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This final exam is project-style.
Resources: You can use any internet resources, textbooks, and course materials. You are not

allowed to collaborate with your classmates or use anybody’s help.
Programming: You can use any suitable language. A high-level language (e.g. Matlab or

Python) is preferable. You are allowed to use built-in functions and available libraries for graph
algorithms.

Submission: You should upload on ELMS a single pdf file with your codes linked to it. For
example, you can publish Matlab’s code or make a Jupiter notebook and link them to your pdf.
Use latex or any other suitable text editor. I will subtract 10% of the maximal score if the file is
hand-written.

1 Project 1. Multiple discriminant analysis

Multiple discriminant analysis (MDA) is a linear dimensional reduction method aiming at projecting
data from different categories to a low-dimensional space so that the images of data from different
categories are separated as much as possible. See lecture notes 4-DimReduction.pdf, Section 5.

Consider the following test system called LJ7 in 2D. Seven two-dimensional particles interact
according to the Lennard-Jones pair potential. The particles are also placed in a rather small box
in order to prevent them from going far apart from each other. Their dynamics are governed by
the overdamped Langevin equation. This system has four distinct metastable states corresponding
to four potential energy minima shown in Fig. 1: hexagon, trapezoid, capped parallelogram 1, and
capped parallelogram 2.

This system is 14-dimensional: there are 7 particles and each of them is described by two
coordinates (x, y). One standard way to reduce the dimension of this system is by means of
physically motivated collective variables µ2(x1, y1, . . . , x7, y7) and µ3(x1, y1, . . . , x7, y7) defined in a
rather complicated way (if you want to look up the precise definitions of µ2 and µ3, see Section 4.2.1
on page 18 in arXiv:2108.08979). Importantly, the functions µ2 and µ3 are invariant with respect
to translations and orthogonal transformations of the space (x, y), and permutations of particles,
and the mapping of (x1, y1, . . . , x7, y7) to the (µ2, µ3) space separates the four metastable states.
The free energy1 with respect to µ2 and µ3 is shown in Fig. 1.

The goal of this project is to construct another set of two collective variables for this system
using MDA. Specifically, the goal is to design a set of collective variables that is

• (A) invariant with respect to translations and orthogonal transformations of the space (x, y),
and permutations of particles,

• (B) and that separates the four metastable states as much as possible.

1Courtesy of Luke Evans, AMSC graduate student.
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Figure 1: Four metastable states of the system consisting of 7 2D Lennard-Jones particles governed
by overdamped Langevin dynamics.

To satisfy (A) and (B), one can first map the data points (x1, y1, . . . , x7, y7) by a set of functions
(z1, . . . , zm) each of which satisfies (A), and then apply MDA to the data matrix Z to achieve (B).

1. Let Sb and Sw be the between-class and within-class scatter matrices. Assume that the
within-class scatter matrix Sw is nonsingular. Reduce the problem of finding the maximizer
of the functional

J(w) = w⊺Sbw

w⊺Sww

to a generalized eigenvalue problem. Then use the Cholesky decomposition of Sw, Sw = LL⊺,
to reduce the generalized eigenvalue problem to a symmetric eigenvalue problem of the form
Ay = λy.

2. Let Z be a data matrix of size n × d. Write out the formula for the projection of the matrix
Z onto the two-dimensional space in terms of the found solution to the eigenvalue problem
and the matrix L.

3. I ran a long trajectory of 107 steps of Euler-Maruyama with time step 5 ⋅ 10−5 and recorded
the following data at every 1000th step:

• The (µ2, µ3) coordinates of each data point are saved to the file TrajectoryCV_data.csv,
104 × 2 array. This array allows us to visualize the recorded points in the (µ2, µ3)-space
– see black dots in Fig. 2.

• The set of the following functions zk(x1, y1, . . . , x7, y7) satisfying requirement (A). Let
∆ be the matrix of distances squared:

∆ij = (xi − xj)2 + (yi − yj)2, 1 ≤ i, j ≤ 7.
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Then we define the vector z with components k as

zk =∑
i
∑
j

e
−

∆ij

2σ2
k , σk = 1 + 0.1k, 0 ≤ k ≤ 19.

The 104 × 20 matrix Z with rows z is saved to the file Trajectory_data.csv.
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Figure 2: The data points shown in the coordinates (µ2, µ3).

Select training data for MDA. You can use any criterion to select data from the vicinity of
the four metastable states (for example, surround them with circles or squares). If your Sw
matrix turns out to be singular, regularize it by adding a small multiple of the identity matrix
to it.

Find the two directions w1 and w2 and the corresponding eigenvalues. Print them out. Project
the full set of Z-data on them, i.e., obtain two 104×1 vectors u1 = Zw1 and u2 = Zw2. Linearly
rescale u1 and u2 onto the interval [0,1]. Visualize u1 and u2 as follows. In the first figure,
plot the level sets of the free energy using the contour plot and plot the points from the file
TrajectoryCV_data.csv over them coloring the points according to the values of u1. In the
second figure, do the same, but color the points according to the values of u2.

In order to plot the level sets of the free energy, you will need the data file LJ7FreeEnergy.csv,
a 401 × 201 array with grid data for the free energy in (µ2, µ3). For the data in this array:
0.2 ≤ µ2 ≤ 1.2, −0.5 ≤ µ3 ≤ 1.7.

2 Project 2. Analysis of a real-world network

You will need to investigate a real-world network: the PGP web of trust network (2009) available
at https://icon.colorado.edu/#!/networks. Ref.: M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera,
and A. Arenas, Physical Review E, vol. 70, 056122 (2004).

This network is undirected and unweighted.
The number of vertices is 10680.
The number of edges is 24316.
The indices of vertices start with 1.
For your convenience, I created a CSV file PGPedges.csv containing the list of edges. This is

a 24316 × 2 array.
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1. Use the depth-first search algorithm to verify that the PGP network is connected.

2. Find the degree distribution for this network. Plot pk versus k in log-log scale. You will see
something like Fig. 4.22 (top right) in Barabasi, “Network Science”, chapter 4. Then use
log-binning (like Fig. 4.22 (bottom left)) and plot the result in the same figure. For doing
log-binning, use bins b0 containing only nodes of degree 1, b1 containing nodes of degrees 2
and 3, ..., bn containing nodes of degrees 2n ≤ k < 2n+1, etc. The last bin nmax should be such
that nmax is the largest integer such that 2nmax+1 does not exceed the largest degree in the
network. The nth point in log-binning has coordinates (the mean degree in the bin bn, the
mean degree probability in bin bn):

⎛
⎝
⟨k⟩n =

∑2n+1
−1

k=2n kpk

∑2n+1−1
k=2n pk

, ⟨pk⟩n =
∑2n+1

−1
k=2n pk

2n
⎞
⎠
. (1)

Approximate the log-binning data for the degree distribution with the power-law with expo-
nential cut-off:

pk = Ce−αkk−τ , (2)

where C, α, and τ are positive constants that you need to find by solving a linear least squares
problem. To set it up, take logs of both sides of (2). Plot the approximation to the degree
distribution that you find in the same figure as in the previous item. Include legend.

3. Find the average shortest-path length in the actual network. The use of a built-in or a library
function for this task is preferable. Now imagine a random graph that has degree distribution
(2) with parameters that you have found. For brevity, we will refer to it as the random graph
with the same degree distribution. Estimate the average shortest-path length in this random
graph. Hint: the paper by Newman, Strogatz and Watts should be very helpful.

4. Find the clustering coefficient C for the actual network defined as

C = #(closed paths of lengths 2)

#(paths of length 2)
. (3)

Now find the clustering coefficient for the random graph with the same degree distribution.
Proceed as follows. Let v be an arbitrary node of degree 2 or more. Randomly pick two of its
first neighbors i and j. Let their excess degrees be ki and kj . The probability that there is a

link between i and j is
kikj
2m where 2m = n⟨k⟩ is twice the expected number of edges, and n is

the number of nodes. Then the clustering coefficient is equal to the expectation for
kikj
2m taken

with respect to the joint excess degree distribution for i and j. Due to the independence
of excess degree distributions for i and j in the random graph, the joint probability mass
function is qkiqkj . Calculate this expectation and show that it is equal to

Crandom = 1

n

[⟨k2⟩ − ⟨k⟩]2

⟨k⟩3 . (4)

5. Comment on the relationships between the shortest-path length and clustering coefficient for
the actual network and the random graph with the same degree distribution. Try to explain
the discrepancies between them.
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