower bounds' (sup-norm) [2] | N = exp(ce ) exponential
Holomorphic operators B] | NSe? algebraic

I Specific setting: G : H*(Q) C L%(Q) — L*(Q), with e-approximation,

sup ||G(u) — V(u; 0)]|2 < e.

[lull s <1

[1] Liu et al,, “Deep nonparametric estimation of operators between infinite dimensional spaces”, (2022)
[2] Mhaskar and Hahm, “Neural networks for functional approximation and system identification”, (1997)
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This work — Data complexity

Eu~p [11G(u) — V(u; 9)||p]1/p <,

Model complexity

How many samples (uq, G(u1)), - .., (un, G(un))?

Data complexity

sup-norm sup-norm | LP-norm
Lipschitz operators | size > exp(ce ) | N 2> exp(ce ) ”
”?

“Natural” operators

size(W(-;0)) Se”

by definition
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Lower bounds via “non-linear widths”

G:X =Y — (G(w),...,G(uy)) € YN

set of operators (e.g. Lip;)

® encoder/decoder point of view,

® many-to-one mapping,
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Lower bounds via “non-linear widths”

G:X =Y — (G(w),...,G(uy)) € YN

set of operators (e.g. Lip;)

—

encoder/decoder point of view,

® many-to-one mapping,

® best reconstruction limited by the width of the pre-image,
different notions of widths

® continuous n-width: arbitrary continuous encoder, arbitrary decoder
® sampling n-width: encoder by point-evaluation, arbitrary decoder
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Lower bounds via “non-linear widths”

® ¥ =Dy(G(w),...,G(un)) reconstruction from samples,
® {u,...,un} chosen sampling points,
® Dy : YV — Lip(X, ) chosen decoder/reconstruction algorithm.
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Lower bounds via “non-linear widths”

e U =Dy(G(u),.-.,G(un)) reconstruction from samples,

® {ui,...,un} chosen sampling points,
® Dy : YV — Lip(X, ) chosen decoder/reconstruction algorithm.

Sampling N-width

sampling N-width = inf sup Eup [[1G(u) — W(u )||p]1/p

{”1}, 1Dy
® supremum over G € Lip,(X, ), i.e. 1-Lipschitz operators.

This measures:
® \Worst-case reconstruction-error ...

® ... of the best-possible choice of sampling points and the best reconstruction.
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LP setting

® G € Lip,(X; ) 1-Lipschitz operator,
® Input functions drawn from p = Gaussian random field,

o0
uzz)‘fzjej’ ZJNN(071)7 )‘J'Njia‘
Jj=1
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LP setting

® G € Lip,(X; ) 1-Lipschitz operator,
® Input functions drawn from p = Gaussian random field,

0o
u:Z)\ijej, ZjNN(O,]), )\ijia

Theorem (Kovachki, SL "24)

Forany 1 < p < oo, we have

o if  sup By [IG(4) - W(w)|[5]"7 > log(N) =+

Thus, with any neural operator architecture, to achieve e-accuracy,

sup By [|G(u) — W(u; 0g)|IP]'7P < e,
GeLip,

we need exponentially many samples, N > exp(ce ™).
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L setting

Eu [19() = ()17 =3 sup |6(u) - W(u)|
Also corresponding result in the sup-norm:

Theorem (Kovachki, SL *24)
The sampling N-width decays only logarithmically

sn(error in sup-norm) 2 log(N)~“.

Thus, N 2 exp(ce~ ") samples are required to achieve accuracy e.

13/19



Basic idea: it’s a counting game
® How many evaluations G(x;), ..., G(xy) to approximate G with error €?

® Equivalently: Given N what error € can be achieved?

* G 0] =R, supyep |GG (X)] < 1,
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Basic idea: it’s a counting game

® How many evaluations G(x;), ..., G(xy) to approximate G with error €?

Equivalently: Given N what error € can be achieved?
G0, = R, supyep,p |G [G'(x)] < 1,
Consider sum of N + 1 “bumps”,

Gx) = L1 0j0y(x). {o; = %1}

X1 X2 X3
® Can reconstruct sign of at most N bumps, so reconstruction error
best possible error € > height of bump ~ N™' = N> e .
[ ]

Relates achievable accuracy € to number of evaluation points N.
® Theorem generalizes this basic idea to co dimensions.

14/19



Contradiction (?)

In Theory

Learning G € Lip(X; )) requires
® exponential amounts of data,

® (and exponential model size).

In Practice

Learning operators of interest with
® moderate amounts of data,

® (and moderate model size).
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Sample bounds for “operators of interest”?

Given

® non-linear operator of interest:

.

o distribution of inputs: u ~ f, How many samples are sufficient?
® parametric model: W(u; 6). ® Answer depends on G, i, W(-; 0).

® Assuming only G € Lip leads to very pessimistic

bounds.
- ® [Intuition: Lip is too large; does not capture
Approximate from sample data,

“operators of interest”.
(uh g(u1))a 000y (uN7 g(uN))’

oy [IIG(0) = W(u;0)[2]* < e,
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Operators of interest

e Difficult to characterize “operators of interest”
® Lip(X;)) too broad,
® Holomorphic operators too narrow (?)

2Kovachki, Lanthaler, Mishra, “On Universal Approximation and Error Bounds for Fourier Neural Operators”, (2021)
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Operators of interest

e Difficult to characterize “operators of interest”
® Lip(X;Y) too broad,
® Holomorphic operators too narrow (?)

Fourier neural operator (FNO) approximation space

Given p supported on compact set  C &, parameter v > 0:

AY(FNO) := {Q:ICCX—>)7

. . < W
|$§SWHQ V() S W }

size(

e efficiently approximated by Fourier neural operator, in terms of model size,
® examples’: Navier-Stokes in 2D, coeff-to-sol map of elliptic PDE —V - (aVu) = f

® Question: Can G € A7(FNO) be efficiently approximated in terms of sample complexity?

2Kovachki, Lanthaler, Mishra, “On Universal Approximation and Error Bounds for Fourier Neural Operators”, (2021)
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® Consider unit ball BY C AY(FNO), G € B".

® Empirical risk minimizer: Fix V(- ; #) Fourier neural operator architecture,

N
1
GrV(-;0g), Og = arggmnﬁz||g(uj)—\|f(uj;9)||2.
=1

Theorem (Kovachki, SL ’24)

For any N, there exist sample points uy, . . ., uy, and FNO architecture V( - ; 0) of size W = W(N)
depending on N, such that empirical risk minimizers V(- ; 0g) satisfy

S0 B [[16(1) = W(ui )] 22 < N

worst-case error of ERM
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® Empirical risk minimizer: Fix V(- ; #) Fourier neural operator architecture,

N
1
GrV(-;0g), Og = arggmnﬁz||g(uj)—\|f(uj;9)||2.
=1

Theorem (Kovachki, SL ’24)

For any N, there exist sample points uy, . . ., uy, and FNO architecture V( - ; 0) of size W = W(N)
depending on N, such that empirical risk minimizers V(- ; 0g) satisfy

1/2 < 2’y r— -1/2 i
gsup Eunp [11G(u) — W(u; 6g)|1%] N™27+ N (correction)

Monte-Carlo complexity of BY

worst-case error of ERM
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Summary

Data complexity

How many samples {uj, G(u;)}L, are needed to approximate operator,

Eunp [1G(u) — W(u; 0)[7]77 < €2

Model complexity Data complexity
sup-norm sup-norm \ LP-norm ‘
Lipschitz operators size > exp(ce ™) | N = exp(ce ) | N = exp(ce ™)
(Fréchet-)C* operators | size > exp(ce™?) N 2 exp(ce™)
“Natural” operators | size(W(-;0)) S e 7 | (exponential?) N<e
by definition
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