MODELING THE DYNAMICS OF INTERACTING PARTICLES BY MEANS OF STOCHASTIC NETWORKS

Maria Cameron

Department of Mathematics, University of Maryland

Data Seminar, John Hopkins University, Oct. 12, 2016

INTERACTION POTENTIAL

We assume the interaction under a pair potential, i.e.,

2

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$

Total potential energy:

Force acting on particle i:

$$\begin{bmatrix} \frac{\partial V}{\partial x_i} \\ \frac{\partial V}{\partial y_i} \\ \frac{\partial V}{\partial z_i} \end{bmatrix} = \sum_{j=1}^N \frac{dV}{dr_{ij}} \frac{1}{r_{ij}} \begin{bmatrix} x_i - x_j \\ y_i - y_j \\ z_i - z_j \end{bmatrix}$$

GOAL

Develop tools for the study of the cluster dynamics Design desired structures by self-assembly

LENNARD-JONES PAIR POTENTIAL

$$V(r) = 4(r^{-12} - r^{-6})$$

Adequate for rare gases: Ar, Kr, Xe, Rn

Often used for modeling interaction of other spherical particles.

Large datasets are available thanks to Wales's group (Cambridge, UK).

EXPERIMENTAL WORKS: MASS SPECTRA

MAGIC NUMBERS

13, 55, 147, 309, ... admit complete icosahedrons Point group I_h, |I_h|=120

LJ₅₅

OTHER HIGH SYMMETRY CONFIGURATIONS

Truncated octahedron Point group O_h, |O_h|=48

LJ₃₈

LJ₇₅

Marks decahedron Point group D_{5h}, |D_{5h}|=20

CRYSTAL STRUCTURE FOR RARE GASES: FCC (FACE CENTERED CUBIC)

DIFFICULTIES IN MODELING THE DYNAMICS OF LJ CLUSTERS

High dimensionality:
 3n coordinates, 3n momenta

 Long waiting time in direct simulations: structural transitions occur rarely on the timescale of the system

Large range of timescales for various transition processes

LJ75

BUILDING LENNARD-JONES NETWORKS

Find the set of local energy minima.

LJ n

Edges rates in

8

Find the set of Morse index one saddles

Calculate transition rate along each arc

$$L_{i \to j} = \sum_{s} \frac{O_i}{O_s} \frac{\omega_{ij}}{2\pi} \sqrt{\frac{\det H_i}{|\det H_s|}} e^{-(V_i - V_s)/(k_B T)}$$

STATS FOR LJ NETWORKS

ANALYSIS OF LJ NETWORKS

- Disconnectivity graphs, Discrete path sampling (Wales et al, starting from late 1990s)
- Transition path theory (E & Vanden-Eijnden 2006, Metzner et al 2009, Cameron & Vanden-Eijnden, 2014)
- Spectral analysis (Cameron 2014, Cameron & Gan 2016)

DISCONNECTIVITY GRAPHS: SINGLE FUNNEL

LJ₁₃

DISCONNECTIVITY GRAPHS: DOUBLE FUNNEL (COURTESY OF D. WALES)

SIGNIFICANCE OF SPECTRAL DECOMPOSITION (For any irreducible continuous-time Markov chain)

The Fokker-Planck equation or the Master equation $\frac{dp(t)}{dt} = p(t)L$

0

 z_1

L = the generator matrix p(0) = the initial distribution

Spectral decomposition of L:

$$L = \Phi \Lambda \Psi = \begin{bmatrix} 1 & \phi_1 & \dots & \phi_{n-1} \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}$$

Right eigenvectors

Eigenvalues

Left eigenvectors

$$z_k = -\lambda_k + i\mu_k, \quad 0 < \lambda_1 \le \ldots \le \lambda_{n-1}$$

The time evolution of the probability distribution

$$p(t) = p(0)\Phi e^{t\Lambda}\Psi = \pi + \sum_{k=1}^{n-1} (p(0)\phi_k) e^{-\lambda_k t} e^{i\mu_k t} \psi_k$$

Projection of p(0) onto right e-vector Left e-vector: perturbation to π decaying **uniformly** with rate λ_k across the network

INTERPRETATION OF LEFT AND RIGHT EIGENVECTORS IN TIME-REVERSIBLE NETWORKS

$$\begin{split} L &= P^{-1}Q \text{, where } P = diag\{\pi_1, \dots, \pi_n\}, \quad Q \text{ is symmetric} \\ p(t) &= p(0)\Phi e^{t\Lambda}\Psi = \pi + \sum_{k=1}^{n-1}(p(0)\phi_k)e^{-\lambda_k t}\psi_k \\ \text{Right eigenvectors: } \Phi &= [\phi_0, \dots \phi_{n-1}] \\ \text{Left eigenvectors: } \Psi &= P\phi = [P\phi_0, \dots P\phi_{n-1}] \\ \text{If } p(0) &= \pi + \psi_k = \pi + P\phi_k = \begin{bmatrix} \pi_1(1+\phi_{k,1}) \\ \pi_2(1+\phi_{k,2}) \\ \vdots \\ \pi_n(1+\phi_{k,n}) \end{bmatrix} \end{split}$$

then it decays **uniformly** across the network with rate λ_k and ϕ_k shows the proportions by which the states are under/ overpopulated in p(0).

STRATEGY

Goal: compute eigenvalues and eigenvectors of L corresponding to transition processes of physical interest Difficulties: L is large (n ~ 100000), entries of L range by tens of orders of magnitude, L has no special structure Advantage: L has entries of the form $L_{ij} = \alpha_{ij}e^{-U_{ij}/\epsilon}$ $\epsilon = k_BT$ = small parameter

Idea:

compute asymptotic estimates for eigenvalues/
eigenvectors of L

use continuation techniques to find eigenvalues/ eigenvectors at desired temperatures

ASYMPTOTIC ESTIMATES FOR EIGENVALUES (TIME REVERSIBILITY IS NOT ASSUMED)

A. Wentzell, 1972

For a continuous-time Markov chain with pairwise rates of the form $L_{ij} \sim e^{-U_{ij}/T}$

Let $z_k = -\lambda_k + i\mu_k$ be eigenvalues of the generator matrix, and

$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

 $\lambda_k \asymp \exp(-\Delta_k/T)$
 $\Delta_k = V^{(k)} - V^{(k+1)}$
 $V^{(k)} = \sum_{(i \to j) \in g_k^*} U_{ij}$
where g_k^* is the optimal W-graph with k sinks

T. Gan, C., 2016

For a continuous-time Markov chain with pairwise rates of the form $L_{ij} = a_{ij}e^{-U_{ij}/T}$

if all **optimal W-graphs are unique**, eigenvalues of the generator matrix are real and distinct for small enough ϵ

$$\lambda_k = A_k \exp(-\Delta_k/T)$$

$$\Delta_{k} = V^{(k)} - V^{(k+1)}$$

$$V^{(k)} = \sum_{\substack{(i \to j) \in g_{k}^{*} \\ U_{ij}}} U_{ij}$$

$$A_{k} = \frac{\prod_{i \to j \in g_{k}^{*}} U_{ij}}{\prod_{i \to j \in g_{k+1}^{*}} U_{ij}} + o(1)$$

NESTED PROPERTIES OF OPTIMAL W-GRAPHS (GAN AND C. 2016)

- {The set of sinks of g_k^* } \subset {The set of sinks of g_{k+1}^* }
- There exists a connected component S_k of g_{k+1}^* whose set of vertices contains no sink of g_k^* .
- The sets of arcs connecting vertices $S \setminus S_k$ in g_k^* and g_{k+1}^* coincide.
- In g_k^* , there is a single arc from S_k to $S \setminus S_k$

Approaches to the study of Markov processes with rates $L_{ij} = a_{ij}e^{-U_{ij}/\epsilon}$ at time scales from 0 to ∞

M. Freidlin, early 1970s:

* The hierarchy of Freidlin's cycles

Idea: for each vertex, find the vertex where the system most likely jumps and detect cycles

Tool: *i***-graphs** for finding exit rates from cycles

Feature: the exit time scales from cycles are only **partially ordered**. **Extension:** Freidlin, 2014: case with symmetry: hierarchy of Markov chains

A. Wentzell, early 1970s:

* Asymptotic estimates for eigenvalues Tool: W-graphs

Idea: reduce the problem of finding eigenvalues to an optimization problem on graphs.

Motivation for me: No algorithm was proposed to solve this optimization problem

Extension: Berglund & Dutercq, 2015, time-reversible case with symmetry

TIMESCALES

Timescales = functions $t(\epsilon)$

 $L_{ij} = a_{ij}e^{-U_{ij}/\epsilon}$

 $t(\epsilon) \asymp e^{\Delta/\epsilon}$ if $\lim_{\epsilon \to 0} \epsilon \log t(\epsilon) = \Delta$

For brevity, we write

 $e^{\Delta_1/\epsilon} < t(\epsilon) < e^{\Delta_1/\epsilon}$

if

 $\Delta_1 < \lim_{\epsilon \to 0} \epsilon \log t(\epsilon) < \Delta_2$

THE GRAPH-ALGORITHMIC APPROACH FOR THE STUDY OF METASTABILITY IN MARKOV CHAINS

(T. Gan and M. C., 2016)

An algorithm for:

- finding the sequence of critical timescales at which the dynamics of the system undergoes a qualitative change
- finding the hierarchy of graphs effectively describing the dynamics of the system

The algorithm simultaneously finds

- the hierarchy of optimal W-graphs giving asymptotic estimates for eigenvalues
- the hierarchy of Freidlin's cycles
- critical timescales are ordered in the increasing order

Initialization Find min-arc for each vertex Sort the set of min-arcs in increasing order

$$c
ightarrow a: U = 1$$

 $b
ightarrow c: U = 3$
 $a
ightarrow b: U = 4$
 $d
ightarrow c: U = 10$

The numbers next to arcs $i \rightarrow j$ are U_{ij}

On the time scale $t(\epsilon) < e^{\gamma_1/\epsilon}$, where $\gamma_1 = \min_{i,j} U_{ij}$ each state of the Markov chain is absorbing $c \rightarrow a$: U = 112 $b \rightarrow c$: U = 3С \bigcap $a \rightarrow b: \quad U = 4$ 3 $d \rightarrow c: \quad U = 10$ 10 4 2 9 11 а

In this example, $\gamma_1 = 1$

The main cycle Remove arcs from the set of min-arcs one in a time The corresponding U's are the characteristic time scales γ_i $b \rightarrow c: U = 3$ 12 $a \rightarrow b: \quad U = 4$ С h $d \rightarrow c: \quad U = 10$ 3 10 4 $\gamma_1 = 1$ 2 11 9 On the time scale а d $e^{\gamma_1/\epsilon} < t(\epsilon) < e^{\gamma_2/\epsilon}$ $T_1 = q_3^*$

states a, b, and d are absorbing, state c is transient, the exit rate from c is

$$a_{ca}e^{-\gamma_1/\epsilon} = a_{ca}e^{-U_{ca}/\epsilon} = a_{ca}e^{-1/\epsilon}$$

$$a \rightarrow b: U = 4$$

$$d \rightarrow c: U = 10$$

$$\gamma_1 = 1$$

$$\gamma_2 = 3$$
On the time scale

$$e^{\gamma_2/\epsilon} < t(\epsilon) < e^{\gamma_3/\epsilon}$$

$$T_2 = g_2^*$$

states a and d are absorbing, states c and b are transient, the exit rate from b is

$$a_{bc}e^{-\gamma_2/\epsilon} = a_{bc}e^{-U_{bc}/\epsilon} = a_{ca}e^{-3/\epsilon}$$

$$d \rightarrow c: \quad U = 10$$

$$\gamma_1 = 1$$

$$\gamma_2 = 3$$

$$\gamma_3 = 4$$
On the time scale
$$e^{\gamma_3/\epsilon} < t(\epsilon) < e^{\gamma_4/\epsilon}$$

$$T_3$$

$$T_3$$

$$T_4$$

$$T_4$$

$$T_5$$

$$T_4$$

$$T_4$$

$$T_4$$

$$T_5$$

$$T_4$$

$$T_4$$

$$T_4$$

$$T_4$$

$$T_4$$

$$T_4$$

$$T_4$$

state d is absorbing, states a, b, and c are recurrent, the rotation rate in the cycle {a, b, c} is

$$a_{ab}e^{-\gamma_3/\epsilon} = a_{ab}e^{-U_{ab}/\epsilon} = a_{ab}e^{-4/\epsilon}$$

If a **cycle** is encountered, find **the most likely exit** from it

In general, if a cycle is encountered:

$$L_{C} = \begin{bmatrix} -\alpha_{12}e^{-U_{12}/\epsilon} & \alpha_{12}e^{-U_{12}/\epsilon} & \\ -\alpha_{12}e^{-U_{12}/\epsilon} & \alpha_{12}e^{-U_{12}/\epsilon} & \\ -\alpha_{12}e^{-U_{12}/\epsilon} & \alpha_{12}e^{-U_{12}/\epsilon} & \\ \\ \alpha_{n1}e^{-U_{n1}/\epsilon} & & \\ -\alpha_{n1}e^{-U_{n1}/\epsilon} \end{bmatrix} \qquad M = \text{the main state in the cycle.}$$
The invariant distribution in the cycle C:

$$\pi_{C} = \begin{bmatrix} \frac{\alpha_{m(M)}}{\alpha_{12}}e^{-(U_{m(M)}-U_{12})/\epsilon}, \dots, 1, \dots, \frac{\alpha_{m(M)}}{\alpha_{n1}}e^{-(U_{m(M)}-U_{n1})/\epsilon} \end{bmatrix} \qquad Note: m(M) \text{ is the last added arc in the cycle } \\ \mathbf{M} \qquad \mathbf{I} = \mathbf{I} + \mathbf{I} +$$

Add the min-exit-arc from the cycle to the set of min-arcs

$$c \rightarrow d: \quad U = 5$$

 $d \rightarrow c: \quad U = 10$

5 = 2 + 4 - 1

On the time scale

 $e^{\gamma_4/\epsilon} < t(\epsilon) < e^{\gamma_5/\epsilon}$

states a, b, and c are transient, state d is absorbing.

 $e^{\gamma_5/\epsilon} < t(\epsilon) < \infty$

all states are recurrent

 $\gamma_1 = 1$ $e^{1/\epsilon} \le t < e^{3/\epsilon}$ $\lambda_1 \approx \alpha_{ca} e^{-1/\epsilon}$ $\gamma_4 = 5$

 $e^{5/\epsilon} \le t < e^{10/\epsilon}$ $\lambda_3 \approx \frac{\alpha_{cd}\alpha_{ab}}{\alpha_{ca}} e^{-5/\epsilon}$

 $\gamma_5 = 10$ T_5

 $e^{10/\epsilon} \le t < \infty$

 $\gamma_2 = 3$

а

 $e^{3/\epsilon} \le t < e^{4/\epsilon}$

 $\lambda_2 \approx \alpha_{ab} e^{-3/\epsilon}$

 T_2

Asymptotics for eigenvectors for time-reversible networks (under assumption that all optimal W-graphs are unique)

Right eigenvectors: $\phi_i^k = \begin{cases} 1, & i \in S_k \\ 0, & i \notin S_k \end{cases}$ Left eigenvectors: $\psi_i^k = \begin{cases} 1, & i = b \\ -1, & i = a, \\ 0, & i \notin \{a, b\} \end{cases}$

Time- reversible case: Justification: Bovier, Eckort, Gayrard, Klein, early 2000's

GENERALIZATION

Case with symmetry: any coincidence in the set of exponential orders of eigenvalues and rotation rates in Freidlin's cycles (Gan & C, 2016, arXiv 1607.00078)

COMPUTATIONAL COST

N vertices, index of each vertex \leq k

Best case scenario: Initialization: O(Nk log k) Routine: O(N log N)

Worst case scenario: Routine: O((Nk)² log(Nk)) due to merging trees of reserve arcs when a cycle is created

PERFORMANCE

Lennard-Jones-38 network: 71887 vertices, 239706 arcs

- · CPU time: 30 seconds,
- the number of cycles encountered: 50266
- the number of arcs having appeared on the top of the main tree: 122152

Lennard-Jones-75 network: 169523 vertices, 441016 arcs

- · CPU time: 632 seconds (10.5 minutes)
- the number of cycles encountered: 153164
- the number of arcs having appeared on the top of the main tree: 322686

Application to Lennard-Jones-75 network

Data: courtesy of David Wales

Stats 593320 vertices, 452315 edges the maximal vertex index: 740

The maximal connected component: 169523 vertices, 227198 edges the maximal vertex degree: 740 the number of edges that are not loops and connecting different pairs of vertices: 220508

Asymptotic estimates for eigenvalues

$$\lambda_k = \frac{O_{s_{k+1}^*} \bar{\nu}_{s_{k+1}^*}^{219}}{O_{p_k^* q_k^*} \bar{\nu}_{p_k^* q_k^*}^{218}} e^{-\Delta_k / T}$$

Asymptotic zero-temperature path (the MinMax path)

Continuation to finite temperature of the eigenvalue responsible for the relaxation process from the icosahedral funnel to Marks decahedron funnel

EIGENCURRENT $F_{ij}^k := \pi_i L_{ij} e^{-\lambda_k t} [(\phi_k)_i - (\phi_k)_j]$

(for time-reversible continuous-time Markov chains)

 F_{ij}^k = the net average number of transitions along the edge i ightarrow j

per unit time at time t in the relaxation process from

 $j \neq i$

the initial distribution $\pi + \psi_k = \pi + P \phi_k$

The Fokker-Planck equation in terms of eigencurrents $\frac{dp_i}{dt} = -\sum_{k=0}^{n-1} c_k \sum_{j \neq i} F_{ij}^k$

 $\sum F_{ij}^k = e^{-\lambda_k t} \lambda_k \pi_k \phi_i^k$

The emission-absorption cut

Consider the total eigencurrent **F**^k through the vertex i

$$\sum_{j \neq i} F_{ij}^k = e^{-\lambda_k t} \lambda_k \pi_k \phi_i^k$$
always > 0 any sign

 $S = S_{+}^{k} \cup S_{-}^{k}$ $S_{+}^{k} := \{i \in S : (\phi_{k})_{i} \ge 0\}$ $S_{-}^{k} := \{i \in S : (\phi_{k})_{i} < 0\}$

Among all possible cuts, the eigencurrent F^k is maximal

through the emission-absorption cut

CONTINUATION OF EIGENPAIRS TO FINITE TEMPERATURE

- Difficulties: (1) eigenvalues are close to 0 and may cross; (2) the matrix is large with widely varying entries
- Useful fact: the eigenvectors of the symmetrized generator matrix are orthonormal

$$L_{sym} := P^{1/2} L P^{-1/2} \equiv P^{-1/2} Q P^{-1/2}$$

• Rayleigh Quotient iteration with initial approximation

$$(\psi_k^0)_i = \begin{cases} \sqrt{\pi_i}, & i \in S_k \\ 0, & i \notin S_k \end{cases}$$

Precaution: check whether the corresponding eigencurrent is largely emitted at the sink s_k* and largely absorbed at the sink t_k*

Difficulties with Lennard-Jones-75

$$c_v = \frac{\partial \langle E \rangle}{\partial T} = \frac{\partial}{\partial T} \left(\frac{\sum E_i e^{-E_i/T} / k_i}{\sum e^{-E_i/T} / k_i} \right)$$

Marks decahedron – icosahedral states solid – solid transition: T = 0.08

> Icosahedral – liquid-like states transition: T = 0.25

The range of temperatures to which we would like to continue λ_{4395} :

 $0.05 \le T \le 0.25$

For T < 0.17, the matrix is badly scaled, and the results are inaccurate or NaN

For $T \ge 0.17$, convergence to a wrong eigenpair takes place

Remedy 1: lumping

231

The lumped network

Pick Δ_{\min} . Here $\Delta_{\min} = \Delta_2$ Lump the quasi-invariant sets with $\Delta_k < \Delta_{\min}$

Re-calculate pairwise rates

$$\tilde{L}_{kl} = \sum_{i \in S_k, j \in S_l} L_{ij} \frac{\pi_i}{\sum_{i' \in S_k} \pi_{i'}}$$

The resulting generator matrix \tilde{L} is smaller, the largest entries of L are gone

$$A_{ki} = \begin{cases} \frac{\pi_i}{\sum_{i' \in S_k} \pi_{i'}}, & i \in S_k\\ 0, & \text{otherwise} \end{cases}$$

 $B_{jl} = \begin{cases} 1, & j \in S_l \\ 0, & \text{otherwise} \end{cases}$

Remedy 2: truncation

Pick V_{max}, remove all states separated from the global minimum by a barrier exceeding V_{max}

The resulting network is smaller, the components that used to be nearly transient or make it nearly reducible are removed

Eigencurrent distribution in the emission-absorption cut

Emission-absorption distribution

VAN DE WAAL'S HYPOTHESIS

Mass spectrography by electron or X-ray diffraction (since 1980s)

Results: clusters with < ~1500 atoms have icosahedral packing; larger clusters have FCC packing

Van de Waal, PRL, 1996

No Evidence for Size-Dependent Icosahedral —> FCC Structural Transition in Rare-Gas Clusters

Faulty face-centered cubic layers grow on icosahedral core

Experimental confirmation:

Kovalenko, Solnyshkin, Verkhovtseva, Low Temp Phys, 2000 On the mechanism of transformation of icosahedral rare-gas clusters into FCC aggregations

The experimental results correlate with the calculation if it is assumed that the clusters have a face-centered cubic structure with a constant number of intersecting stacking faults.

LJ6-14 AGGREGATION/DEFORMATION NETWORK

Y. Forman, S. Sousa and M. Cameron (REU 2016)

AGGREGATION OF LENNARD-JONES PARTICLES

Movie by Y. Forman

ANALYSIS OF AGGREGATION/DEFORMATION LJ NETWORK Y. Forman

* In LJ_n, probability distribution evolves according to: $\frac{dp}{dt} = pL$

* Eigendecomposition of L: $L = \Phi \Lambda \Psi$

 \bullet Initial distribution: $p_{init} = \pi + \sum_{k=1}^{N-1} c_k \psi_k$, where $c_k = p(0) \phi_k$

* Attachment time has pdf: $f_T(t) = \mu e^{-\mu t}$

Preattachment distribution:

$$p_{preatt} = \int_0^\infty p(t) f_T(t) dt = \pi + \sum_{k=1}^{N-1} c_k \frac{\mu}{\mu + \lambda_k} \psi_k$$

0.4 0.2 0 10⁻⁴ 10⁻² 10⁰ 10² 10⁴ Attachment Rate μ $d_{10^{-4}}$ $d_{10^{-2}}$ d_{1

Initial Distribution for 12 Atoms Pre-Attachment Distribution for 12 Atoms

 10^{4}

Initial Distribution for 13 Atoms Pre-Attachment Distribution for 13 Atoms

REFERENCES

LJ38

Computing the Asymptotic Spectrum for Networks Representing Energy Landscapes using the Minimal Spanning Tree,

M. Cameron, Networks and Heterogeneous Media, vol. 9, number 3, Sept. 2014, arXiv:1402.2869

Metastability, Spectrum, and Eigencurrents of the Lennard–Jones–38 Network, M. Cameron, J. Chem. Phys. (2014), 141, 184113 arXiv: 1408.5630

LJ75

Spectral Analysis ans Clustering of Large Stochastic Networks. Application to the Lennard–Jones–75 cluster, M. Cameron and T. Gan, Molecular Simulation 42 (2016), Issue 16: Special Issue on Nonequilibrium Systems, 1410–1428, <u>ArXiv: 1511.05269</u>

Theory

A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains, Tingyue Gan and Maria Cameron, <u>J. Nonlinear Science, Vol. 27, 3, (June 2017), pp.</u> <u>927–972 ArXiv: 1607.00078</u>