Homework Assignment 4. Due Thursday March 5.

1. (5 pts) The transition rates between two low-energy configurations of the cluster of 38 rare gas atoms at a collection of temperature values have been measured by some sophisticated computations. (These two configurations are shown in Figure 1 here.) The data file HW4Problem1data.txt contains the results of these measurements. Its first column contains the absolute temperature values T_{i} while the second column contains the corresponding transition rates r_{i}. We want to fit these data to the Arrhenius law

$$
\begin{equation*}
r=C e^{-V / T} \tag{1}
\end{equation*}
$$

where r is the rate, T is the absolute temperature, and C and V are constants. We would like to find estimates for the energetic barrier V and the constant C from this fit. First we take logarithms of both parts of (1) and get the following linear relationship between $\log r$ and $1 / T$:

$$
\begin{equation*}
\log r=\log C-V / T \tag{2}
\end{equation*}
$$

Denoting $\log r$ by $y, 1 / T$ by x, and $\log C$ by c we get:

$$
\begin{equation*}
y=c-V x \tag{3}
\end{equation*}
$$

Set up the least squares problem and write a program in any suitable language that finds C and V. Matlab is recommended.
2. (5 pts) Let A be an $n \times n$ matrix, and let $Q=\left[q_{1}, \ldots, q_{k}\right]$ be an $n \times k$ matrix of rank k, where $1 \leq k<n$. We say that $\operatorname{span}(Q)$ is an invariant subspace of A if and only if for all vectors $v \in \operatorname{span}(Q)$ we have $A v \in \operatorname{span}(Q)$. Prove that $\operatorname{span}(Q)$ is an invariant subspace of A if and only if

$$
A Q=Q C
$$

for some $k \times k$ matrix C.

3. ($\mathbf{1 0} \mathbf{~ p t s)}$

(a) Let A be a 3×3 matrix, and let T be its Schur form, i.e., there is a Hermitian matrix Q (i.e., $Q^{*} Q=Q Q^{*}=I$ where Q^{*} denotes the transpose and complex conjugate of Q) such that

$$
A=Q T Q^{*}, \quad \text { where } \quad T=\left[\begin{array}{ccc}
\lambda_{1} & t_{12} & t_{13} \\
0 & \lambda_{2} & t_{23} \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

i. Show that if v is an eigenvector of T then $Q v$ is the eigenvector of A corresponding to the same eigenvalue.
ii. Find eigenvectors of T. Hint: Check that $v_{1}=[1,0,0]^{\top}$. Look for v_{2} of the form $v_{2}=[a, 1,0]^{\top}$, and then for v_{3} of the form $v_{3}=[b, c, 1]^{\top}$, where a, b, c are to be expressed via the entries of the matrix T.
iii. Write out eigenvectors of A in terms of the found eigenvectors of T and the columns of $Q: Q=\left[q_{1}, q_{2}, q_{3}\right]$.
(b) Let A be $n \times n$, and let T be its Schur form (an upper-triangular matrix with possibly complex entries), i.e., $A=Q T Q^{*}$. Let $Q=\left[q_{1}, q_{2}, \ldots, q_{n}\right]$ where q_{j} denotes j th column of Q.
i. Let k be any integer $1 \leq k \leq n$. Show that the first k columns of Q span an invariant subspace of A. Hint: write T in the block form with four blocks where the block at the upper left corner is $k \times k$. Write Q as two blocks $Q=\left[Q_{k}, Q_{n-k}\right]$ where Q_{k} is the matrix consisting of the first k columns of Q.
ii. Let λ be an eigenvalue of T of multiplicity 1 located at the k th position along the main diagonal. Write T in the block-diagonal form

$$
T=\left[\begin{array}{c|c|c}
T_{11} & T_{12} & T_{13} \\
\hline 0 & \lambda & T_{23} \\
\hline 0 & 0 & T_{33}
\end{array}\right],
$$

where T_{11} is $(k-1) \times(k-1), \lambda$ is 1×1, and T_{33} is $(n-k) \times(n-k)$. Show that the eigenvector of T corresponding to the eigenvalue λ is

$$
v_{k}=\left[\begin{array}{c}
\left(\lambda I-T_{11}\right)^{-1} T_{12} \\
1 \\
0
\end{array}\right] .
$$

iii. What is the eigenvector of A corresponding to λ ?

