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1. MOTIVATION: CLASSIFICATION PROBLEMS

Classification problem! is one of major problems considered in data science and machine
learning. Instances of this problem include text categorization, image recognition, sepa-
rating results of screening medical tests to positive and negative, etc. ~We consider the
classification problem with only two classes. This is not a big loss of generality, as in prac-
tice, if classification into K > 2 categories is required, for each 1 < k < K, one solves the
problem of attributing or not attributing a given object to category k. Mathematically, the
input data for a classification problem are of the form of a collection of pairs vector-label:

(1) (Zi’yi) z; € RDa Yi € {15 _1}5 1= 17 D

The mainstream approach to solving classification problems is to map the input vectors
z; to a feature space X C R?, ie., z; — ¢(z;) = x; € X, in which the images of points
with labels 1 and -1 are expected to be separable using a hyperplane. The space feature
space X is often high-dimensional. The map ¢ is often nonlinear. I will give two examples
borrowed from the review paper by L. Bottou, F. Curtis, and J. Nocedal “Optimization
Methods for Large-Scale Machine Learning” [2] (see Section 2).

1.1. Text categorization. Reuters Corpus Volume I (RCV1) [3] is a manually categorized
archive of over 800,000 news stories. Most stories consist of less than 1000 words (less than
two A4 pages). Each story is mapped to the 47,152-dimensional feature space corresponding
to the vocabulary of 47,152 words. In this space, points corresponding to each category are
separable by a hyperplane from the others. Hence, the task is to find a “good” hyperplane
w ' x + b = 0 such that

(2)

WTXi—I—b>O, Yy = 1,
WTXi+b<O, y; = —1.

Once such a hyperplane is found, the prediction function h can be chosen to be
(3) h(x,w,b) :=w'x+0D,

1The first classification algorithm was proposed by R. A. Fisher in 1936 where he derived an optimal decision
function to separate two Gaussian distributions (see [1]).


https://coral.ise.lehigh.edu/frankecurtis/files/papers/BottCurtNoce18.pdf
https://coral.ise.lehigh.edu/frankecurtis/files/papers/BottCurtNoce18.pdf
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Then one evaluates
(4) sign (h(x;, w,b))

in order to attribute x; to one class or the other.

In 1995, Cortes and Vapnik [1] proposed a successful approach based on duality called
Support-Vector Machine or Support-Vector Network for finding the optimal hyperplane for
which the right-hand sides of the inequalities in (2) are replaced with 1 and -1 respectively.
In the same paper, they extended this approach to nonlinear dividing hypersurfaces and
applied it to a number of benchmark datasets including NIST handwritten digit dataset.
We will discuss this approach as it is quite interesting.

However, as we will see, it involves some numerical difficulties that make it less appealing
than an approach sharpened for robustness rather than for optimality. This approach is
based on the use of a smooth loss function and regularization, Tikhonov or lasso. For
example, a log-loss function is of the form

(5) I(h,y) == log(1 + exp [~yh(x;, w,b)]).

Adding an extra Tikhonov’s regularizing term %HWH2 with a positive parameter A yields
the following unconstrained optimization problem:

. 1 — A\ )
v <w,b5%€dm;l (s, w,0), )] + 5 [w.

Adding such a term renders the optimization problem convex.

1.2. Image recognition and deep neural networks. The problem of image recognition
is much harder than the problem of text categorization. Even the task of digit recognition
is difficult as there is no rule describing properties of pixel combinations that define each
digit (see, e.g. Fig. 2.1 in [2] or Wiki: MNIST database). As for today, the most successful
approaches for image recognition are based on deep neural networks (DNNs). DNNs are
often described with jargon borrowed from neuroscience as they were originally inspired

by models of biological neurons.
(0)

The input vectors z; = x; ~ are mapped to the feature space by a composition of functions

of the form
(7) x\7) :s<ij§j‘”+bj) eERY, j=1,....J
where J is the number of layers, i.e., the number of functions in the composition, the
d; x d;j_i-matrix W; is vector b; € R% determine parameters of jth layer, and s is a
chosen nonlinear activation function acting component-wise. Popular choices are (see Fig.
1):

e ReLU (rectified linear unit) s(z) = max{0,x},

e sigmoid s(z) = (1 + exp(—x)) 71,

ef—e” "

eft+e "

e Hyperbolic tangent tanh(x) =


https://en.wikipedia.org/wiki/Support_vector_machine
https://www.nist.gov/srd/nist-special-database-19
https://en.wikipedia.org/wiki/MNIST_database
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FIGURE 1. Popular choices of the activation function in DNNs.

To simplify notation, we introduce a parameter vector w that collects all parameters:
(8) W= {(Wlabl)v(WQ)b2)7"°7(WJabJ)}‘

The optimization problem becomes

RS
9) Mrlrel%}i n izll [h(xisw), i)]
where [ is the chosen loss function. In contrast to (9) this optimization problem is highly
nonlinear and nonconvex, i.e., intractable to solve to global optimality [2].
Here are some examples of DNNs for image recognition?:
e AlexNet (2012), 8 layers. The original paper by A. Krizhevsky, I. Sutsever, and
G. E. Hinton [] is available here.
e ResNet (2016), a resudial neural network, proposed in [5] may have up to 152 layers.
e Wide Residual Networks (S. Zagoruyko and N. Komodakis, 2017).
e EfficientNet (M. Tan and Q. Le, 2019).

2. A WARM-UP CLASSIFICATION PROBLEM

Let us start with a simple classification problem. We are given a set of data {x;,v;},
i=1,...,n, where x; € R? are vectors and y; € {1, —1} are labels. We assume that the
sets of points with labels 1 and —1 are separable by a hyperplane. The problem posed in
[1] is the following (see Fig. 2):

find a hyperplane w'x +b =0 such that

1
(10) f(w,b) := §||W||2 — min subject to

2Thanks to Avi Schwarzschild, AMSC PhD student.


https://en.wikipedia.org/wiki/AlexNet
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://en.wikipedia.org/wiki/Residual_neural_network
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1605.07146.pdf
https://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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(11) yi(wai—i—b)Zl, i=1,...,n.

Let us explain (10). The distance between the two parallel hyperplanes in (11), w'x; +
b—1=0and w'x;+b+1=0, is equal to the distance between the points of intersection

of these hyperplanes with the normal line {aw | a € R}. These two points are
1-0 —-1-9b

12) I-bw o o-l-bw
Wil fIwll [wilflwl

Hence, the distance between these hyperplanes is
1-b —-1-b
(13) p =

Iwll— wl
Therefore, (10) maximizes the distance between the these two planes. The constraint (11)
is equivalent to

2
Wi

-
w'x,+b>1 ;=1
(14) kb2l =Ly
w x;+b< -1, y,=-—1.
Compare it with (2).
2,
~ . b
~ \\ _72
15F Ny \\HZ’VH - -
S o S o -] [ ]
“m. -]
S N
1 S o S -]
o5 9 < IR
< < < 2\\
0 < p
. « wl
-05 |
0.5 0 0.5 1 1.5 2

FIGURE 2. An illustration for optimization problem (10)—(11).

The optimization problem (10)—(11) is a quadratic program, i.e., the objective function is
quadratic, while the constraints defining the feasible set are linear. Note that the objective
function is convex but not strictly convex. In order to solve it, we will need to learn some
theory and methodology of constrained optimization.
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3. BASICS OF CONSTRAINED OPTIMIZATION

As the methods that we will use for solving the optimization problem (10)—(11) are
suitable for a much larger class of problems than quadratic programs, we will generalize
the problem in-hand to the following:

f(x) — min subject to
(15) ci(x) =0, €&, (equality constraints)
ci(x) >0, i€Z, (inequality constraints).

Any point x satisfying ¢;(x) =0, ¢ € € and ¢;(x) > 0, ¢ € Z, is called feasible. We assume
that f and ¢;, ¢ € £ UZ, are continuously differentiable.

In order to understand how to solve (15), first recall the method of Lagrange multipliers
from your calculus course. A helpful quick reminder is given in the Wiki article “Lagrange
Multiplier”—look at Figure 1 there.

Imagine that we have a single equality constraint ¢(x) = 0. Then the minimizer of f(x)
subject to ¢(x) = 0 lies at a point x* such that the level set {x € R? | f(x) = f(x*)} is
tangent to the hypersurface ¢(x) = 0. Indeed, moving along the hypersurface ¢(x) = 0 and
keeping track of the values of f(x), the extreme values of f will be achieved at the points
where the level set of f is tangent to ¢(x) = 0 (see Fig. 3(a)). At such points, the gradients
of f and ¢ will be parallel to each other, i.e., they will relate via

(16) Vf(x) = AVe(x).

The factor A is called the Lagrange multiplier. The condition (16) motivates the definition
of the Lagrangian function

(17) L(x,\) = f(x) — Ace(x).

Stationary points of L(x,\) are those where its gradient is zero, i.e.,
(18) VxL =V f(x) —AVe(x) =0,

(19) VL =c(x) =0,

Hence, at every stationary point of L(x,\) we have: (i) ¢(x) = 0 and (éi) the gradients of
f and c are parallel.

Now we replace the equality constraint ¢(x) = 0 with the inequality constraint ¢(x) > 0.
For visuality, we assume that level sets of f(x) are simple closed surfaces. This implies
that f has a unique local minimizer, and it is its global minimizer.

e If the minimum of f lies in the region ¢(x) > 0, the constrained minimum coincides
with the unconstrained minimum. Apart from this global minimum, consider the

point x* where a level set of f touches the level set ¢(x) = 0. The gradients
Vf(x*) and AVe(x*) are antiparallel, i.e., Vf(x*) = AVe(x*) for some A < 0 (see
Fig. 3(b)).

e If the global minimizer of f does not belong to the feasible set where ¢(x) > 0 as
in Fig. 3(c), the constrained minimum will be achieved at the point x* lying at


https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Lagrange_multiplier
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4

FIGURE 3. The geometric sense of Lagrange multiplier. (a): The solution
to the equality-constrained minimization problem is reached at the point
x* where the level set of f is tangent to ¢(x) = 0. (b): The unconstrained
minimum of f is the solution to the inequality-constrained optimization
problem c¢(x) > 0. (c): At the constrained minimum of f, Vf(x*) =
AVe(x*), where A > 0. The level sets are those of the Rosenbrock function
flz1,20) = (1 —21)% + (22 — 23)2.

S S —

¢(x) = 0 where Vf(x*) = AV¢(x*) for some A > 0. In this case, we say that the
constraint ¢(x) > 0 is active at the solution x*.

This illustrative example shows that the sign of the Lagrange multiplier is important and
gives an intuition for the Karush-Kuhn-Tucker first-order optimality conditions.

3.1. Karush-Kuhn-Tucker optimality conditions. This section is based on J. Nocedal
and S. Wright “Numerical Optimization” [6], Chapter 12.

Definition 1. The active set A(x) at any feasible x consists of the equality constraint
indices from & together with the indices of the inequality constraints i for which c;(x) = 0;
that is,

(20) Ax)=EU{ieZ | ¢(x)=0}.
At any feasible point x, the inequality constraint ¢;(x) > 0 is active if ¢;(x) = 0 and

inactive if ¢;(x) > 0.
The Lagrangian function is defined by

(21) LxA) = f(x) = Y Aci(x).
1€EUL

Definition 2. A feasible point x* is a local solution of (15) if all feasible sequences zj, — x*
as k — 0o have the property that f(z) > f(x*) for all k sufficiently large.

Definition 3. A direction d at a feasible point x is feasible if Ve;(x)'d = 0 Vi € £ and
Vei(x)Td > 0Vie Ax)NT.

Definition 4. The vector d is a tangent vector to the feasible set ) at a point x if there
are a feasible sequence zp, — x and a sequence of positive scalars t, — 0 as k — oo such


https://en.wikipedia.org/wiki/Rosenbrock_function
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5
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that

(22) lim
k—oo  tg

Zp — X
=d.

The set of all tangent vectors at x is called the tangent cone and is denoted by To(x).

The first-order optimality conditions known as the Karush-Kuhn-Tucker (KKT) condi-
tions are stated in the following theorem.

Theorem 1. Suppose x* is a local solution of (15) where f and ¢;’s are continuously
differentiable, and the set of active constraints gradients

(23) {Vei(x"), 1 € A(x")}

is linearly independent®. Then there is a Lagrange multiplier vector \* = {)\i}ie(guz) such
that the following conditions are satisfied at (x*, A¥)

(24) VxL(x*,A*) =0

(25) G(x*)=0 Vief,
(26) ¢i(x*) >0 VielZ,
(27) >0 Vied,
(28) Nci(x*)=0 VieEUL.

We will prove Theorem 1 for the case where the set of constrains consists only of linear
inequality constraints, i.e., for the problem

(29) f(x) — min subject to
Ax*—b >0, Aisnxd.

The proof for (29) follows the same steps as the proof for (15) given in [6] but is shorter
as it requires fewer technicalities. One important point is that the LICQ condition is not
required if all constraints are linear.

Proof. Without the loss of generality we assume that the active set consists of the first m

inequalities: A(x*) = {1,...,m}. The matrix consisting of the first m rows of A and the

vector consisting of the first m components of b will be denoted by A, and b respectively.

Note that there is a neighborhood U(x*) such that A, 1:m,:)X — b1 > 0 Vx € U(X").
Step 1. Show that the set of feasible directions is

(30) F(x*) ={d e R? | Ad > 0}
and coincides with the tangent cone T (x*).
Indeed, since V(Ax — b); is the ith row of A, Definition 3 implies that a direction d is
feasible if and only if Ad > 0.
Furthermore, for any tangent vector d we have a feasible sequence z; and a sequence of
scalars t; — 0 such that
z, = X"+ tpd + O(tk).

3This condition is called the linear independence constraint qualification (LICQ).
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Multiplying this equation by A and subtracting b we get:
0 <Az, —b=Ax"—b+t;Ad tr) = trAd + o(ty).
< Az X_O +tpAd + o(ty) = tk o(tk)
Dividing the last equality by ¢; and letting £k — 0, we get Ad > 0 which means that any
tangent vector is a feasible direction, i.e., T (x*) C F(x*).

On the other hand, if d is a feasible direction then the sequence z; = x* +t,d is feasible
for sufficiently small ¢; such that z; € U(x*). Indeed, by multiplying this equality by A
and subtracting b we get

Az, —b=Ax"—b+t,Ad =t ,Ad >0
=0
which implies that d is a tangent vector. Hence F(x*) C To(x*).
Step 2. Show that if x* is a local solution of (29) then

(31) Vix)'d>0 Vde To(x").
Indeed, assume the opposite: there is a tangent vector d such that V f (x*)Td < 0. Then
there exist sequences z; — x*, feasible, and t; — 0, t; > 0, such that
Fzr) = F(7) + 4V f(x*) Td + ot).
Hence, subtracting f(x*) from both sides and dividing by ¢, we get:
f(zk) - f(X ) _ Vf(x*)Td+o(1) <0

tr N—_——
<0

0<

for sufficiently small t; — a contradiction. Therefore, (31) holds.
Step 3 (Farkas’ lemma). Consider the cone

(32) K::{ATA\AeRm, )\iZOVISiSm}.

Note that K is convex and closed. Prove that for any vector g € R the following alternative
takes place:

e either g € K|, i.e., there is a vector A € R™ with nonnegative components such

that g = AT,
e or there exists a vector d € R? such that the hyperplane normal to d separates g
and K, i.e.,
(33) g'd <0, while Ad>0.

First we show that the two alternatives cannot take place simultaneously. From converse,
assume that g = AT\ for A > 0 while g'd < 0 and Ad > 0. Then

0>g'd=d'ATA=(Ad)" X >0,
>0 >0

a contradiction.
Now we show that if g ¢ K then (33) holds. Let y be the point of the cone K closest
to g in terms of the Euclidean distance. Such a point exists as K is closed. Note that y
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may be the origin or a boundary point of K different from the origin — these two cases are
depicted in Fig. 4. In both cases, the argument below is valid.

FI1GURE 4. Illustration to step 3 of the proof of Theorem 1 in the case where
d =2 and m = 2. The vectors a; and as are the rows of the matrix A.

By the definition of cone, the whole ray emanating from the origin and passing through
y belongs to K:

{ay € K | a > 0}.
Since y is the closest point to g in this ray as well, the minimum of the function

1 1 1
d(a) = 5(ay —g) (ay —g) = 5o’ |y[* —ay g+ llsl?

is achieved at o = 1. Therefore,

_de e T T
o_da(l)—\ly\l yg=y (y—8)

Let z € K, z #y. Since K is convex, we have
y+0(z—y)e K V0e[0,1].
By the minimizing property of y we have
ly +0(z—y)—gl* > ly —gl* v0e€l0,1].

Hence
20(z—y)' (y — g) + 6%z — y||> > 0.
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Dividing this equation by 8 and taking limit 6 | 0, we get
0<(z-y) (y-g)=2'(y-g) -y (y-g) =2 (y—g), ie
=0
(34) z' (y-g) >0 VzeK.
Now we set
di=y—-g

and show that d satisfies (33). Note that d # 0 as g ¢ K. Indeed, (34) means that
dTATA>0 vA>0,

which is true only if dTAT >0, i.e, Ad > 0. On the other hand,

dlg=d' (y-d)=(y-¢) ' (y-d) =y -8 y-ld* <0
=0

Step 4. Now we set g = Vf(x*). By Farkas’ lemma proven in Step 3, either V f(x*) €
K, i.e., there is a vector A with nonnegative components such that

(35) VI(x) =ATA,
or there is a feasible direction d such that Ad > 0 and Vf(x*)"d < 0 which means that
x* is not a local solution. Therefore, since x* is a local solution, (35) takes place.

Finally, we set the Lagrange multipliers with indices in the active set (1 < i < m) to be
equal to A and we set to zero the rest of them, i.e.,

A
A [2]
The conditions (24)—(28) are readily verified. O

Exercise Invent an example with f and ¢;’s continuously differentiable, ¢;’s do not satisfy
LICQ, and Theorem 1 does not hold.

3.2. Active-set method. This section is based on J. Nocedal and S. Wright “Numerical

Optimization” [6], Chapter 16. We consider a convex quadratic program (QP)
1

(36) fx) = §XTGX +c¢'x — min subject to

(37) alx=b;, ic€&

(38) a/x>b;, icT.

Convexity of the QP means that the matrix G is positive definite.
A quite natural method to solve (36)—(38) is the active-set method. At every step of this
algorithm, we solve a QP

1
(39) fx) = §XTGX +c¢'x — min subject to

(40) a/x=Db;, icW,


https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5
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where W is the current set of active constraints. We will denote by Ay the matrix whose
rows at a;, i € W, and byy the vector of b;’s, i € W. Then (40) becomes Ayyx = byy.
We do so as follows. Let x be the current iterate. We want to find a step py to obtain
the next iterate
Xk+1 = Xk + Pk-
In the case if xj11 is not feasible, we shorten the step length just enough to make xj11q
remain feasible. Plugging x;11 = x; + px into (39) we get

1 1
§(xk + i) "G(xp + i) + ¢’ (x4 pi) = §p,Ika + (Gxp, 4 ¢) "pr + f(x1).

We observe that Gx + ¢ = Vf(xx) and f(xg) is independent of p; and hence does not
affect the minimizer. Moreover, plugging X;+1 = X + px into (40) we get the following
constraint for pg:

Aw(xk + pr) — by = Awxy, — by +Aywpr = Awpy = 0.
—_————

=0
Therefore, the minimization problem for pj reduces to
1
(41) §pTGp + Vf(xk)Tp — min subject to

The KKT system for (41)—(42) is
Gpy, + Vf(x) = ApyA =0, Awpy =0.

It can be rewritten in the matrix form:

o e R

w 0 A 0
Exercise Show that the matrix in (43) where G is d x d symmetric positive definite and
A is m x d and has linearly independent rows, is of saddle-point type, i.e., it has d positive
eigenvalues and m negative ones. Hint: Omit the subscript W for brevity. Find matrices
X and S (S is called the Schur compliment) such that

G AT] [T 0 G 0 I X7
A 0 | | X I 0o s 0o I |
Then use Sylvester’s Law of Inertia (look it up!) to finish the proof.
Exercise Consider an equality-constrained QP (G is symmetric)
1

(44) ixTGx—{—ch — min subject to

(45) Ax =b.

Assume that A is full rank (i.e., its rows are linearly independent) and Z"GZ is positive
definite where Z is a basis for the null-space of A, i.e., AZ = 0.

(1) Write the KKT system for this case in the matrix form.
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(2) Show that the matrix of this system K is invertible. Hint: assume that there is a
vector z := (x,y)" such that Kz = 0. Consider the form z' Kz, and so on ... .
You should arrive at the conclusion that then z = 0.

(3) Conclude that there exists a unique vector (x*,A*)" that solves the KKT system.
Note that since we have only equality constraints, positivity of A is irrelevant.

According to the claims in the exercises, (43) has a unique solution (p, A). We consider
two cases.

e If p # 0, we can make a step in the direction p. Let us show that this is a descent
direction for f(x), i.e., V.f(x;) p < 0. Indeed, we have

Gp + VF(xi) = AlyA
Awp = 0.

Multiplying the first equation by p' we get

p' (Gp+Vf(xy)=p Gp+Vfxi) p=p A= (Awp) XA =0.
=0

Since G is positive definite and p # 0 by assumption, we conclude that V f(x;) 'p <
0 which means that p is a descent direction for f.

Next, we start moving from xj along the direction p until we either travel the
full distance ||p|| or activate another constraint:

al

; x=0b; for some ¢ W.

Hence, in order to find step length «, we consider

T

a (xp +ap)=a;x,+aa/p=>b; forall i¢W.

Since a;—xk >b; Vi ¢ W, if aZTp > 0, we can only reinforce this constraint by moving

along p. In contrast, if az—p < 0, we may hit the constraint prior to traveling the
full distance. Hence, the step length « is given by

b — al
(46) a=minq 1, min %azp .
i¢W,a/p<0 a, P

Finally, we set ap = a and pr = p.
e If p = 0, we cannot move anywhere from x;, given the set of constraints V. Hence,
there are two possibilities.

— We have found the solution to (36)—(38). To check if this is the case, we look
at the vector A of Lagrange’s multipliers, and check their signs. If all Lagrange
multipliers corresponding to inequality constraints are nonnegative, a solution
is found, and we terminate the iterations.

— If there is a negative Lagrange multiplier corresponding to an inequality con-
straint, we remove it from VW and proceed with iterations.
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A Matlab function ASM implements the active-set method for the case where f is allowed
to be nonconvex and nonquadratic, and the set of constraints consists of inequality con-
straints only. A driver for it with the Rosenbrock function and the feasible region being a
hexagon is the function ASMdriver.

function ASMdriver ()

%% the Rosenbrock function
a=>5
func = 0(x,y) (1-x).72 + ax(y - x.72).72; % Rosenbrock’s function
gfun = 0(x) [-2x(1-x(1))-4*xa*x(x(2)-x(1)"2)*x(1) ;2*a*x(x(2)-x(1)"2)]; % gradient of f
Hfun = @(x)[2 + 12%a*x(1)"2 - 4xaxx(2), -4xaxx(1); -4xaxx(1l), 2*al]; % Hessian of f
lsets = exp([-3:0.5:2]);

%% constraints

Nv = 6;

t = linspace(0,2*pi,Nv+1);

t(end) = [];

t0 = 0.1;

verts = [0.1+cos(t0+t);0.1+sin(t0+t)];

R = [0,-1;1,0];

A = (R*(circshift(verts, [0,-1])-verts))’;

b = verts(1,:)’.*%A(:,1) + verts(2,:)’.*%A(:,2); % b_i = a_i*verts(:,i)
x = [-0.5;0.5];

w=[1;

[xiter,1m] = ASM(x,gfun,Hfun,A,b,W);
%% graphics

close all

fsz = 16;

figure(1);

hold on;

n = 100;

txmin
txmax

min(verts(1,:))-0.2;
max(verts(1,:))+0.2;

tymin = min(verts(2,:))-0.2;

tymax = max(verts(2,:))+0.2;

tx = linspace(txmin,txmax,n);

ty = linspace(tymin,tymax,n);
[txx,tyy]l = meshgrid(tx,ty);

ff = func(txx,tyy);
contour(tx,ty,ff,lsets,’Linewidth’,1);

edges = [verts,verts(:,1)];
plot(edges(1,:),edges(2,:),’Linewidth’,2,’color’,’k’);
plot(xiter(l,:),xiter(2,:),’Marker’,’.’, ’Markersize’,20, Linestyle’,’-7,...

’Linewidth’,2,’color’,’r’);
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xlabel(’x’,’Fontsize’ ,fsz);
ylabel(’y’,’Fontsize’,fsz);
set(gca, ’Fontsize’,fsz);
colorbar;

grid;

daspect([1,1,1]);

end

function [xiter,lm] = ASM(x,gfun,Hfun,A,b,W)
%% minimization using the active set method (Nocedal & Wright, Section 16.5)
% Solves f(x) --> min subject to Ax >= b
% x = initial guess, a column vector
TOL = 1e-10;
dim = length(x);
g = gfun(x);
H = Hfun(x);
iter = 0;
itermax = 1000;
m = size(A,1); % the number of constraints
% W = working set, the set of active constrains
I =(1:m)’;
Wec = I; % the compliment of W
Xiter = x;
while iter < itermax
% compute step p: solve 0.5%p’*Hxp + g’*p --> min subject to A(W,:)*p = 0
AW = A(W,:); % LHS of active constraints
% fix H if it is not positive definite
ee = sort(eig(H),’ascend’);
if ee(1) < 1e-10
lam = -ee(1) + 1;
else
lam = O;

end
H = H + lam*eye(dim) ;
if “isempty (W)
M = [H, -AW’;AW,zeros(size(W,1))];
RHS = [-g;zeros(size(W,1),1)];
else

end
aux = M\RHS;
p = aux(l:dim);
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Im = aux(dim+1:end);
if norm(p) < TOL % if step ==
if “isempty (W)
Im = AW’\g; % find Lagrange multipliers
if min(lm) >= 0 % if Lagrange multipliers are positive, we are done
% the minimizer is one of the corners
fprintf(’A local solution is found, iter = %d\n’,iter);
fprintf(’x = [\n’); fprintf(’%d\n’,x);fprintf(’]\n’);
break;
else % remove the index of the most negative multiplier from W
[Imin,imin] = min(1lm);
W = setdiff (W,W(imin));
Wc = setdiff(I,W);
end
else
fprintf (’A local solution is found, iter = %d\n’,iter);
fprintf(’x = [\n’); fprintf(’%d\n’,x);fprintf(’]J\n’);
break;
end
else J, if step is nonzero
alp = 1;
% check for blocking constraints
Ap = A(Wc,:)*p;
icand = find(Ap < -TOL);
if “isempty(icand)
% find step lengths to all possible blocking constraints
al = (b(Wc(icand)) - A(Wc(icand),:)*x)./Ap(icand);
% find minimal step length that does not exceed 1
[almin,kmin] = min(al);
alp = min(1,almin);

end

X = X + alp*p;

g = gfun(x);

H = Hfun(x);

if alp < 1
W = [W;Wc(icand(kmin))];
We = setdiff(I,W);

end

end

iter = iter + 1;
xiter = [xiter,x];
end
if iter == itermax
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fprintf (’Stopped because the max number of iterations %d is performed\n’,iter);
end
end

3.3. Finding the dividing hyperplane for classification problems. Now we return to
the constrained minimization problem (10)—(11), a QP with a convex but not strictly convex
objective function and linear inequality constraints. We rewrite it in a form convenient for
feeding into the active-set solver:

Yyi - 0N x;, —, 1 1
wz:[‘ﬂ, A= S O I S A B
Yn -+ Yn X;l; —, 1 1

where the symbol ©® denotes the componentwise matrix multiplication. The vector w is
(d+1) x 1, the matrix A is n x (d + 1), and the right-hand side vector b is n x 1; n is the
number of data points and d is the dimension of the data space. Hence, the optimization
problem becomes:

1 .
(47) flw) = QWT : w — min subject to

(48) Aw > b.

An example of the active-set algorithm applied to find the optimal line dividing samples
from two 2D Gaussian distributions with means (0.5,0.5)" and (1.5,1.5) " and variances 1
is shown in Fig. 2. There are two complications with this approach.

e The active-set method needs a feasible point to start with. It is hard-to-find by
inspection even in 2D. In order to find the initial guess for w, I wrote an extremely
simple routine shown below. I define a loss function

n
[(w,A,b) :=) ReLU(b; — (Aw);), where RelLU(z)=max{0,x},
i=1
and organize a gradient descent with constant step length. Note that [ = 0 and
VI =0 if w is a feasible point.
function [w,1l,lcomp] = FindInitGuess(w,A,b)
relu = @(w)max(w,0);
drelu = Q@(w)ones(size(w)).*sign(relu(w));
1 = sum(relu(b - Axw));

iter = 0;
itermax = 10000;
step = 0.1;

while 1 > 0 && iter < itermax
dl = sum(-drelu(b - Axw)’*A,1)’;
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if norm(dl) > 1
dl = dl/norm(dl);
end
W = W — step*dl;
1 = sum(relu(b - A*w));
iter = iter + 1;
end
fprintf (’%d iterations: x = [}d,%d],f = %d\n’,iter, w(l),w(2),1);
lcomp = relu(b - A*w);
end
end

The output x of this function is the desired initial guess. If the output 1 is nonzero,
this means that the algorithm failed to find a feasible point. Why I need the output
lcomp you will see shortly — I need it to address the issue in the next item.

As you can easily imagine, samples from the mentioned two Gaussian distributions
may not be separable by a line. This is a very common situation in real-life prob-
lems. For example, screening medical tests give results that indicate a risk for some
condition but do not diagnose it exactly for the reason that data from normal and
affected patients are not separable, though do exhibit certain trends (see e.g. this
example). A way to address this issue proposed in [!] is to introduce soft margins,
i.e., a set of n penalty variables £ > 0,7 =1,...,n. The new problem becomes:

Flw,b.&) = SIwlP + €36
=1

yz(WTX1+b)Zl_§z7 izlv"'7n7
>0, 1=1...,n.

To write this problem in the matrix form we define x := [w,b,£]" € R4 and
get:

_ 1 r lixa Odx (n+1)
f09 = 2 [ On+1)xd  Omt1)x(n+1)
[y ’ 11><(0l+1)] © [Xa 1n><1] Inxn % > 1%t

OnX(d+1) Insn T | Onx1 |7

:| X+ C[le(d—l—l)v 11><n]X — min,

The positive constant C' is chosen depending on what goal is being pursued. I chose
C = 103, a large number. To find an initial guess, I run the same routine for finding
the initial guess. The initial guess for the vector of errors £ is the output lcomp.
An example of separating samples from the same two Gaussian distributions with
soft marging is shown in Fig. 5


https://prenatalscreeningontario.ca/en/pso/resources/Documents/NT-Measurement-and-Quality-Assurance-Report.pdf
https://prenatalscreeningontario.ca/en/pso/resources/Documents/NT-Measurement-and-Quality-Assurance-Report.pdf
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FIGURE 5. Separating samples from two Gaussian distributions with soft
margins (52)—(53)

4. DUALITY

The solution proposed in [1] to address the issue of finding the initial guess for the QP
arising in the classification problem is to consider the dual problem [6] (Section 12.9). First
we discuss the definition and some properties of the dual problem. Then we set up the
dual problem for the classification problem. In general, the dual problem might be easier
or harder than the original problem.

4.1. The dual problem: definition and facts. Consider the special case of the con-
straint optimization problem where

e the objective function f is convex and
e there are only inequality constraints ¢;(x) > 0 such that —¢;(x) are convex:

(54) f(x) = min subject to
c(x) >0,

where ¢ : R — R” is a smooth As before, we assume that f and ¢;’s are smooth. Recall
the definition of the Lagrangian function:

(55) L(x,A) = f(x) ~ ATe(x),

where ¢(x) = [c1(X),...,ca(x)]" is the vector of the left-hand sides of the constraints

¢i(x) > 0. The solution to the KKT system maximizes L with respect to A subject to
A > 0 while minimizes it with respect to x. Indeed, if (x*, A*) is a local solution to (55),
we have: ¢;(x*) > 0, A* > 0, and A* @ ¢(x*) = 0. Hence, if A; > 0 then ¢;(x*) = 0.
Therefore, any change of \; > 0 for such i does not change L(x, ). On the other hand,
any feasible change of A; = 0 is an increase of \;. For such \; we have ¢;(x*) > 0. Therefore,
L(x,\) = f(x) — AT ¢(x) can stay the same or decrease as a result of this change.
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This suggests to consider the dual problem for the objective function g(\) defined by
(56) g(A) = inf L(x,A).
xeR4

The domain of ¢ is defined at the set of those A for which ¢ is finite, i.e.,
Dy :={A | g(A) > —o0}.

The dual optimization problem reads:

(57) g(A) — max subject to A >0.

The sequence of theorems below establishes important properties of the dual problem
and its relationship with the forward problem.

Theorem 2. The function
qg(A) = iI}lch(X, A) = iI}l{ff(X) —Ae(x)
is concave and its domain Dy := {X | ¢(A) > —oo} is convez.
Proof. For any A°, Al € R™, for any x € R%, and any a € [0,1], we have
L(x, (1 = )X’ + aAl) = (1 — @) L(x,A%) + aL(x, A1).

Taking infimum of each side and taking into account that the infimum of a sum is > than
the sum of infimums, we obtain:

q((1 = a)X? +aXl) > (1 — a)g(\°) 4+ ag(A\h).
This means that ¢ is concave. Further, if A%, Al € Dy, then
(1 = )X+ adl) > (1 — a)g(A%) + ag(A!) > —c0
meaning that (1 — a)A? + aA! € D,. Hence D, is convex. O
Theorem 3. For any X such that ¢(X) > 0 and any X > 0 we have g(A) < f(X).
Proof.

a(A) = inf f(x) = A e(x) < f(%) = ATe(x) < f(%).

]
The KKT conditions applied to the primal problem (54) are:
(58) Vf(x)—Ve(x)A =0, where Vc(x)=[Vei(x),...,, Vep(x)],
(59) c(x) > 0,
(60) A>0,
(61) Ale(x) =0.

Theorem 4. Suppose X is a solution to primal problem (54). Then any X > 0 for which
(%, ) satisfies the KKT conditions (58)-(61) for (54), is the solution to the dual problem
(57).
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Proof. Let (X, ) satisfy the KKT conditions (58)-(61) for the primal problem (54). Note
that L(x, ) is convex as f and —¢;’s are convex. Hence for any x € R? we have:

L(x,A) > L(%,A) + VK L(%,A) T (x — %).
Since (58) means that
ViL(%x,A) = Vf(X) — Ve(X)A =0,
we have:
L(x,A) > L(X,A) + Vi L(X,A) ' (x — %) = L(X, A).
Therefore,
g(A) = inf L(x,X) = L(%,A) = f(X) — c(x)'A = f(x),

where the last equality follows from (61). By Theorem 3 we have g(A) < f(x) for al A > 0.
Therefore, A is a maximizer of g(\). O

4.2. The dual classification problem. Now we will derive the dual problem for the
classification problem (47)—(48) (see [1], Appendix A). The Lagrangian for (47)—(48) is

(62) L(w,b,A) = %WTW — i i [yi(wai +b) — 1} :
i=1

Let [w*]Tx 4+ b* = 0 be the optimal hyperplane and A* be the corresponding vector of
Lagrange multipliers. Taking the gradient of L with respect to w and b and evaluating it
at (w*,b*, A¥) we obtain:

aL * * * * - *
(63) G (Wb X) = w EAiyixizo,
aL * ok *\ = * _

Therefore, the optimal vector w* relates to the optimal A* via
n

(65) W= Nyixi,
i=1

and the optimal A™ also satisfies the following equality condition

(66) y A =0.
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Substituting (65) and (66) into (62) we obtain the dual function g(\):

1 n n n n
q()\) = 5 (Z )\Zyzsz> Z )\jijj — Z >\i Y; Z /\jijjT X; + b -1
i=1 j=1 i=1 j=1
1
= §>\TD>\ —ATDA = by " A+ Lixn\
1
(67) = —§>\TD>\ + 11w, where
(68)
Y1 x| = h
p-| - ; [’11 ’ﬂ =0T,
Yn x;l; — Yn
In summary, we obtain the following constrained optimization problem for A:
1
(69) q(\) = —§>\TD>\ +11xnX — max  subject to
(70) y'A=0,
(71) A>0.

As the vector A* is found, the optimal w* is found from (65). Then we select two support
vectors

x;, such that i, =argmax{)\; |1<i<n, y; =1} and

x;_  such that i_ =argmax{)\; | 1 <i<mn, y; = —1},

and find b from the identities (w*)'x;, +b=1and (Ww*)'x; +b=—1:

b= —%(W*)T (Xi+ +XL) .

Exercise Is the matrix D positive definite? Either prove the statement or give a coun-
terexample.

The dual problem (69)—(71) has the following advantages.

e The vector A = 0 is always a feasible point for (69)—(71) as all constraints hold at
it. Hence, we do not need to search for an initial guess.

e If the number of constraints is large, we can solve the problem iteratively where
the dimensionality of the problem at each iteration is as modest as desired. We
take a subset of data points 1,...,m, m < n, and solve (69)—(71) for it. Most of
the inequality constraints will be inactive, i.e., most of A;’s will be zeros. Those
data points x; corresponding to \; > 0 are called the support vectors — this is why
this approach is referred to as the support-vector network or the support-vector
machine. Only these few support vectors are carried to the next iteration. The
next m data points are added to them to form the constraints for the next problem
to solve. And so on until there are no more data points to add.
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e The dual approach is also generalizable for the case of soft margins.
Exercise Derive the dual problem for (49)-(51).

e Finally, the dual approach is generalizable for nonlinear separating hypersurfaces
by means of replacing the dot product with a kernel function: XZT x; is replaced
with K (x;,%;) in the definition of the matrix D in (68) [1]:

Di; = yiy; K (x4, %;).
For example, K (x;,x;) can be
L w12
K(x;,%xj) = (xiij +1) or K(xi,x;)=exp {_Hx,;(]]} .
o
Let us make a few implementational remarks.

(1) The dual problem is a constrained maximization problem. To convert it to a more
accustomed constrained minimization problem, just take —g(\) as an objective
function: g(A) — —q(X).

(2) We can get rid of the equality constraint y' A = 0 by incorporating it into the
objective function. Let us express A\, via A;’s, 1 <i<n —1:

n—1
1 1
(72> )\n = _yi Zyz/\z = _yiyz—;(nfl)Alz(n—l)a
n 2] n

where yi.(p—1) == (Y1, Yn_1)' and Alin—1) = (A1, -+, A1) . Next, we write
D as a block matrix separating its last column and last row:

Doo Do
D =
[ Dip D1 } ’

or, in Matlab notation:

DOO = D(1:end-1,1:end-1);

DO1 = D(1:end-1,end);

D10 = D(end,1:end-1);

D11 = D(end,end);

Plugging (72) into the quadratic form AT DX we get:

1 D D Al(n—1
ATDA= AL 1 ——Yiim1 M 00 201 =y
At a1y, ynyi(”*m Li(n U][ Dy Dn1 —Q%YIQFJJAlin*U
1
= Al(n,l)DooM:(n—l) - yi)‘il—;(nfl)ylz(n—l)DIO)\lz(n—l)

1 1
_ yanI(n—anyz(n—n}\1;(n—1) + yﬁ)‘l(n—l)yun—l)DllyI(n_1))\1:(n—1)~

Hence the matrix of the quadratic form in the new constrained minimization prob-
lem is:

1 1 1
(73) H = Dy + 7}’1:(71—1)}’;(”_1)1711 — —Yi:(n-1)D10 — *Dm}’I(n_l)-
Yn Yn Yn
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(74)

5.

The linear term of g(\) is modified to:
c:=1lup_1x1 — —Yi(n-1)
Yn
The resulting problem for A := (A1,...,A,_1)" becomes:

1
qA) = iATHA —c'A = min subject to
A>0,

1

Yn
The matrix H is symmetric but not, in general, positive definite. To make sure
that every step of the active-set method reduces the objective function, we add a
multiple of the identity matrix to H. Let —ug is the most negative eigenvalue of
H. Then the matrix H := H + ul where p > po (I set p = po+ 1 in my code) is
symmetric positive definite. Then the modified KKT matrix is invertible, and its
inverse is [7] (see Section 3.3):

ol [ H AT [ H 4+ HATS AR —HATS
1A 0 - —S~1AH! Ss1 ’
S=—AH'AT is the Schur compliment.
Exercise Let (p*, A*) be the solution to the modified KKT system
H ATl _[-p]_[VS
A 0 | Al | 0O |7
Show that p* is a descent direction i.e., Vf p < 0 provided that columns of A"

are linearly independent and n < d. Hint: First try to get it yourself. If you get
stuck, look into [7].

UNCONSTRAINED OPTIMIZATION PROBLEM FOR CLASSIFICATION PROBLEMS

Classification problems are often much more complicated than those where two sample
sets can be separated by a hyperplane. Often one first needs to map the input data to
a feature space using a nonlinear map, find a dividing hyperplane there, and then use its
pre-image in the input space as the classifier. A simple nonlinear benchmark classification
problem is the Swiss roll shown in Fig. 6(a). This example is set so that it is suffices to
define the feature space by taking polar angle of each data point x;, multiply by three (this
operation will collapses all blue petals and all black petals, and take sines and cosines of
these angles to avoid the issue with discontinuity and periodicity. In Matlab syntax, the
map to the feature space is:

(80)

f(xi) = [sin(36(x)), cos(3(x))]


http://page.math.tu-berlin.de/~liesen/Publicat/BenGolLie05.pdf
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FIGURE 6. (a): Swiss roll dataset of 600 points and dividing rays (solid)
together with margins (dashed). For “petal” k, the data are generated by
adding a 2D Gaussian random variable with mean 0 and variance 0.17 to
the curves ¢ (r) = *7/6 + 0.5r. Here, (r, ¢) are the polar coordinates. (b):
The data mapped to the feature space by (80) where they are linearly
separable.

where ¢(x) is the polar angle of x. Fig. 6(b) shows that this map to a 2D feature space is
sufficient for making the data linearly separable. Finally, the SVM [1] is used to find the
dividing lines and the margins that are mapped back to the data space (Fig. 6(a)).

While the solution in Fig. 6 looks nice, it is tuned only for this particular problem.
Moreover, if we increase the twist in the curves around which we sample data points, e.g.,
we define @i (r) = *7/6 + r instead of ¢i(r) = #7/6 4+ 0.5r, this classification method will
break. We can do SVN with soft margins, but this will not help to adjust the shape of
dividing surfaces. Adding r to the feature space won’t help either (see Fig. 7).

We can custom-design a special feature space specifically for this problem, but this will
not help to solve other problems. This problem is just a toy problem that is only of interest
as a test problem for generic techniques.

The approach that proved its power is based on the use of deep neural networks (NN).
One can set up a DNN with three hidden layers to solve this problem?® as follows. The
labels for class 7 will be the standard basis vector e; € RX where K is the number of
classes; K = 2 in our case. Let the nonlinear mapping to the feature space be

(81) (I)(X) = U(AgU(AQU(A1X+b1) +b2) +b3)

The nonlinear function o (applied entrywise) can be chosen to be ReLU which is popular
in image recognition, or a smooth function like (1 + e~%)~! or tanh(z) that are more
preferable in other applications like solving PDEs and MD sampling. We expect the data

in the feature space to be linearly separable by A4®(x)+by where A4 is 2xds3, and by € R,
The matrices Ay, Ay, A3 have dimensions dy X 2, ds X dy, and d3 X do respectively, and

31 thank Avi Schwarzschild (AMSC, UMD) for this example provided in his final report for AMSCG664.



Fall 2020 AMSC808N/CMSC828V

cos(3¢)

FIGURE 7. (a): Swiss roll dataset of 600 points. For “petal” k, the data
are generated by adding a 2D Gaussian random variable with mean 0
and variance 0.1r to the curves ¢p(r) = #7/6 + r. Here, (r,¢) are the
polar coordinates. (b): The data mapped to the feature space: x —
[sin(3¢(x)), cos(3¢(x)),r] " are not separable by a hyperplane.

vectors b; € R%, i = 1,2,3. The numbers d; can be large (e.g., between 100 and 1000).
The model described here is called a multilayer perceptron. The loss function can be chosen
as

(52) £(w) = 3 s w) = il

where w := {(A;,b;)}% is the vector of parameters comprising all matrices A; and shifts
b;, and h(x;w) := A4®(x;10) + by is the prediction function, @ := {(A;, b;)}2_;.

This example demonstrates how the classification problem can be reduced to an uncon-
strained minimization problem. Moreover, the objective function is of the form of sum of
squares of nonlinear functions taking advantages of which can be exploited.

6. AN OVERVIEW OF METHODS FOR UNCONSTRAINED OPTIMIZATION

Key references for this section are [6] and [2]. The most widely used methods for uncon-
strained optimization are summarized in Fig. 8. Methods for unconstrained optimization
can be divided into three categories described in the three respective subsections below.

6.1. Derivative-free methods. Derivative-free methods only require function evalua-
tions. A well-known method in this category is the Nedler-Mead downhill simplex method
[6] (Section 9.5). Matlab’s function fminsearch, very handy for small problems, employs
a derivative-free method.


https://www.mathworks.com/help/matlab/ref/fminsearch.html
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Methods for unconstrained optimization

Derivative-fr Involve only 1st Quadra'ric model
erivative-free
derivatives of f(x) f(x+p) = ) + VE(X)Tp + (1/2)p™Hp
Line Search Trust region
Nedler-Mead 9
simplex l l
method . Nonlinear
Gradient conjugate Newton Quasi-Newton
descend gradient (BFGS, L-BFGS)
Accelerated
gradient Gauss- Levenberg-
descend Newton Marquardt
Coordinate| | Sfochastic ~
Gradient .
descend Nonlinear least squares problem
Descend
Stochastic

FIGURE 8. The most widely used methods for unconstrained optimization
and their classification.

6.2. Gradient descent. The pivotal method in this category is gradient descent a.k.a.
steepest descent. Please read D. Bindel’s notes (Sections 8, 9, and 10) about gradient
descent and related issues. This is the most straightforward minimization method (as
the forward Euler method for solving ODEs), which, in the context of solving practical
optimization problems can be attacked from two opposite directions. On one hand, its
convergence is slow:

2
1+ k(A)’

where A = Vf2(x*) is the Hessian matrix of f at the local minimizer x* and x(A) =

Amax(A)/Amin(A). (Note that if x* is a nondegenerate local minimizer, then A is symmetric
positive definite). An example depicting how the gradient descent requires many iterations
to converge when the problem is poorly scaled is shown in Fig. 9.

I, = x| = O(p") where p=1-


http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-23.pdf
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FIGURE 9. Iterations of the gradient descent starting from xo = (—10,2)"
and f(x) = %az% + 4x129 + 2023 + 0.171 + 0.279.

On the other hand, the gradient of a function may be to costly to evaluate in large-scale
optimization problems arising in machine learning. Stochastic gradient descent became a
method of choice in TensorFlow and PyTorch. It is designed for case where the objective
function is a sum of functions for each sample, it gives a good and cheap estimate for the
gradient at each step, and its efficiency is independent of the number of samples.

The other method used in large-scale problems is coordinate descent. While this method,
in contrast with gradient descent, is not guaranteed to converge to a stationary point of
f(x) (i-e., a point x* such that Vf(x*) = 0 if f is nonconvex [17] (there is an example
of a nonconvex continuously differentiable function of three variables for which a cyclic
coordinate descent method, with step lengths chosen by exact one-dimensional minimiza-
tion, cycles without converging to a stationary point). The appeal of coordinate descent is
its easy implementation and cheap iterations. These facts made this method a subject of
active contemporary research.

7. STOCHASTIC GRADIENT DESCENT

The key reference for this section is [2]. Stochastic gradient descent (SG) originates from
the work by Robbins and Monroe (1951)“A stochastic approximation method” [3]. SG is
designed for minimizing functions of the form

N
(83) f(x) = %Zf,(x), N is large.
i=1


https://www.tensorflow.org
https://pytorch.org
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FiGURE 10. An example illustrating how stochastic gradient descent with
a constant step length first rushes to the region where the minima of the
individual functions are and then bounces around forever. Here, f(x) =
1/20 ngl(:c — )2, step length is 0.3, batch size is 1. The iteration numbers
are indicated by the parula colormap going from blue to yellow.

One simple version of SG runs as follows. One picks a batch, a random subset of indices
Sk C {1,..., N} and makes a step:

(84) Xjt1 = X — Qy - > Vi(xk)
|Sk| :
JESk

A 1D example with batch size 1 is shown in Fig. 10. The expression in the square brackets
is a stochastic approximation to V f(xy). Why is this a reasonable approximation? Often,
there are many samples x; in the training set (each sample x; defines the corresponding
fi), and these samples can be split into groups consisting of similar samples. In this case,
using just a subset of samples for estimating the gradient will give almost as good result
but will be cheaper by the factor m/N. Moreover, typically, the dimensionality of machine
learning optimization problems is very large. Hence, evaluating all N gradients may cause
a computer memory problem.

7.1. Expected decrease of f under SG iterations: assumptions and basic lem-
mas. The SG algorithm offers a lot of flexibility for choosing batch sizes |Si| and stepsizes
ag. These can be fixed or variable and chosen according to some strategy enhancing per-
formance. Moreover, the choice of the recipe for generating the direction for the step gives
an additional flexibility. For example, one can calculate the direction of a step from scratch
at each step, or incorporate the previously used directions, or even build up a stochastic
estimate for the inverse Hessian and make the method a stochastic quasi-Newton. We will


https://www.mathworks.com/help/matlab/ref/parula.html
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denote the stochastic vector in the direction opposite to the direction of step k by g(xx; &)
where & is a random variable (generally, a vector random variable). For a simple SG with
batch size 1,

8(xx: &) = V fe, (xk).
For SG with batch size n; we have

1 &
g(xk; &) = - >V e (%u).
=1

For a stochastic quasi-Newton version,
1 &
g(xk; &) = HkTTk Z V fer i) (Xk)-
i=1

In broad strokes, the SG algorithm is outligned in Algorithm 1.

Algorithm 1: SG algorithm
Initialization: Choose an initial vector xg .
for £k=1,2,...do
Generate a realization of the random variable &g;
Compute a stochastic vector g(xg, &x);

Choose a stepsize ay;
Set a new iterate as Xp11 = Xp — (X, &k );
end

In order to analyze SG we need to make some assumptions on niceness of the objective
function f.

Assumption 1. f: R? = R is continuously differentiable and V f : R¢ — R? is Lipschitz-
continuous with constant L, i.e.,

(85) IVf(x) = Vi)l < Llix—yll ¥x,y € RY,
where || - || is the 2-norm.

Using (85) we can obtain a quadratic bound for the growth of f:
1 df 1 T
F09 = F) + [ ot +alx=y)da = 1)+ [ Vrly +atx—y)(x - y)da
1
=10+ [ (V5 + VI +alx=y) = V() (x = y)da

1
< F3) + V) (x—y) + /0 Lalx - y|*da.
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Performing integration in the last identity, we obtain:

(56) F69) < F3) + VI T =) + LIk~ vl Wy € R

This identity allows us to establish the following

Lemma 1. Under Assumption 1, iterates of Algorithm 1 satisfy
(87)

Cl2
Ee, [f (xp41)] — f(xk) < —ouV f(xi) " Ee, [g(xk, k)] + %Eik[”g(xk,&)m Vk € Zy.

Proof. By (86), the iterates satisfy
1
F(Rrg1) = f) < VFG) T (kg1 — k) + oL lxk+1 = x|

L 2
=~V (ki) T8k ) + o gk, 1)1

Taking expectations with respect to & and noting that x; is independent of &, we obtain
(87). O

A good news is that if —E¢, [g(x,&x)] is a descent direction for f, i.e.,
Vf(xk) " Ee g (xk, &)] > 0,

then for sufficiently small step length o we expect that f will decrease as a result the step
Xktr1 = Xp — ag(Xg,&). To ensure that the random directions guarantee some minimal
decrease we state

Assumption 2. There exists a constant p > 0 such that for all k € Z4
(88) VF(xr) " Ee g (xk, )] 2 ]|V f ()|,

A bad news is that there is a harmful effect of the second term that is always positive.
In order to limit its effect, we make one more

Assumption 3. There exist constants M > 0 and Mg > p® > 0 (u is from (88)) such
that for all k € Z 4

(89) Ee,[llg(xr, &)%) < M + Mg ||V f(xi)||*-
Example Let us see how Assumptions 2 and 3 apply to the 1D example in Fig. 10 where
1 Jo
flz) = 20 zZ;(ac —i)? and g=x—1i where i=randi(10).
Let us start with Assumption 2. We have: V f(z) = x — 5.5. The distribution of g(z*) is:
each of the values z — 1, z — 2, ..., z — 9, z — 10 is taken with the same probability 0.1.

Hence E;[g(x,i)] = 2 — 5.5 as well, hence p = 1 works.


https://www.mathworks.com/help/matlab/ref/randi.html?s_tid=srchtitle
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The stationary point is £* = 5.5. The distribution of g is: each of the values —4.5, —3.5,
..., 3.5, 4.5 is taken with the same probability 0.1. Hence, the expectation of g2 is
E[g(z*,i)%] = 0.1 - 2(4.5% + 3.52 + 2.52 + 1.5% + 0.5%) = 8.25.

Hence, M = 8.25. Now, Vf(x) = z — 5.5 and ||[Vf(2)||*> = 2?2 — 112 + 30.25, while
g(x,i) = x — i and

10

E[|g(z,i)|?] = 0.1) [¢* — 2z + %] = 2* — 112 + 38.5.

i=1

Plugging this into (89) we get:
2% — 11z + 38.5. < 8.25 + Mg(z? — 11z + 30.25).

Hence, it suffices to pick Mg = 1. Note that Mg = p?, hence the requirement that
Mg > Mz is satisfied.

Assumptions 2 and 3 allow us further elaborate the expected decrease of f under SG
iterations.

Lemma 2. Under Assumptions 1, 2, and 3, the iterates of SG satisfy

) [BqlFOok)] - 160 <~ (1= joulMa) aul]VFGxu)|? + joRLaL,

Proof. Plugging (88) and (89) to (87), we git:
Eg, [f (x041)] = £ () < —pol|VF (x0) 1 + %aiL (M + M|V f (xx)II?)

1 1
= — <,u, — QakLMG> OtkHVf(Xk)HZ -+ §OéiLM
as desired. OJ

Note that if ay is small enough, the first term in the right-hand side of (90) is negative.
The second term is always positive. These considerations are crucial for designing SG
methods.

7.2. Convergence of SG for strongly convex objective functions.

Assumption 4. The objective function f : R* — R is strongly convez, i.e., there exists a
constant ¢ > 0 such that

c
(91) F(y) = () + Vi) (y —x) + Sy - x[* vx,y e R%
Hence, f has a unique minimizer x* € R? with f* := f(x*).

Assumption 4 guarantees that f grows away from its minimizer x* at least as fast as
the convex quadratic function §|[x —x* |2. Note that the requirement of strong convexity
is stronger than the one of strict convexity. If f is twice continuously differentiable, strong
convexity means that its Hessian is positive definite everywhere, and its eigenvalues are
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bounded from below by ¢ > 0, while positive definiteness of the Hessian only will suffice
to guarantee strict convexity. For example, the function y = v/22 + 1 whose graph is the
hyperbola lying above its two slant asymptotes y = £z is strictly convex but not strongly
convex. Its second derivative " = (1 4 :1:2)_3/ 2 is positive everywhere but is approaches 0
as |z| — oo.
Comparing (91) and (86) we observe that ¢ < L (L is the Lipschitz constant for Vf).
Assumption 4 also allows us to bound so called optimality gap.

Proposition 1. Let f satisfy Assumption 4. Then
(92) 2¢(f(x) = f*) < [Vf)IP vx e R™
Proof. Let us fix x and consider the quadratic model

ay) = () + VI (v = %) + 5|y = x|

q(y) has the unique minimizer y := x — %Vf(x) with

. 1
49) = 1) — 5 IV S
Therefore, setting y = x* in (91), for any x € R? we have:
f*> 100+ V)T (X = %)+ llx" = x[? > f(x) - ;Cllvf(X)l\2-
Hence, (92) readily follows. O

7.2.1. Fized stepsize. Now we are ready to establish the first convergence result for SG
with fixed stepsize for a strongly convex objective function. It is clear from (90) that
the iterates will not be able to converge to the minimizer but will bounce around in its
neighborhood as the first term in (90) tends to zero as we approach x* while the second
term remains constant. We will denote the total expectation of f(xy) for any k € Z by

E[f(xk)] = E&E& s E§k71 [f(xk)]

Theorem 5. Under Assumptions 1, 2, 3, and 4, suppose that the SG method (Algorithm
1) is run with a fived stepsize « satisfying

(93) 0<a<-H

Then the expected optimality gap satisfies the following inequality for all k € Zy :

alLM
2cp

(94) Elf(xx) = f] <

T (1 - acp)? (f<xO> oM ) oM

2ep

2cp

Roughly speaking, this theorem says that the SG iterates with fixed stepsize will reach
a certain neighborhood of the optimal point and bounce there forever provided that the
stepsize is not too large.
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Proof. Plugging the bound (93) on the stepsize to (90) (the result of Lemma 2) and then
inserting the optimality gap (92) we get:

B e)] ~ 1) < = (1 JaLMa ) al VSa) P+ Ja?L01

IA

o 1
~ IV + S LM
1
< —acu(f(xe) = f7) + 50*LM.

Subtracting f* from both sides, rearranging terms, and taking total expectations, we get:

B/ (k1) — 1] < (1~ acmB{f(xi) — ] + 0 LM.

Subtracting aﬁfg from both sides we get:
alLM alL M
E — f] - <(1- E —f - .
(95) Foen) = ] = Gt < (1= ) (ELfom) = 171 5 )
Note that
2 2
0<acu< i <i—6§1.

LMg — Lu2 L
Here we used the assumption that Mg > p?(see Assumption 3) you might have been
wondering about what is it for. Therefore,

0<(1-—acu)<l.

Applying (95) repeatedly we obtain (94). This completes the proof. O

7.2.2. Decreasing step size. As we have proven, SG with a fixed step size does not converge
to the minimizer. In order to achieve convergence, we need to reduce stepsize as we progress
but not too fast: a condition for stepsizes «y proven in [3] is

oo o
(96) Z Qg = 00, Zai < 0.
k=0 k=0

Note that oy, = k! satisfies (96). Moreover, if we want to reduce stepsize by factor of 2,
we need to do it on a certain schedule. One such a schedule is: do mg steps of size «, then
do mq = myg steps of size 27 q, ..., then do my = m02k/k: steps of size 2%, and so on.
Then

2

> 2F o = 2F o2 >, o
;Omok%:oo, kz_omokﬂfzzmokﬂf<oo

The following theorem offers another schedule for stepsize reduction for which error decay
goes as O(1/k).
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Theorem 6. Under Assumptions 1, 2, 3,and 4, suppose that the SG method 1 is run with
a stepsize sequence ay, k € N, such that

p 1 7

= — — d h that < .
(97) g oy for some (> ” and >0 suchthat o < Te
Then for all k € N, the expected optimality gap satisfies

v
98 E[f(xk) — f*] < ,
(98) [Fx) =11 <
where
B2LM . 1 yMp?
= o= 1 - -

(99) v im e { s (o D7)~ 1)+ 5

Proof. Repeating the start of the proof of Theorem 5 we obtain the inequality:
N 1
Ee, [f (xk41)] = f(xk) < —apep(f(xi) — f7) + 506%LM
Subtracting f* from both sides, rearranging terms, and taking total expectations, we get:
* w1 1
Elf (xk41) = f*] < (1 — apep)E[f (xx) — f ]+'§@%LA4-

Now we proceed by induction. It follows from definition of v that (98) holds for k& = 1.
Indeed,

v
> — f*,
o fx) = f
Induction assumption: (98) holds for k:
v
E -1 < .
[f (xk) f]_7+k

Induction step:
E[f(x51) — 7] < (1~ onen)E[f (i) — ] + 03LM
_ Bep v 1 B
_<1_’y+k>’y+k+2(’y+k)2LM
_ytE=1 Bep—1 1 52
BN R A IR

< 0 by definition of v

v+k-—1

SR
v

< -
vy+k+1
This completes the proof. O

as (Y+E)Z2>(y+Hk+D)(y+k—1).
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Example Fig. 11 shows an example of application of the SG algorithm to

n

(100) )= =S (o — i)

=1
with n = 10, initial guess x¢9 = —5, batch size 1, and stepsizes reduced according to the
following schedule:
step = 0.3;
N = 15;
NN = 10;

for ii =1 : NN
s = step/27ii;
nsteps = ceil(N*27ii/ii);
for i = 1 : nsteps
k = randi(n);
g = grad(k,x);
X = X - g*s;
end

end

Then the expectations E[f(zy) — f*] is estimated as the average over 10° runs of this
algorithm.

1 —sG
Hi — 10k
10 &b
o~ 10°
=
T 107

1
0 500 1000 1500

! I .
2000 2500 3000 3500

k
FIGURE 11. Decay of the optimality gap for SG applied to (100) with n =
10 and batch size 1. The graph of 10/k is shown in red for comparison. The

regular gradient descent reduces the optimality gap to the same value in 16
iterations (see the yellow plot).

7.3. SG for nonconvex objective functions. If the objective function is not convex,
then, under the rest of assumptions that we have made for the strongly convex case, there
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is a subsequence of iterates at which the expected norm squared of the gradient approaches
zero, i.e., a subsequence of iterates approaches a stationary point. If we amplify smoothness
requirements for f, the iterates will approach a stationary point. This is summarized in
the following

Theorem 7. Under Assumptions 1, 2, and 3, suppose that the SG algorithm is run with
stepsizes satisfying (96). Then

(101) lim inf E[||Vf(x)[|] = 0.

If, in addition f is twice continuously differentiable, and the mapping x — ||V f(x)|? has

Lipschitz-continuous derivatives, then

(102) lim E[||V£(x)]%] = 0.
k—o00
I am referring an interested reader to [2] (Section 4.3) to look up the proof.

8. GRADIENT DESCENT AND ACCELERATED GRADIENT DESCENT

In this section, we will explore the convergence of gradient descent and accelerated
gradient descent with constant stepsize. We will discuss several variants of accelerated
gradient descent, in particular, Nesterov accelerated gradient and ADAM. I am using the
following sources:

e Convergence of gradient descent: lecture by Ryan Tibshirani (Carnegie Mellon
University): http://www.stat.cmu.edu/ ryantibs/convexopt-F13/scribes/lec6.pdf;

e The original paper by Yu. Nesterov (1983) in Russian;

e Convergence of Nesterov Accelerated Gradient: slides by Andersen Ang (UMONS,
Belgium): https://angms.science/doc/CVX/CVX_NAGD.pdf;

e A blog by Sebastien Ruder giving a good overview for modern methods for large-
scale optimization: https://ruder.io/optimizing-gradient-descent/;

e A paper by A. Botev, G. Lever, and D. Barber, (CS, University College, Lon-
don) “Nesterov’s Accelerated Gradient and Momentum as approximations to Reg-
ularised Update Descent” that gives a nice perspective on Nesterov’s algorithm:
https://arxiv.org/pdf/1607.01981.pdf;

e A paper by D. P. Kingma and J. L. Ba “Adam: A Method for Stochastic Opti-
mization” where ADAM is introduced: https://arxiv.org/pdf/1412.6980.pdf.

8.1. Convergence analysis for gradient descent with constant learning rate. We
have the convergence result given as Theorem 6 for stochastic gradient descent (SG) for
strongly convex functions with Lipschitz-continuous gradient. It shows that the optimality
gap of SG converges as O(k~!) provided that the stepsize is reduced harmonically, aj =
B(k +~~1) with v and B chosen appropriately. Noting that M = 0, and u = Mg = 1 for
the gradient descent (GD), we easily can adapt Theorem 5 for GD with constant stepsize
a € (0,1/1] and conclude that

Fo) = 15 < (1= ao)*(f(x1) = f),


http://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf
http://www.mathnet.ru/links/1d0e045879058764093bb0f383729b64/dan46009.pdf
https://angms.science/doc/CVX/CVX_NAGD.pdf
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/pdf/1607.01981.pdf
https://arxiv.org/pdf/1412.6980.pdf
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where the parameter ¢ > 0 characterizes the strong convexity of f. Now we will prove
another convergence result for GD characterizing its convergence rate as O(1/k). Note that
strong convexity is no longer required.

Theorem 8. Suppose the function f : R — R is convex and its gradient is Lipschitz
continuous with constant L > 0. Then if we run gradient descent for k iterations with a
fized step size 0 < o < /L, it will yield a solution f(xy) which satisfies

o llxo —x*|
103 - <
(103) Foa) = f* =
where f* = f(x*) is the minimum of f.

Proof. The iterations of GD are:

Tpp1 = o —aVfy, where fp = f(xg).

Recall that the Lipschitz continuity of V f implies (see (86)) that

2
FOxi) = Flai — Vi) < Fx6) — ol VAl + S E VA2

— e - a (15 ) IVAI

Since 0 < a < 1/1, we have 0 < L /2 < 1/2. Therefore,

e
(104) F(xrn) < FOxk) = S IV el

To obtain further bounds, we need to use the convexity of f. We have:
(105) fx) < fF+Vix)T(x—x*) vxeRL

Subtracting f* from both sides of (104) and using (105) then we get:

Fran) = f* < FG0) = f* = SV il

" leY

< VI 0k = %) = SV Al

1 i} ) *
= % (204Vf;;r(xk —x*) — 2|V =[x — x*)2 + |Jxk — x ||2)
1 ) )
N B _ X' —aV
% (I[xe — x*||* = [|xx — x* — aV fi[|?)
1
2 (”Xk - X*H2 — || xg+1 — X*HQ) .
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Summing the last inequality from j = 1 till j = k we obtain:

k
1
> (fxy) - <52 (%1 = X1 = llx; —x*(?)
A o
7j=1 7j=1
= o (o — X[~ lxx — x°[1?)
2c
< ool — x|
~ 2 '
Finally, we use the fact that f is non—increasing at any iteration which means that
1 1 * (12
fx" %Z §%HX0—XH,
as desired. m

8.2. Nesterov’s accelerated gradient: motivation. We start the discussion on Nes-
terov’s accelerated gradient (NAG) with an intuitive perspective on it given in [9]. Thinking
of Newton’s mechanics for a body of mass m being acted upon by the potential force V f
and experiencing friction proportional to its speed, we have:

1

106 v =—yv — —V ,
(106) V= v - V()

(107) X =vV.
Discretizing this equation in time with timestep 1, we obtain

1

(108) Vit = (1= 7) vi = —Vf(x),
(109) Xk+1 = Xk + Vit1-

We will refer to this algorithm as gradient descent with momentum and abbreviate it as
MOM.
Now we consider NAG. It is given by:
(110) Vi1 = (1 + p) Xg — ppXp—1,
(111) Xp41 = Yht1 — Oékvf(ykﬂ),

where Nesterov proposed schedule pp = 11—+ +k and fixed aj. Introducing vi := xp —xp_1,
we see that yx4+1 = X + pr vy and hence

(112) Xk = Yk+1 — V-
Furthermore,
(113) Xkl = Y1 — &V f(Xp + g vi).-

Subtracting (112) from (113) we obtain the iteration for xj, and vy:

(114) Vit = Ve — o V(X + prve),
(115) Xk+1 = Xk + Vit1-
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Comparing (114)—(115) with (108)—(109) we see that NAG evaluates the gradient at the
extrapolated position xj + pg V.

8.3. Convergence of Nesterov’s accelerated descent. The original version of NAG
is a bit different from a different from (110)—(111). The Algorithm outlined below gives
a slightly simplified modification of the original algorithm: the stepsize « is set to be 1/L
rather than being chosen at each step by the bisection method.

Initialization Choose the initial approximation yo. Set: k=0, Ao =0, X9 = yo.
for £k =10,1,2,... do
Gradient update:

1
Vit+1 = Xg — fo(Xk);

Extrapolation weight:
1 1-—A
M1 =5 (1H/1+402 ), W= k.
2 Akt1

X1 = (L = V) Yrt1 + WYk

Extrapolation:

end

Theorem 9. Suppose the function f : R® — R is convex and its gradient is Lipschitz
continuous with constant L > 0. Then the iterate of NAG with a constant stepsize « = 1/L
converge to the optimal value f* at rate O(k~2) as

xo — x*||?
(116) Flyw) - < 2HP0 2

where f* = f(x*) is the minimum of f.
The proof of this theorem is long and tricky. I refer an interested reader to Ang’s slides.

None that NAG can be easily converted to a stochastic version by approximating the
gradient of f as we have done in SG.

8.4. Adam. See D. P. Kingma and J. L. Ba “Adam: A Method for Stochastic Optimiza-
tion”: https://arxiv.org/pdf/1412.6980.pdf. A motivation for Adam and its connections
to other optimizers are discussed in S. Ruder’s blog.

Adaptive Moment Estimation (Adam) computes adaptive learning rates for each compo-
nent of x. At each step, we compute the decaying averages for the gradient and elementwise
gradient squared (the first and the second moments):

my = Bimp_1 + (1 = B1)Vf(xk), vp=Povg—1+ (1 —F2) [VSf(xk) ©® V[f(xz)].

Since at the start of the algorithm, these moments are biased toward zero, as ;1 and [
are close to 1, these biases are counteracted by bias-corrected estimates:
my . UV
= Vp = —.
-gF T

mg



http://www.mathnet.ru/links/1d0e045879058764093bb0f383729b64/dan46009.pdf
https://angms.science/doc/CVX/CVX_NAGD.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://ruder.io/optimizing-gradient-descent/index.html#nesterovacceleratedgradient
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The update for Adam is given by:

n N
X+l =X — —F7= Mg
VU + €

Default values for the parameters are:

B =0.9, B2=00999, e=10"% 15 =0.001.

9. SECOND ORDER METHODS

9.1. Motivation: scale invariance. One might wonder, what is the sense to use sto-
chastic optimization methods making use of second derivatives approximations, while the
rate of convergence is going to be sublinear anyway? Well, these methods tend to improve
rate constants. More importantly, these methods are able to reduce adverse effects of ill-
conditioning and poor scaling. Let us illustrate an adverse effect of poor scaling on an
example.

Example Suppose we would like to minimize two 2D quadratic functions
1
(117) fi(x) = §XTAZ-X +b'x, i=1,2, where
1 0.1 1 1 0.1
Al_[o.l 2]’ AQ_[1 10]7 b_[0.2}

We set the initial guess to xo = [~10,2]" and iterate the gradient descent method with
exact line search

Vf(xx) 'V f(x)
V fi(xi) T AV fi(x)

until ||V fi(zg)|| < 107°. Note that the eigenvalues of A; are 0.9901 and 2.0099 while
the eigenvalues of Ay are 0.8902 and 10.1098. Hence, none of the minimization problems
is poorly scaled. Nonetheless, it takes 14 and 144 iterations to meet the convergence
criterion for f; and fo respectively — see Fig. 12. In contrast, Newton’s iteration proceeds
by making steps to the minimizer of the quadratic model (in our case, the model is the
function itself)

Tpr1 = ¢ — oV fi(xr) where o =

X1 =X0 — A:1Vfl(x0) = X0 — Ai_l(AiXO + b) = —Al-_lb

meaning that it converges in one iteration in both cases. The conjugate gradient algorithm
(see [6], Chapter 5) will converge in two iterations in both cases.

The conjugate gradient (CG) method is an iterative solver for linear systems Ax — b, or, equivalently, optimization method
for f(x) := %xT Ax — b " x, where A is symmetric positive definite. It generates a sequence of directions py conjugate with
respect the matrix A, i.e., pzApj = 0 for all j # k starting from the steepest descent direction: pg = —ro = b — Axg.
All directions pg, k > 1, are linear combinations of px_1 and the steepest descent direction —r; = b — Ax;, with weights
chosen to ensure conjugacy of pr and pry1. Stepsizes o are chosen to minimize the function along the ray x, + aps,

i.e., so that V f(xy + ozpk)Tp;C = 0. One can show that the sequence of directions p; generated this way is conjugate with
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Ficure 12. Convergence of gradient descent for the functions given by
(117) with tolerance set to 1071, (a): i = 1: 14 iterations. (b): i = 2: 144

iterations.

respect to A. Moreover, the following identities facilitate the implementation of CG:

Here is a Matlab CG code:

function x = CG(x,A,b,kmax,rho)
r =Axx - b;
p=r;
k = 0;
rerr = 1;
normb = norm(b);
while k < kmax && rerr > rho
Ap = Ax*p;
a = r’*r/(Ap’*p);
X = X + ax¥p;
rr = r’*r;
r = r + axAp;
bet = r’*r/rr;
p = -r + betx*p;
k =k + 1;
rerr = norm(r)/normb;
end
end

p;rk - r;,rrk.
p. Apr P/ Apk’
Ti+1 = AXg41 — b=ri + apApy,

xdp = —

T T
Pp Ark41  Tpp1Th+1

ﬁk‘,-{—l =
P APk riry

One can show (see [6], chapter 5) that the directions generated by CG are linearly independent, and each CG iteration

minimizes f(x) in the subspace spanned by all directions used so far. In particular, this means that CG converges in d

iterations in R? in exact arithmetic. Typically, CG algorithm is used to solve large and sparse linear systems with symmetric

positive definite matrices and is terminated after much fewer iterations than the dimension of the space d.

Let us return to the gradient descent (GD) and Newton’s method. GD is not scale-
invariant. This means that if we apply a nondegenerate linear transformation to R%:
x — z := Cx, det C' # 0, and run GD in the original space X and the transformed space Z
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starting with xg and zg such that zg = Cxq, then z; # x; for k > 0. Let us demonstrate
this on a quadratic function.
In the original space X = R? and the transformed space Z = R? we have:

f(x) = %XTAX +b'x, g(z):=f(C'z) = %ZTC_TAC_lx +b'C 'z
The first iterates starting from xg and zg := Cxq iterates are,

(Axq + bg) " (Axg + by)
(Axg + bg) T A(Axg + bg)
(C~TAC™ 2o+ C~Tby) " (C~TAC™ 29 + C~ Thy)
(C-TAC-1zg+ C~Tby)TC-TAC-1(C-TAC~ 12y + C~Tby)

Multiplying x; by C' we do not obtain z;.
Newton’s iteration is

X1 = X0 —

(Axo + by),

(C_TAC_1Z0+C_Tb0).

7] = Zp—

Xpt1 = Xi — VVf(Xk)ilef(Xk).
In the transformed space, g(z) = f(C~'z), hence
V.g=C""Vxf and V,V,g=C""VyiVifC
Exercise: verify these formulas. Hence, Newton’s iterations in the transformed space
starting from zg = Cxq are:
Zit1 = 2k — V2Va9(21) ' Vag(z)
T 117 AT
=2~ [CTTVAs ()OO (x0)
= 21— | OV (x0) 7 CT| 0T Vi)
= 2z, — CVx Vi f(x1) Vi f (x1).
Multiplying xx4+1 by C we obtain zy41 provided that z; = Cxy. This proves the induction

step. Hence, we have shown scale invariance of Newton’s method.

9.2. Subsampled Inexact Hessian-free Newton’s method. To take an advantage of
second-order methods, batch sizes for evaluating the Hessian or its approximations should
not be too small. A good batch size is e.g. 256 [2]. In my relatively small-scale test
problem with n ~ 1000, I used 64. Taking this into account, keeping Hessian in memory
and inverting it might be undesirable. An alternative to it is to define a function with a
vector argument v that evaluates the matrix-vector product VV f(xx)v. Then one can use
the CG algorithm for the problem

VV f(xr)p = =V f(xx)

to compute a good approximation to Newton’s direction p. Once the direction p is ob-
tained, one can use backtracking line search to determine step length. The idea is the
following. The objective function f along the ray x; + ap is given by

f(xp+ ap) = f(xx) + aVf(xy) 'p + O(a?).
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Suppose that p is a descent direction of f, i.e., Vf(xz)'p < 0. Then, for any constant
n € (0,1), there is a sufficiently small interval (0, &) such that for all o € (0, &) we have

f(xk +ap) < f(xx) +naV f(x) " p.
Note that multiplying by n we decrease the slope — see Fig. 13. We pick a constant

f(xx)

f(xr +ap)

fx0) +naVf(xe) ' p

Jxk) +aVi(xe)Tp

~N

F1GURE 13. An illustration to backtracking line search.

v € (0,1) (I usually set v = 0.9) and evaluate f at x; ++/p for j = 0,1, ... until either we
get

Fxi+77p) < f(xi) + 1V Vf(x1) P
or v/ < tol (I usually set tol= 10714).

All these ideas are incorporated to the Matlab code below. The resulting method is
called subsampled inexact Hessian-free Newton’s method. Here the vector with respect to
which we are solving optimization problem is denoted by w. The input arguments are:
fun is the objective function,
gfun is its gradient,

Hvec is the function returning the product Hessian times vector,

Y is the data matrix which is the argument for all of these functions,

w is the initial guess for the solution.

This routine calls the function CG, the previous Matlab code.

function [w,f ,normgrad] = SINewton(fun,gfun,Hvec,Y,w)

rho = 0.1;

gam = 0.9;

jmax = ceil(log(le-14)/log(gam)); % max # of iterations in line search
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eta = 0.5;

CGimax = 20; % max number of CG iterations
n = size(Y,1);

bsz = min(n,64); % batch size
kmax = 1e3;

[n,”] = size(Y);

I =1:n;

f = zeros(kmax + 1,1);

f(1) = fun(I,Y,w);

normgrad = zeros(kmax,1);
nfail = 0;

nfailmax = 5*ceil(n/bsz);

for k = 1 : kmax

Ig = randperm(n,bsz); % batch for evaluating

stochastic gradient

IH = randperm(n,bsz); % batch for evaluating Hessian times vector

Mvec = @(v)Hvec(IH,Y,w,v);
b = gfun(Ig,Y,w);
normgrad (k) = norm(b);
s = CG(Mvec,-b,-b,CGimax,rho);
a=1;
f0 = fun(Ig,Y,w);
aux = etaxb’*g;
for j = 0 : jmax
Wtry = w + axs;
f1 = fun(Ig,Y,wtry);
if £f1 < fO + axaux

fprintf (’Linesearch: j = %d, f1 = %d, £f0 = %d\n’,j,f1,£0);

break;
else
a = axgam;
end
end
if j < jmax
w = wtry,
else
nfail = nfail + 1;
end
f(k + 1) = fun(I,Y,w);

fprintf(’k = %d, a = %d, £ = %d\n’,k,a,f(k+1));

if nfail > nfailmax
f(k+2:end) = [J;
normgrad(k+1:end) = [];
break;
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end
end
end

9.3. BFGS. BFGS (Broyden-Fletcher-Goldfarb-Shanno) is, perhaps, the most successful
quasi-newton method [0] (Section 2.2). At each step of optimizing a function f(x), any
quasi-newton method updates a quadratic model for it
1

(118) m(p) = f(xr) + Vf(xx)'p+ §PTBkP,
where By, is a matrix approximating the Hessian of f. The step direction p is the minimizer
of (118):

pr = —B; 'V f(x).
The matrix By, is constructed as follows. The initial matrix is often set to identity: By = I.
Then, at each step, is it updated to match the action of the actual Hessian of f on the
actual step. For brevity, we will denote fr, = f(xx), Vfr = Vf(xk), and VV f(x;) = VV f.
Taylor expansion at xj, yields the following identity:

(119) Vfit1 = Ve + VV fio(Xpr1 — xx) + o([[Xp11 — Xk ])-
Hence
(120) V fir1 — Ve = VV fr(Xp1 — Xi).

We introduce notation

Sk :=Xpy1 — X, and  yg:=Vfi1 =V
and define the update requirement for the matrix B motivated by (120):
(121) Bii1sk = Yk

Note that B is d x d while (121) gives only d equations. Therefore, (121) is an underde-
termined system that has a d-dimensional solution space. The BFGS update formula for
By adds a matrix of rank 2 to it designed so that By remains symmetric positive definite
provided that By is symmetric positive definite and skTyk > 0 for all k.

Exercise Prove that all matrices B generated by BFGS

BkSkSTBk k 5
(122) Bir = By — k=t YRV

s,l—Bksk y,;rsk
are symmetric positive definite provided that such is By and sgyk > 0 for all kK € N.

A convenient feature of BFGS is that the inverse matrices Hy = B, ! can be generated
automatically instead of Bj:

1
visi

Exercise Prove that the matrices Hj, given by (123) are inverses of By, given by (122).

(123) Hi1 =V, HiVi + ppsgsy,, where pj, = Vi =1 — pryssy, -
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Fig. 14 displays iterates produced by three line search methods: Newton’s (blue), BFGS
(dark green), and gradient descent (dark red) applied to the Rosenbrock function

(124) f(x) = (1 —21)>+5(wy —22)?  with initial guess [—1.3,1.5]".

This function has a unique local minimum at [1; 1]T but with the given parameter values it
is not convex. For Newton’s method, the Hessian is modified in the case if it is not positive
definite — see the code below. The stopping criterion is |V f|| < 1071°. Newton’s method
converges in 10 iterations, BFGS — in 18, while gradient descent takes 270 iterations most
of which are in a small neighborhood of the solution. The main lesson for us is that BFGS
converges almost as fast as Newton as iterates get to a neighborhood of the local minimum
in which the objective function is well-approzimated by a convex quadratic. Here is the

151

051

15 I I I I I I I |

FIGURE 14. Iterates of Newton’s (blue), BEGS (dark green), and gradient
descent (dark red) applied to (124).

Matlab code that generates Fig. 14.

function Newton_BFGS_GD()

%% the Rosenbrock function and parameters

a = b;

func = @(x,y)(1-x).72 + a*(y - x.72).72; 7 Rosenbrock’s function

gfun = @(x) [-2%(1-x(1))-4*a*x(x(2)-x(1)"2)*x (1) ;2*xa*(x(2)-x(1)"2)]; I gradient of £

Hfun
gam = 0.9; % line search step factor

0(x)[2 + 12%ax*xx(1)"2 - 4xa*x(2), -4*axx(1); -4xa*x(1l), 2*a]; % Hessian of f
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jmax = ceil(log(le-14)/log(gam)); % max # of iterations in line search
eta = 0.5; % backtracking stopping criterion factor
tol = 1e-10;
Dot
close all
figure;
hold on; grid;
x0 = [-1.3;1.5]; Y%initial guess
xstar = [1;1]; % the global minimizer
[xx,yyl=meshgrid(linspace(-2,2,1000),linspace(-1.5,2,1000));
ff = func(xx,yy);
plot(xstar(1l),xstar(2),’r.’,’Markersize’,40);
daspect([1,1,1]1)
col = [0,0,1;0,0.5,0;0.7,0,0]; % colors RGB
% method = 1: Newton
% method = 2: BFGS
% method = 3: gradient descent
str = ["Newton","BFGS","GD"];
for method =1 : 3

x = x0;

g = gfun(x);

nor = norm(g);

if method == 1 % Newton

H = Hfun(x);
else
if method == 2 % BFGS
H = eye(2);
end

end
plot (x(1),x(2),’b.’, ’Markersize’,20) ;
fx = func(x(1),x(2));
contour (xx,yy,ff, [fx,fx],’k’, ’Linewidth’,1);
iter = 0;
while nor > tol
switch method
case 1
emin = min(eig(H));
if emin < O
H=H + (-emin + 1)*eye(2);
end
p = -H\g;
case 2
p = -Hxg;
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case 3
p =g
otherwise
return
end
a=1;

f0 = func(x(1),x(2));

aux = etaxg’*p;

for j = 0 : jmax
xtry = x + a*p;
f1 = func(xtry(1),xtry(2));
if f1 < £0 + a*aux

break;
else
a = axgam;
end
end
s = ax*p;

Xnew = X + s;
plot ([x(1) ,xnew(1)], [x(2) ,xnew(2)], ’Linewidth’,2,’color’,col(method,:));
gnew = gfun(xnew);
if method == 1 % Newton

H = Hfun(xnew);
else if method == 2 % BFGS

y = gnew - g;

1/(y’*s);
rys = eye(2) - r*y*s’;
H = rys’*H*rys + r*s*s’;

o}
I

end
end
X = Xnew;
g = gnew;
fx = func(x(1),x(2));
if method ==
contour (xx,yy,ff, [fx,fx],’k’,’Linewidth’,1);
end
plot(x(1),x(2),’.”,’color’,col(method, :), ’Markersize’,20);

nor = norm(g);
iter = iter + 1;
end
fprintf(’Ys: %d iterations, norm(g) = %d\n’,str(method),iter,nor);
end
set(gca,’Fontsize’,16);
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xlabel(’x_1’,’Fontsize’,16);
ylabel (’x_2’,’Fontsize’,16);
end

9.4. L-BFGS. L-BFGS stands for limited memory BFGS [0] (Section 7.2). It is often
the method of choice for large-scale problems where the Hessian cannot be computed at a
reasonable cost or is not sparse. L-BFGS (as other limited-memory quasi-Newton methods)
stores a small fixed number of vectors (e.g., m = 5) that represent an approximation to the
Hessian implicitly, i.e., it stores the pairs (s;,y;) for i = k—m, ..., k—1. At each iteration
k, an initial approximation H,? to the inverse Hessian is chosen. One such approximation
that has proven effective in practice is (see [0] Section 6.1)

-
S _
(125) HY = ’fl_—liykl
Ye_1Yk-1
Then this approximation is updated by
L . .
(126) H =V i Vi g + PhemtjShemtiStmajr  J=0,...,m—1,

where p; and V; are defined in (123). Equation (126) suggests that the matrix-vector
multiplication defining the direction of the step py = —H]'V f;. can be performed in two
for-loops implemented in the Matlab code below.

function p = finddirection(g,s,y,rho)
% input: g = gradient dim-by-1
% s = matrix dim-by-m, s(:,i) = x_{k-i+1}-x_{k-i}
% y = matrix dim-by-m, y(:,i) = g_{k-i+1}-g_{k-i}
% rho is 1-by-m, rho(i) = 1/(s(:,i)’*y(:,1i))
m = size(s,2);
a = zeros(m,1);
fori=1:m
a(i) = rho(i)*s(:,1i) ’*g;
g =g - a(Q)x*y(:,i);

end
gam = s(:,1)’xy(:,1)/(y(:,1)°*xy(:,1)); % HO = gam*eye(dim)
g = g*gam;

for i =m :-1 : 1

aux = rho(i)*y(:,1)’*g;

g =g+ (a(i) - aux)*s(:,i);
end
p =78
end
L-BFGS keeps in memory pairs of vectors (s, yx) from the most recent m steps and replaces
the least recent pair with the new pair at each step. The Matlab program below encodes
L-BFGS and testing it on the Rosenbrock function (124). The convergence is achieved in 20
iterations which is comparable with Newton’s and close to BEGS (10 and 18, respectively)
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and which is much fewer than gradient descent (270). The majority of these iterates are
done in a small neighborhood of the minimizer. Fig. 15 is generated by this routine. The
norm of the gradient versus iteration number for all four methods are plotted in Fig. 16.

function LBFGS()

%% the Rosenbrock function and parameters
a=>5
func = @(x,y)(1-x).72 + a*(y - x.72).72; 7 Rosenbrock’s function

gfun = 0(x) [-2x(1-x(1))-4*a*x(x(2)-x(1)"2)*x(1) ;2*a*x(x(2)-x(1)"2)]; % gradient of f
Hfun = @(x)[2 + 12%a*x(1)"2 - 4xaxx(2), -4xaxx(1); -4xaxx(1l), 2*al]; % Hessian of f
gam = 0.9; % line search step factor

jmax = ceil(log(le-14)/log(gam)); % max # of iterations in line search

eta = 0.5; % backtracking stopping criterion factor

tol = 1e-10;

m = 5; % the number of steps to keep in memory

Toth

close all

figure;

hold on; grid;

x0 = [-1.3;1.5]; Y%initial guess

xstar = [1;1]; % the global minimizer
[xx,yy]l=meshgrid(linspace(-2,2,1000),linspace(-1.5,2,1000));

ff = func(xx,yy);

plot(xstar(1) ,xstar(2),’r.’, Markersize’,40);

daspect([1,1,1])

col = [0.4,0.2,0];

b

s = zeros(2,m);

y = zeros(2,m);

rho = zeros(1l,m);

yA

x = x0;

g = gfun(x);

plot(x(1),x(2),’.7,’color’,col, ’Markersize’,20);

fx = func(x(1),x(2));

contour (xx,yy,ff, [fx,fx],’k’, ’Linewidth’,1);
% first do steepest decend step

a = linesearch(x,-g,g,func,eta,gam, jmax) ;
Xnew = X — axg;

gnew = gfun(xnew) ;

s(:,1) = xnew - x;

y(:,1) = gnew - g;

rho(1) 1/(s(:,1) xy(:,1));
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plot([x(1) ,xnew(1)], [x(2),xnew(2)], ’Linewidth’,2, ’color’,col);
X = Xnew;
g = gnew;
nor = norm(g);
plot(x(1),x(2),’.”,’color’,col, ’Markersize’,20) ;
fx = func(x(1),x(2));
contour (xx,yy,ff, [fx,fx],’k’, ’Linewidth’,1);
iter = 1;
while nor > tol
if iter < m
I =1 : iter;
p = finddirection(g,s(:,I),y(:,I),rho(I));
else
p = finddirection(g,s,y,rho);

end
[a,j] = linesearch(x,p,g,func,eta,gam, jmax);
if j == jmax
P = -8
[a,j] = linesearch(x,p,g,func,eta,gam, jmax);
end
step = a*p;

xnew = x + step;

plot ([x(1),xnew(1)], [x(2),xnew(2)], ’Linewidth’,2, ’color’,col);
gnew = gfun(xnew);

s = circshift(s, [0,1]);

y = circshift(y, [0,1]1);

rho = circshift(rho,[0,1]);

s(:,1) = step;

y(:,1) = gnew - g;

rho(1) = 1/(step’*y(:,1));
X = xXnew;
g = gnew;

fx = func(x(1),x(2));
if nor > 1le-1
contour (xx,yy,ff, [fx,fx],’k’, ’Linewidth’,1);
end
plot (x(1),x(2),’.’,’color’,col, ’Markersize’,20);
nor = norm(g);
iter = iter + 1;
end
fprintf (’L-BFGS: %d iterations, norm(g) = %d\n’,iter,nor);
set(gca, ’Fontsize’,16);
xlabel(’x_1’,’Fontsize’,16);
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ylabel (’x_2’,’Fontsize’,16);

end

/YA

function [a,j] = linesearch(x,p,g,func,eta,gam, jmax)

end

a=1;
f0 = func(x(1),x(2));
aux = etaxg’*p;
for j = 0 : jmax
xtry = x + axp;
f1 = func(xtry(1),xtry(2));
if £f1 < f0 + axaux
break;
else
a = axgam;
end
end

-0.5

I
05 1 15 2

FIGURE 15. Iterates of L-BFGS applied to (124).

9.5. Stochastic L-BFGS. Stochastic L-BFGS [2] (Section 6.2) like stochastic Newton’s
method makes the performance less sensitive to poor scaling and improves convergence
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—=— Newton
—6—BFGS

—>— gradient descend
—e—L-BFGS

llgrad 1,

FIGURE 16. Decay of |V f(xx)|| for various methods applied to (124).

prefactor in the sublinear convergence rate. Our goal is to extend L-BFGS for large-
scale optimization problems and make it competitive and, ideally, more efficient than SG.
Performance of L-BFGS is sensitive to the quality of approximation of the Hessian. Note
that I reset the direction to the steepest descent direction in LBFGS.m (the code above) for
a good reason. Without this, the routine wastes about 70 iterations in one unfortunate
spot where the produced direction is bad. To address this issue, it is advisable to use larger
batches for stochastic approximation for the inverse Hessian than those for approximation of
the gradient. This measure would make stochastic L-BFGS much more expensive than SG.
A countermeasure against the drastic increase of cost per iteration is to update the inverse
Hessian only once per 10 or 20 iterations. Here is a pseudocode depicting stochastic L-
BFGS without specifying implementational details. This routine leaves you some important
choices to make. First of all, you can use some preset stepsize reducing strategy or you can
do backtracking line search as it is done in the stochastic inexact Hessian-free Newton’s
method. Second, you can compute y; using the stochastic gradients evaluated at x; and
Xp+1 or you can use the stochastic gradient xj41 and the stochastic gradient evaluated
under the if-statement M steps ago. What works the best should be determined by
numerical experiments.

10. METHODS FOR NONLINEAR LEAST-SQUARES PROBLEM

In least-squares problems, the objective function has the following special form:
1 n
(127) f(x) = izr]?(x).
j=1

Objective functions of this form arise in many applications wherever there is a nonlinear
model and experimental noisy data. The assumption that the noise is Gaussian leads to the
objective function (127) [6] (Chapter 10). Loss functions in classification problem can also
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Algorithm 2: Stochastic L-BFGS
Initialization:
Choose an initial vector xg and set P = ();
Choose m, the limited memory constant in L-BFGS;
Choose N4 and Ny, the batch sizes for the gradient and the inverse Hessian;

Choose M, the number of steps between every update of the inverse Hessian;
for k=1,2,...do
Generate a realization of the random variable &;
Compute the stochastic gradient g(xg, & );
Compute a stochastic direction py by a routine similar to finddirection;
Choose a stepsize ag;
Set Xpy1 = Xp + apP (X, &k);
if £ mod M =0 then
Generate a realization of the random variable f,f ;
Compute s and y, based on sample S;
If |P| > m, then remove the eldest pair from it;
Add a new pair (sg,yx) to P;
end

end

be chosen of the form (127). Another important application is solving partial differential
equations with the aid of neural networks. The solution to the PDE is represented via a
neural network and then the least-squares optimization problem is set up to fit the PDE at
some number of mesh points. While this approach dates back to 1990s (see e.g. Lagaris,
Likas, and Fotiadis, 1998 [10]), it became one of the hottest areas of research within the
last couple of years. In comparison with the traditional PDE solvers (finite difference
methods, finite element methods, finite volume methods, etc), the approach based on
the representation of the solution via a neural network (NN) overcomes the “curse of
dimensionality” and hence opens new horizons [11, 12, 13, 141].

In this section, we will discuss two methods for solving nonlinear least squares problem:
Gauss-Newton and Levenberg-Marquardt [6] (Chapter 10). We will demonstrate how they
work on an example of solving the Poisson PDE with nonhomogeneous Dirichlet boundary
conditions by means on NNs from [10].

10.1. The gradient and a handy approximation to the Hessian. We will denote
by r(x) and J(x), respectively, the vector-function with components r;(x) in (127) and its
Jacobian matrix:

r1(x) vri(x)! —
(128) r(x):= : , J(x) = :

rn(x) Vra(x)T —


https://www.researchgate.net/publication/220279855_Artificial_neural_networks_for_solving_ordinary_and_partial_differential_equations
https://www.researchgate.net/publication/220279855_Artificial_neural_networks_for_solving_ordinary_and_partial_differential_equations
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Then f and its gradient and Hessian are:

(120) £ = eI,
(130) V(x) = J(x) r(x),
(131) VVf(x)=J(x)"J(x)+ > rj(x)VVr;(x).

j=1
The second term in (131) can be small in two cases:

e if the residuals 7; are small which is the case if the exact solution is zero of r,
and /or
e if r; are nearly linear in the neighborhood of the solution, i.e., VVr; are small.

Whether this is the case or not, both Gauss-Newton and Levenberg-Marquardt methods
approximate the Hessian of f with the first term in (131) only. Then Gauss-Newton follows
the line-search strategy, while Levenberg-Marquardt employs the trust-region strategy.

10.2. The Gauss-Newton method. The Gauss-Newton method defines the search di-
rection at step k by solving

(132) Ji Jkpr = —J) T,

where the subscript k replaces the argument xj, and proceeds as the line-search methods
in the routine in Section 9.3. This choice of direction has several advantages.

e No computation of Hessians of r; is required which is very important in the context
of NNs.

o If r; are small or if VVr; are small, the Gauss-Netwon method converges almost
as fast as Newton’s method.

o If Ji has linearly independent columns then the Gauss-Newton direction is a descent
direction ,i.e., p,l—J,Irk < 0. Indeed, from (132) we have:

(133) i Ji vk = —pi Jy Jupk = —||Jkpil® < 0.

If columns of J; are linearly independent, equality takes place if and only if ri = 0.
Hence, if xj is not the solution, we have strict inequality in (133) which means
that py is a descent direction. Note that this is not true, in general, for the regular
Newton’s method unless it is applied to a strictly convex function.

e Equation (132) is the normal equation for the linear least squares problem Jypp =
—ry, i.e., its solution is the minimizer of

(134) mgnHJkp—i- r .

This allows us to use methods for solving linear least squares problem such as QR
decomposition via Householder reflections [15] for finding the search direction.

Convergence of the Gauss-Newton method to a stationary point under nonrestrictive
conditions is guaranteed by the following
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Theorem 10. Suppose that all rj(x) are Lipschitz continuously differentiable in a neigh-
borhood of the level set

{x | f(x) < f(x0)}
and J(x) satisfies the uniform full-rank condition
|J(x)z]| = 7|zl for some ~v>0

in this neighborhood. Then the iterates of the Gauss-Newton method with stepsizes satis-
fying the Wolfe conditions [0] (Section 3.1) converge to a stationary point of f(x), i.e.,

lim J, rj = 0.
k—ro0

The proof of this theorem follows from Theorem 3.2 in [6] which I prove in AMSC660.
I will not repeat it here. The Wolfe conditions for stepsizes are satisfied if you you do
backtracking line search implemented in the code in Section 9.3.

10.3. The Levenberg-Marquardt method. The Levenberg-Marquardt method follows
the trust-region strategy. This means that at each step k, a trust region, typically of the
form

(135) [xk+1 — xxl| = [Ip[| < Ay,

is given, an a constrained minimization problem for a quadratic model
1

(136) m(p) = fi+P g+ 5P Bip

is solved. Then the quality of the model is assessed by computing the ratio of the actual
reduction to the expected reduction

f(xx) — f(xXx + Pr)
f(xx) = m(p)

and, depending on its value, the trust region radius for the next step is increased, left the
same, or decreased. Finally, if p is smaller than a user-prescribed threshold, the proposed
step Xx+1 = Xk + Pk is accepted or rejected. If the step is rejected, a new pg41 is obtained
at the next step as the solution to the constrained optimization problem in a smaller trust
region. A pseudocode giving a template for any trust region method is outlined in Algo-
rithm 4 T usually set n = 0.1 and Ay = 0.2A.x- There are several approaches to solving
the constrained minimization problem (135)—(136). The one used in Levenberg-Marquard
gives the exact solution. Note that the quadratic model for Levenberg-Marquardt is of the
form

(137) p=

1 1 1
(138) m(p) := §HJI¢P +1p)|* = iHrkH2 -+ PTJi;rrk + §PTJ1:JI¢P‘

Therefore, the quadratic model is convex but it might be not strictly convex if J; has
linearly dependent columns.
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Algorithm 3: Trust region template
Input:
Choose minimal and maximal radii of trust region Api, and Apax;
Choose the initial trust region radius Ay € [Amin, Amax);
Choose threshold 7 € [0,1/4) for accepting proposed step;
Choose initial approximation xg;
for k=1,2,...do
Compute unconstrained minimizer py = —Bk_1 g of m(p);
if ||px|| > Ay then
Solve constrained minimization problem (135)—(136) and get pg;
end
Compute the ratio p (137);
if p < 1/4 then
‘ Reduce the trust region radius: Apyq = 0.25A;
else
if p>3/4 and ||pr|| = Ak then
| Increase trust region radius Agiq = min(2Ag, Apax)
end

end
if pr > n then
| Accept step: Xp41 = X + Pk;
else
‘ Reject step: xj1 = Xg;
end

end

Recall the KKT optimality conditions and apply them to (135)—(136). The Lagrangian
function is

1 A
(139) Lp,N)=f+p'g+ ipTBp -3 (A% —[p|]?).

Here, we omit the subscripts k for brevity. Hence, if (p,\) is a solution to (135)—(136),
then:

(140) Vpl=Bp+g+Ap=0,
(141) (A% —|pl?) >0,
(142) A >0,
(143) A (A% —|p[*) = 0.

Therefore, if the unconstrained minimizer —B~!g lies outside the trust region, i.e, || B~'g|| >
A, the solution to (140)—(143) lies on the trust region boundary, i.e., |p|| = A. Let us find



Fall 2020 AMSC808N/CMSC828V

discuss how to find p in this case. We have:

(144) (B+AM)p=-g, |[pll=A.

Since B is symmetric and nonnegative definite as B = J T J, its spectral decomposition is
B =Q'AQ,

where @ = [q1,...,qq] is orthogonal, i.e. its columns are orthonormal, and A is diagonal.

We always can order the eigenvalues in the nondecreasing order, i.e,
A:diag{/\l,...,)\d}, where OS)\I <... SAd

Using the spectral decomposition, the identity p = —(B + AI)~!g can be rewritten as

d
(145) p=-
j=1

ag
)\j + )\q]‘

Since columns of ) are orthonormal, the identity ||p|| = A becomes:

d To)2
(146) 3 (iqfi) N

J=1

Equation (146) is a 1D nonlinear equation that can be solved using Newton’s method.
Note that if A = 0, then p is unconstrained minimizer with ||p|| > A by our assumption.
Hence, since all A; are nonnegative, the solution A to (146) must be positive. On the other
hand, since the left-hand side of (146) strictly decreases and tends to zero as A — oo,
we conclude that there exists a unique solution A* to (146). Also, the difference between
the left-and right-hand side of (146) behaves approximately as CA~! while the difference
between their reciprocals behaves approximately as a linear function which is beneficial for
rapid convergence of Newton’s iterations. So, we will solve numerically the equation

—-1/2
d To)\2
1 (q; g)
(147) d(A) == — — —I = =0.
A = (/\j + )\)2
The Newton iteration is
(148) AU+1)::AU)—-¢(AUU
¢ (AD)
The derivative of ¢ is given by:
4. (q]g)? o (a) g)?
14 () = — Ny SS j
( 9) gb( ) Z()\j+)\)2 Z()\j—l—)\)B

=1

Left p; be the solution to (B + AO)p = —g. Then ¢(A?D) = A= — ||py|| =1, and the first
factor in (149) is ||p;||=. The second factor in (149) is the squared norm of the solution



Fall 2020 AMSC808N/CMSC828V

to (B + A\ )*/?q = —g. Hence

_ af?
Ipa]l?

(150) ¢'(\) =
As a result, the Newton’s update formula becomes:

11 el o Ied? e - A
151) AHD = 2O 4 [ - } =0 4 .
( N TYIRETE lalZ | A

These considerations lead to the following subroutine for computing the solution to the
constrained minimization problem in Levenberg-Marquardt.

% do Tikhonov regularization for the case J is rank-deficient
B = J’xJ + (le-12)%I;

pstar = -B\g; ' unconstrained minimizer
if norm(pstar) <= R
p = pstar;

else J, solve constrained minimization problem
lam = 1; % initial guess for lambda
while 1
Bl = B + lamxI;

C = chol(B1); % do Cholesky factorization of B
p = -C\(C’\g); % solve Blxp = -g
np = norm(p);
dd = abs(np - R); % R is the trust region radius
if dd < 1le-6

break
end

q = C’\p; % solve C"\top q = p
nq = norm(q);
lamnew = lam + (np/nqg) 2*(np - R)/R;
if lamnew < O
lam = 0.5%lam;
else
lam = lamnew;
end
end
end

This Matlab routine does not take advantage of the fact that (B + AI)p = —g is really the
normal equation for the linear least squares problem

2

el e[
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To take an advantage of it, one needs to use low-level language. Then (B + A)p = —g
can be solved by QR decomposition implemented via a clever combination of Householder
reflections and Givens rotations (see [0] (Section 10.3) and [15]).

For convergence theorems for Levenberg-Marquard consult Section 4 in [6]. There are
many nuances, but in short, iterates of Levenberg-Marquardt converge to a stationary
point provided that certain nonrestrictive conditions hold.

10.4. An application to solving PDEs using NNs. As an example of a nonlinear

least squares problem, we consider the one from [10] arising in solving the boundary-value
problem for the Poisson equation:

(152) Ugz + Uy = H(z,y), (z,9) € Q=10,1]%

(153) u(0,y) = fo(y), u(l,y)=fi(y), w(z,0)=go(z), u(z,1)=g(z).

Lagaris, Likas, and Fotiadis (1998) [10] proposed to look for the solution to (152)—(153) in
the following form:
(154) V(z,y,w) = Az, y) + h(@)h(y)N (2, y, w).

Here A(z,y) is a function satisfying boundary conditions (153) which can be written out
analytically:

A(z,y) = (1 =) fo(y) + zf1(y) + (1 — v) [go(x) — {(1 — ) fo(0) + = f1(0)}]
(155) +ylgi(z) = {(1 —2)fo(1) +zf1(1)}].

The function h is chosen to guarantee that the second term in the right-hand side in (154)
is zero on the boundary 02:

(156) h(t) = t(1 —t).

The function NV (z,y, w) is a neural network with one hidden layer and a single linear output
unit:

(157) N(z,y,w)=v o(Wx+u), w=(v,W,u),
where

x:[g}, veRY, W= (w;) e RV*? uecRY,

and o is a nonlinear function applied entry-wise. We will experiment with

o(t) = (1 +exp(—t))~! (sigmoid, as in [10]) and o(t) = tanh(¢).
I chose this example due to its simplicity. A one-layer NN is sufficient to achieve quite
impressive accuracy using just a few training points, and the derivatives of AV with respect
to x, y, and parameters packed in w can be computed analytically without the use of
automatic differentiation.

As the form of the solution is set, the proposed parameter-dependent solution is plugged
into the differential operator, evaluated at a number of training points, and equated to
the corresponding values of the right-hand side of the differential equation. Then the
nonlinear least-squares problem (NLLS) is set up to minimize the sum of the squares
of the discrepancies by choosing an optimal set of the parameters. This approach was
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proposed in [10] to solve ODEs and PDEs. The nonlinear least-squares problem for the
PDE above is

(158) f(W) = %Z |\I]zz(-rj7yjaw) + \ijy(xjvyﬁw) - f(xjvyj>’2 — min.

Plugging ¥ into PDE (152) we get:

7“J'(W) = ‘Ijm(%'»yja w) + \I]yy(x]?y_b w) — f(xjvyj)
= Aus + Ayy + [h(z )h”( ) + h"(x)h( )NV
+2[h'()()/\/ + h(x ]

(159) + h(@)h(y) [Naw +Nyy] - f(fﬂjvyj)-

Equation (159) shows that in order to solve the NLLS (158) using Gauss-Newton or
Levenberg-Marquardt, one needs to calculate the first derivatives of N, Ny, N, N,
and N, with respect to the components of v, W, and u. This is done in the Matlab
routine NN.m:

function [f,fx,fy,fxx,fyy,df,dfx,dfy,dfxx,dfyy]l = NN(x,v,W,u,fun,dfun,d2fun,d3fun)
%% derivatives of the network
= Wxx + u;
sO0 = fun(z); % sigma(z)
f = v’%xs0;
W2 = W.*W;

s1 = dfun(z); % sigma’(z)

s2 = d2fun(z); % sigma’’(z)

s3 = d3fun(z); % % sigma’(z)

fx = v?*(W(:,1).*s1); % Psi_x

fy = v’*x(W(:,2).*s1); % Psi_y

fxx = v’*(W2(:,1).%s2); % Psi_{xx}
fyy = v’ *(W2(:,2).*s2); % Psi_{yy?}

%% derivatives with respect to parameters

[nvl,nv2] = size(v); % nv2 must be 1
[nwl,nw2] = size(W);
[nul,nu2] = size(u); % nu2 must be 1

dim = nvl + nwl*nw2 + nul;

df = zeros(dim,1);

dfx = zeros(dim,1);

dfy = zeros(dim,1);

dfxx = zeros(dim,1);

dfyy = zeros(dim,1);

% df

df (1:nv1) = s0;

df (nvi+l : nvi+nwl*nw2) = reshape((v.*s1)*(x’), [nwl*nw2,1]);
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df (nvi+nwl*nw2+1 : end) = v.*sl;
% dfx
dfx(1:nv1) = W(:,1) .*s1;
dfx(nvi+1l : nvi+nwil*nw2) = ...
reshape((v.*W(:,1).*s2)*(x’) + (v.*s1)x*[1,0], [nwl*nw2,1]);
dfx(nvi+nwil*nw2+1 : end) = v.*W(:,1).*s2;
% dfy
dfy(1:nvl) = W(:,2).%s1;
dfy(nvi+l : nvi+nwi*nw2) = ...
reshape ((v.*W(:,2) .*s2)*(x’) + (v.*s1)*[0,1], [nwi*nw2,1]);
dfy (nvi+nwil*nw2+1 : end) = v.*W(:,2).%*s2;
% dfxx
dfxx(1:nvl) = W2(:,1).*s2;
dfxx(nvi+l : nvi+nwil*nw2) = ...
reshape ((v.*W2(:,1) . *s3)*(x’) + 2*(v.*W(:,1).*s2)*[1,0], [nwl*nw2,1]);
dfxx(nvi+nwil*nw2+1 : end) = v.*W2(:,1).%*s3;
% dfyy
dfyy(1:nvl) = W2(:,2).%*s2;
dfyy(nvi+l : nvi+nwl*nw2) = ...
reshape ((v.*W2(:,2) .*s3)*(x’) + 2*(v.*W(:,2).*s2)*[0,1], [nwl*nw2,1]);
dfyy (nvi+nwi*nw2+1 : end) = v.*W2(:,2).%s3;
end

As in an example in [10], we set the right-hand side and the boundary functions in
(152)—(153) to:

d(z,y) = e " (z— 24y + 6y),
foly) =9, Aly) = A +yP)e
=xe e

go(x) e ”, g(z)=e Yz +1).

Then the exact solution is
u(a,y) = e (z +y°).
The training set is a 5 x 5 set of mesh points (see Fig. 17). The number of hidden units

N is set to 10. This makes the dimensional lity of the parameter space equal to 40. The
function o = tanh:

fun = @(x)tanh(x);

dfun = @(x)1./cosh(x)."2;

d2fun = 0@(x)-2*sinh(x)./cosh(x)."3;

d3fun = 0(x) (4*xsinh(x)."2-2)./cosh(x)."4;

The initial guess for parameter values was the vector of all ones. We solve the result-
ing nonlinear least squares problem using three methods: gradient descent (GD), Gauss-
Newton (GN), and Levenberg-Marquardt (LM). Note that then the matrix J has more
columns than rows. Hence J'J has zero eigenvalues. The test points are the 101 x 101
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mesh points. Stopping criteria were: either the number of iterations exceeds 120, or the
norm of the gradient of the objective function decays to 10~%. Fig. 17 shows that GN and
LM perform notably better than GD — see also printouts below. Overall, LM tends to be
more robust.

GD:

iter # 120: f = 0.17110610126100, |df| = 8.9608e-02
CPUtime = 4.136553e+00, iter = 120

max|err| = 4.205708e-03, L2 err = 2.067841e-01

GN:

iter # 114: £ = 0.00000000002963, |df| = 9.2399e-05
CPUtime = 5.718491e+00, iter = 114

max|err| = 1.442690e-07, L2 err = 8.296356e-06

LM:

iter # 109: f = 0.00000002701552, |df| = 4.4645e-05, rho = 9.9390e-01, R = 1.5625e-02
CPUtime = 1.260592e-01, iter = 109

max|err| = 1.301953e-06, L2 err = 4.449413e-05

In the final experiment, the function o was replaced with the sigmoid:

fun = @(x)1./(1+exp(-x));

fun = @(x)1./(1+exp(-x));

dfun = @(x)exp(-x)./(1+exp(-x))."2;

d2fun = Q@(x)-exp(-x)./(1+exp(-x)). 2 + 2%exp(-2*x)./(1+exp(-x))."3;
d3fun = @(x)exp(-x)./(l+exp(-x))."2 - 6*exp(-2*x)./(1+exp(-x))."3 ...
+ 6xexp(-3+*x) ./ (1+exp(-x)) . 4;

Here are the results:

GD:

iter # 120: f = 0.16857469843620, |df| = 7.7421e-02
CPUtime = 4.010367e+00, iter = 120

max|err| = 4.200602e-03, L2 err = 2.059516e-01

GN:

iter # 15: f = 0.00000000000483, |df| = 2.5831e-05
CPUtime = 1.795551e-01, iter = 15

max|err| = 1.589962e-04, L2 err = 4.956789e-03

LM:

iter # 44: f = 0.00000375382680, |df| = 6.5900e-05, rho = 1.0037e+00, R = 6.2500e-02
CPUtime = 5.234713e-02, iter = 44

max|err| = 1.869000e-05, L2 err = 6.464585e-04
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FIGURE 17. The solution (a) to the NLLS (158) and the error (b) com-
mitted by Levenberg-Marquardt. While dots are the training points. (c):
Comparison of the performance of three methods.

To conclude this section, I would like to make a few remarks. The approach considered
in this section is currently a hot area of research. For recent advances in solving forward
and inverse problems for PDEs, see works of G. Karniadakis’ group on physics-informed
neural networks®. It is clear from the example discussed in this section that an accurate
solution of a 2D PDE can be obtained using a very coarse mesh of training points. Never-
theless, the number of mesh points grows exponentially with the increase of dimensionality.
Therefore, using a mesh of training points is infeasible for promoting NN-based solvers to
high dimensions. An approach in which the importance sampling of training points and
training the NN are interweaved which allowed to solve a PDE in R'% is developed in
works of G. Rostkoff, E. Vanden-Eijnden, and collaborators.

5T thank AMSC graduate students Alex Papados and Jiajing Guan for bringing these works to my attention.
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11. REGULARIZATION, SPARSITY, AND COORDINATE DESCENT

In this section, we establish how the Tikhonov and lasso (least absolute shrinkage and
selection operator) regularization affect the solution to linear least squares problem, show
how the lasso promotes sparsity, and go over the coordinate descent method that has been
revived largely due to its convenience for handling lasso regularizers.

11.1. Geometry of linear least squares problems. The linear least squares problem
reads:

1
(160) min =~ ||Ax — b||2, where AeR"™9 beR"
xeRd 2

e First we consider the case where n > d, i.e., the system Ax = b is overdetermined if
n > d, and columns of A are linearly independent (i.e., A is full rank). A geometric
interpretation of (160) is that we need to find a vector in the span of columns of A
(this vector is Ax) minimizing the Euclidean distance to b. Let b be the orthogonal
projection of b on to span(A):

b=QQ"b,
where A = QR is the QR—decomposition of A. Since the vector d := b — Ax can
be decomposed into the sum of b —b = (I — QQ )b and a vector in span(A), and

the squared length ||d||2 is the sum of squares of these two vectors, the minimum
of ||d||3 is reached if the second vector is zero, i.e., if Ax =b =QQ"b, i.e., if

x*=R7'Q'b.

e Next, we consider the case where n < d, i.e., the system Ax = b is underdeter-
mined, and rows of A are linearly independent. In this case, there are infinitely
many vectors x such that Ax = b. Indeed, let null(A) be the null-space of A;
dimnull(4) = n — d. A solution to Ax = b can be found by selecting a subset A
of n linearly independent columns of A, solving A% = b, and setting the entries of
x corresponding to the columns A to % and the rest of the entries to zero. Then
for any z € null(A), x + z is also a solution to Ax = b. Often, out of all solutions
to Ax = b, we would like to find some special solution. Quite often this special
solution is the minimum 2-norm solution, i.e., the solution to

1
min —|x|? subject to Ax =b.
€Rd 2

The vector Ax is the projection of x onto the row space of A (which is span(AT))
written in the basis of rows of A. We can decompose x into x = x* + y where
x* € span(A") and y € span(AT)t. Since x* and y are orthogonal the minimum
of the norm of x will be achieved if y = 0. Since x* € span(A"), x* = ATq for
some q € R™. Therefore,

AATq =D.
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Since rows of A are linearly independent,the matrix AA" is invertible. Hence
q=(AAT)"b and x*=AT(447)"'b.

e Finally, we consider the case where columns of A are linearly dependent and so
are rows of A. In this case, our goal is also to find the minimum 2-norm solution
to (160), though, in contrast to the previous case, the minimum in (160) is not
necessarily zero. To handle this case, we consider the singular-value decomposition

of A:
s o0][VvT
0 0 ] [ VT
where ¥ is diagonal k£ X k matrix collecting all nonzero singular values of A; U is
orthogonal n x k, its columns constitute an orthonormal basis in the column space
of A (in span(A)); V is orthogonal k x k, its columns constitute an orthonormal
basis in the row space of A (in span(AT)).

A=U,T] [ } —Uxv’,

Exercise Prove that the minimum 2-norm solution to (160) is given by
x* =VE U b.

For greater visuality, let us consider the case where A is n x 2 and o7 > 03. Let x*
be the least squares solution to (160). Since o3 is small compared to o, the function
f(x) = ||Ax — b||3 varies slowly along the line parallel to vy passing through x*. In Fig.
18, 01 =2, 00 = 0.2, vi = (1/v5)[1,2]T, vo = (1/v5)[2,—1]T, and uy, uy are chosen as the
basis in range(A).

If we fix x* while set o9 to zero, the set of solutions will be the line parallel to vo and
passing through x*. The minimum 2-norm solution will be the intersection of this line with
the line parallel to v and passing through to origin. It will have both components nonzero
unless vy is parallel to u; or us. On the other hand, if we will look for the minimum
1-norm solution, it will have one of the components zero unless the entries of vo are equal
in absolute value.

However, since o9 is small but positive, we want to have some balance between the
function f(x) = %||Ax — b||3 being small and some norm of x being small.

11.2. Tikhonov and lasso regularization. Now consider two problems:

1 A
(161) min ~||Ax —b||3 + Z|x|3 (Tikhonov regularized),
x€eRd 2 2
and
1
(162) min ~||Ax — b||3 + A||Ix|l1 (lasso regularized),
xeRd 2

If we let A tend to infinity, then the second term in these objective functions will dominate,
and the minimizer will tend to zero. One the other hand, if A is very small and positive,
it will hardly affect the minimizer of the first term provided that the minimizer is unique.
However, if the family of minimizers constitute a line, a plane, or a hyperplane, the regu-
larizing terms in (161) and (162) will select the solutions with minimal 2-norm and 1-norm,
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FI1GURE 18. An illustration for the lasso regularization.

respectively. If the columns of A are nearly linearly dependent, i.e., if it has small singular
values, then the solution to the regularized problems will affect only the components of the
solution along the vectors v; corresponding to small singular values.

Now note that the objective functions in (161) and (162) are the Lagrangian functions
plus At, respectively, for the constrained minimization problems

1 2 . L2
(163) )I(Iel%l{(li iHAx —Db||3 subject to t— §Hx||2 >0,
and
1
(164) min §||Ax —bl||3 subject to t— ||x||1 >0,
x€ER

where ¢ is some user-supplied parameter. If no unconstrained minimizer of (163) or (164)
lies in the corresponding feasible set, then the solution is located on the boundary of the
feasible set resulting at a positive A\. The solution to the lasso constrained minimization
problem for the example that we discussed above is shown in Fig. 18. Note that it lies at
the corner of the constrained region. This gives a visual clue how lasso regularization picks
out sparse solutions.

The Tikhonov regularization was introduced by A. N. Tikhonov in 1963 in the context
of solving inverse problems which are often ill-posed.

The lasso regularization was proposed by R. Tibshirani in 1996 [1(] as a sparsity-
promoting regression method. The problem posed in [16] was of the form (164). Two
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methods for solving it numerically were discussed. The simpler one of them, which also
has much better worst-case scenario performance guarantees, is based on the decompo-
sition x = x4 — x_ where x4 and x_ are vectors with nonnegative components. Then
(164) is equivalent to a quadratic programming problem with 2d variables and 2d+ 1 linear
constraints.

Exercise Set up this quadratic programming problem: write out the objective function
and the constraints.

11.3. Coordinate descent. The key reference for this section is [2] (Section 7.3). The
coordinate descent method (CD) proceeds by selecting a coordinate iy at each step k and
updating x according to:

(165) X1 (i) = Xp(ix) — Vi, f(Xk),

where x(7) is the ¢th coordinate of x and V;f(x) = 82—{1.)():). Specific versions of CD are
distinguished in the way the sequences «y and i; are defined. The sequence of coordinates
can be cyclic or randomized. The randomized version is preferable since it is less likely to
choose an unfortunate sequence of coordinates.

As we have mentioned, contrary to GD, CD may fail to converge to a stationary point
even on a continuously differentiable function — such an example of a function in three
variables was offered by Powell [17]. However, if f is strongly convex, one can establish
linear rate of convergence for CD. Recall the definition and an important property of strong
convexity:

c ) ) .

fx+p) > f(x)+Vf(x)p+ §HPH2 implying 2¢[f(x) — f(x*)] < [Vf(x)|l} vx € R"
Theorem 11. Suppose that the objective function f : R — R is continuously differen-
tiable, strongly convexr with constant ¢, and V f is coordinate-wise Lipschitz, i.e.,

(166) (Vif(x+ Ax(i)e;) — Vif(x)| < Li|Ax(3)], i=1,...,d.

In addition, suppose that ay = Ll (Lmax = max; L;) and that iy is chosen independently

and uniformly from {1,...,d} for all k € Zy. Then for all k € Z,, the iteration (165)
yields

k
(167) E[f (xi)] — f* < (1 ) (f(x0) — 1*).

a dLmaX
Proof. Coordinate-wise Lipschitz continuity of V f yields:

f(xrr1) < fF(xn) + Vi £ ) X1 () — x(in)] + %Lik %1 (i) — xk(in)]>.

Hence, with stepsize oy, = L.l it follows that

1
2Lmax

Fxrn) = S05) € Vi F00) + 57— Vi fOu)? = — 5 — Vi f )’

max 2Lmax
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Taking expectations with respect to the distribution of i; we get:

Eip [f (xk+1)] = f(xx) < _ﬂjnaink (Vi f(x1)?]

_ 11 . o 1 2
Then it follows that
* * 1
Bi, [ Guen)] = 1 < [F60) = 1] = 57—V F6xi) B
max

< [fxi) = f*] = o [f (i) = 7]

Taking total expectation and applying the last inequality for all k& € Z, we obtain the
desired result. O

This simple randomized CD method is competitive with GD for objective functions of
the form

1
flw) =S Xw — yIZ + Allwll,

where X is a sparse matrix of data. Another advantage of CD is that it is parallelizable,
and this feature of it is being actively explored.

1]
2]

(10]
(11]

(12]
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