Homework Assignment 10. Due Thursday April 30.

1. (5 pts) Derive the one-sided backward difference second-order estimator for the first derivative

\[D^1_{2-}[f](x, h) = \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h}. \]

and an error estimate for it using the method of undetermined coefficients. I.e., write

\[D^1_{2-}[f](x, h) = \frac{1}{h} \left[af(x) + bf(x - h) + cf(h - 2h) \right] = f'(x) + Ch^2 + \ldots, \]

Taylor-expand the terms \(f(x - h) \) and \(f(x - 2h) \) around \(x \), and set up and solve an appropriate linear system for the coefficients \(a, b, \) and \(c \). As a result, you will be also find the constant \(C \) in the main error term.

2. (a) (5 pts) Use one step of Richardson extrapolation to derive (1). Proceed as follows. Start with the first-order backward difference estimator:

\[F(h) := \frac{f(x) - f(x - h)}{h}. \]

Taylor-expand \(f(x - h) \) around \(x \) and obtain a series:

\[F(h) = f'(x) + a_1h + a_2h^2 + a_3h^3 + \ldots. \]

Then write out this estimator for \(h \) and \(2h \). Use a linear combination of \(F(h) \) and \(F(2h) \) to knock out the error term proportional to \(h \). Obtain a second-order estimator for \(f' \) and an error formula for it. This estimator must coincide with (1).

(b) (5 pts) Denote the second-order estimator obtained in the previous item by \(F(h, 2h) \). Use \(F \) with \(2h \) and \(3h \) to obtain another second-order estimator \(F(2h, 3h) \). Use an appropriate linear combination of \(F(h, 2h) \) and \(F(2h, 3h) \) to get a third-order estimator for \(f' \). Write out the resulting estimator in terms of \(f(x), f(x - h), f(x - 2h), \) and \(f(x - 3h) \). Check your result using the table “Backward finite difference” in Wiki: finite difference coefficient.

3. (5 pts) Write out the Lagrange polynomial \(p(x) \) interpolating a smooth function \(f(x) \) at \(x - h, \) \(x, \) and \(x + h \). Take the derivative of \(p(x) \) with respect to \(x \) and evaluate it at \(x - h, x, \) and \(x + h \). Compare your results with second-order backward-, central-, and forward-difference estimators for the first derivative of \(f \). Comment on your results.