
LINEAR AND NONLINEAR DIMENSIONALITY REDUCTION

MARIA CAMERON

Contents

1. Linear dimensionality reduction 2
2. Principal Component Analysis 2
2.1. Derivation 2
2.2. Calculation in practice 4
3. Multidimensional scaling 4
4. Fisher’s linear discriminant 7
5. Multiple discriminant analysis 8
6. Isomap 9
7. Locally linear embedding (LLE) 13
8. t-distributed stochastic neighbor embedding (t-SNE) 16
8.1. The predecessor: SNE 17
8.2. Background: entropy, information, Kullback-Leibler divergence 17
8.3. Cross-entropy 18
8.4. The Kullback-Leibler divergence 19
8.5. The construction of the t-SNE 19
8.6. Objective function: the KL divergence between q and p 20
8.7. Example: Swiss Roll with noise 21
8.8. Example: MNIST digits 21
9. Diffusion maps 23
9.1. Background: properties of stochastic matrices 24
9.2. A basic construction of a diffusion map 26
9.3. Relation to Laplacian eigenmap 30
9.4. Illustrative examples 31
9.5. The continuous counterpart of the diffusion map algorithm 34
9.6. Removing the effect of nonuniform sampling 38
9.7. Choosing ε 39
References 40

In this chapter, we will take a geometric view of data sets. Our goal is to discover
intrinsic geometric structures in data. The key idea is that often high-dimensional data lie
on a low-dimensional manifold. In this case, we would like to find the dimensionality of

1

Fall 2020 AMSC808N/CMSC828V

this manifold. In addition, we often want to visualize the data. Then, we need to construct
a map from the original space to 2D or 3D.

1. Linear dimensionality reduction

A comprehensive survey of linear dimensionality reduction methods is offered by J.
Cunningham and Z. Ghahramani [1]. The abstract in this article starts with: Linear
dimensionality reduction methods are a cornerstone of analyzing high dimensional data,
due to their simple geometric interpretations and typically attractive computational proper-
ties. These methods capture many data features of interest, such as covariance, dynamical
structure, correlation between data sets, input-output relationships, and margin between
data classes. Linear dimensionality reduction methods are defined as:

Definition 1. Given n D-dimensional data points combined into a matrix X ∈ Rn×D
and a choice of dimensionality d < D, optimize some objective fX(·) to produce a linear
transformation P ∈ RD×d, and call Y = XP ∈ Rn×d the low-dimensional transformed
data.

Linear dimensionality reduction methods often serve as building blocks for nonlinear
ones. In the next four sections we will review four most well-known of them:

• Principal component analysis (PCA),
• Multidimensional scaling (MDA),
• Fisher’s linear discriminant;
• Multiple discriminant analysis (MDA) (or linear discriminant analysis (LDA)).

2. Principal Component Analysis

Principal Component Analysis (PCA), originally formulated by Pearson (1901), is a
widely used tool for data analysis in both natural and social sciences. A classical reference
for the PCA is the book by I. T. Jolliffe [2] available online. Here I give just a brief
overview.

Let η ∈ RD be a vector random variable. Let

X =

 x>1 →
...
x>n →


be an n×D matrix of samples of η. The goal of the PCA is to map the samples of η from
the high-dimensional space RD into a low-dimensional space Rd, while retaining as much
variation present in the samples as possible.

2.1. Derivation. We would like to replace η with a random variable ξ ∈ Rd whose com-
ponents are linear combinations of the components of η,

ξ = (w>1 η, . . . , w
>
d η)

https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Cunningham-2015-LDR.pdf
https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Cunningham-2015-LDR.pdf
http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20(2ed.,%20Springer,%202002)(518s)_MVsa_.pdf

Fall 2020 AMSC808N/CMSC828V

where the directions wi, i = 1, . . . , d maximize the variance Var(w>i η) while satisfy the
constraints

w>i wi = 1, i = 1, . . . , d, and Cov(wiη, wjη) = 0.

The condition Cov(wiη, wjη) = 0 means that the components of ξ should be uncorrelated.
First we find PCA 1, ξ1 = w1η using Lagrange multipliers. Let

C := Cov(η) = (E[(ηi − E[ηi])(ηj − E[ηj])])
D
i,j=1

be the covariance matrix of η. It is D ×D, symmetric positive definite provided that all
components of η have nonzero variances. Then

Var(ξ1) = E[(w>1 η − w>1 E[η])2] = w>1 Cw1.

We set up a constrained optimization problem

J(w1) =
1

2
w>1 Cw1 → max, subject to ‖w1‖2 = 1.

The Lagrangian function is given by

L(w1, λ) =
1

2
w>1 Cw1 −

λ

2
(w>1 w1 − 1),

where λ is the Lagrange multiplier. Differentiating L with respect to w1 we get

Cw1 − λw1 = (C − Iλ)w1 = 0.

Hence w1 must be an eigenvector of C corresponding to the eigenvalue λ. To decide which
eigenvalue we pick, we recall that we are maximizing

w>1 Cw1 = λw>1 w = λ.

Hence, we pick λ1, the largest eigenvalue of C, and the corresponding eigenvector w1.
Next we will look for w2. The zero covariance condition gives:

Cov(w1η, w2η) = w>1 Cw2 = λ1w
>
1 w2 = 0.

Hence w2 must be orthogonal to w1. The optimization problem for w2 is

J(w2) =
1

2
w>2 Cw2 → max, subject to ‖w2‖2 = 1, w>1 w2 = 0.

The Lagrangian function is

L(w2, λ, φ) =
1

2
w>2 Cw2 −

λ

2
(w>2 w2 − 1)− φw>1 w2.

Differentiating it with respect to w2 we get:

Cw2 − λw2 − φw1 = (C − Iλ)w2 − φw1 = 0.

Taking a dot product of this equation with w1 we get: 0− 0− φ = 0 which forces φ to be
zero. Hence, λ and w2 must be an eigenpair corresponding to the second largest eigenvalue
of C.

Proceeding in a similar manner, we find that wk is the eigenvector of C corresponding
to its kth largest eigenvalue.

Fall 2020 AMSC808N/CMSC828V

The variables ξi = w>i η where wi, i = 1, . . . , d are the eigenvectors of the covariance
matrix C corresponding to the d largest eigenvalues, are called the principal components.
The vector wi, i = 1, . . . , d, is called the vector of coefficients or loadings for the ith principal
component.

2.2. Calculation in practice. In practice, when we are dealing with data, the data points
xi ∈ RD are interpreted as samples of a vector random variable. The covariance matrix is
not known. To approximate it, we compute the D ×D data covariance matrix. First we
need to center the data so that column means are all zero:

Y := X −

 1
...
1

[1

n

n∑
i=1

xi1, . . . ,
1

n

n∑
i=1

xiD

]
.

Then the covariance matrix is given by

C :=
1

n
Y >Y.

Its eigendecomposition with eigenvalues ordered in the decreasing order is

C = WΛW>, where Λ = diag{λ1, . . . , λD}

and λ1 ≥ . . . ≥ λD ≥ 0. The d eigenvectors corresponding to the d largest eigenvalues will
be the desired loadings. The coordinates of the data points in the principal component
space will be zi := Y wi, i = 1, . . . , d.

Now let us connect the PCA with the SVD. Let

Y = UΣW>

be an SVD of Y . Then

Y >Y = WΣ2W> ≡ NC = NWΛW>.

Hence the first d columns of W = [w1, . . . , wD] are the vectors of coefficients for the first d
principal components, and the principal components are Y wi.

3. Multidimensional scaling

Multidimensional scaling (MDS)[3] aims at finding a low-dimensional representation of
data given an n × n matrix ∆ of squared distances between the data points. As we will
show below, if the distances are Euclidean, MDS is equivalent to PCA. However, in many
applications the distances are non-Euclidean. For example, the distances between remote
cities are non-Euclidean and the cities are located on the Earth. In social sciences, the
distances are often obtained from perceptual data and hence non-Euclidean (see examples
in [3]). Matlab has a built-in function cmdscale and provides an example with a 2D
embedding of some US cities from their pairwise distances.

Let us describe the classic multidimensional scaling algorithm. Input: the matrix ∆ of
pairwise squared distances and the desired output dimension d.

https://www.mathworks.com/help/stats/cmdscale.html
https://www.mathworks.com/help/stats/cmdscale.html

Fall 2020 AMSC808N/CMSC828V

(1) Compute row means of the matrix ∆:

µi :=
1

n

n∑
j=1

∆ij , i = 1, . . . , n.

(2) Set the mean of row means:

µ :=
1

n

n∑
i=1

µi.

(3) Define the n× n matrix B = (Bij) by

Bij :=
1

2
(µi + µj −∆ij − µ) .

(4) Compute the eigendecomposition of B, B = V ΛV > where the eigenvalues λi are
ordered in the decreasing order. If the d largest eigenvalues are positive, take
the corresponding eigenpairs (vi, λi), i = 1, . . . , d. Otherwise, take the set of m+

eigenpairs corresponding to positive eigenvalues. Set d+ := min{m+, d} where m+

is the number of positive eigenvalues.
(5) Define the embedding of the dataset into Rd+ by

Z =
[
v1, . . . vd+

] 
√
λ1

. . . √
λd+

 .
The matrix Z is n× d+. Row i of Z corresponds to the embedding of the ith data
point into Rd+ .

If the distance is Euclidean, the MDS is equivalent to the PCA. Indeed, let Y be an
n×D matrix of data centered so that the column means are zeros. Then

∆ij =

D∑
k=1

(yik − yjk)2 =

D∑
k=1

y2
ik +

D∑
k=1

y2
jk − 2

D∑
k=1

yikyjk︸ ︷︷ ︸
(Y Y >)ij

.

Hence

(Y Y >)ij =
1

2

(
D∑
k=1

y2
ik +

D∑
k=1

y2
jk − (∆)ij

)

are the matrix elements of Y Y >. Let us show that the matrix elements of the matrix B
defined in Step (3) of the MDS coincide with those of Y Y >. First we expand the row

Fall 2020 AMSC808N/CMSC828V

means of B:

µi =
1

n

n∑
j=1

∆ij =
1

n

n∑
j=1

D∑
k=1

(yik − yjk)2

=
D∑
k=1

y2
ik +

1

n

n∑
j=1

D∑
k=1

y2
jk − 2

1

n

D∑
k=1

yik

n∑
j=1

yjk︸ ︷︷ ︸
=0

=
D∑
k=1

y2
ik +

1

n

n∑
j=1

D∑
k=1

y2
jk︸ ︷︷ ︸

‖Y ‖2F

.

Here we have used the fact that the column means of Y are zeros. Now we expand µ:

µ =
1

n

n∑
i=1

(
D∑
k=1

y2
ik +

1

n
‖Y ‖2F

)
=

2

n
‖Y ‖2F .

Plugging in these expressions for µi, µj , and µ into the formula for Bij we get:

Bij =
1

2
(µi + µj −∆ij − µ)

=
1

2

(
D∑
k=1

y2
ik +

1

n
‖Y ‖2F +

D∑
k=1

y2
jk +

1

n
‖Y ‖2F −

2

n
‖Y ‖2F − (∆)ij

)

=
1

2

(
D∑
k=1

y2
ik +

D∑
k=1

y2
jk − (∆)ij

)
= (Y Y >)ij .

Now, if

Y = PΣQ>

is an SVD of Y , then

Y Y > = PΣ2P>,

hence Λ = Σ2 and V = P . Now,

Y [q1, . . . qd] = PΣQ>[q1, . . . qd] = [p1, . . . , pd]


√
λ1

. . . √
λd+

 ,
which coincides with the output of the MDS.

Remark If the squared distances forming the matrix ∆ are non-Euclidean, the matrix B
might have some negative eigenvalues. For example in the Matlab’s example mapping USA
cities, some eigenvalues are negative.

https://www.mathworks.com/help/stats/cmdscale.html
https://www.mathworks.com/help/stats/cmdscale.html

Fall 2020 AMSC808N/CMSC828V

Remark If the number of data points is large, the computation of the MDS becomes
expensive: its cost scales as O(n2). To fight this issue the so-called landmark multidimen-
sional scaling (LMDS) has been introduced [4] with cost O(ln) where l� n is the number
of landmarks.

4. Fisher’s linear discriminant

Reference: Duda, Hart, Stork “Pattern Classification” [5] (note: the GitHub version
that you can google out does not contain this material).

Fisher’s linear discriminant seeks a projection of a dataset consisting of two classes into
a 1D space that discriminates the classes the most. Let X ∈ Rn×D be a dataset consisting
of two subsets, X1 ∈ Rn1×D belonging to class 1 and X2 ∈ Rn2×D belonging to class 2. The
row indices of X belonging to class i form an index set Ii, i = 1, 2. The set of projections
of data points x to a 1D space is given by:

yi = w>xi, i = 1, . . . , n.

Let us find w ∈ RD, ‖w‖ = 1, that discriminates the classes the most. This means that the
means of the projected data should be separated as much as possible, while the projected
data of each class should be clustered around the corresponding mean as much as possible.
In order to formulate the corresponding optimization problem, we will find the means and
the scatters for each class.

The mean of projected data from class i, i = 1, 2, is given by

m̃i =
1

ni

∑
k∈Ii

yk =
1

ni

∑
k∈Ii

w>xk = w>mi, where mi =
1

ni

∑
k∈Ii

xk.

the scatter matrix of class i is given by

Si :=
∑
k∈Ii

(xk −mi)(xk −mi)
> ≡ XIi,:X>Ii,:.

We define the within-class scatter matrix as the sum

Sw := S1 + S2.

The scatters of the projected data of each class i are:

s̃i :=
∑
k∈Ii

(yk − m̃i)
2 = w>

∑
k∈Ii

(xk −mi)(xk −mi)
>w = wSiw.

Therefore, the within-class scatter of the projected data is

s̃1 + s̃2 = w>Sww.

The distance between the projected means is

|m̃1 − m̃2|2 = |w>(m1 −m2)|2 = w>(m1 −m2)(m1 −m2)>w ≡ w>Sbw,

end where Sb is called the between-class scatter matrix.

http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/dimreduc_landmarks.pdf
http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/dimreduc_landmarks.pdf

Fall 2020 AMSC808N/CMSC828V

Since we want to maximize w>Sbw relative to w>Sww, we set the objective function

(1) J(w) =
w>Sbw

w>Sww
.

Note that J(w) depends only on the direction of w but not on its magnitude. To maximize
J , wee take its gradient:

∇J =
2Sbw

w>Sww
− w>Sbw

(w>Sww)2
2Sww =

2

w>Sww
[SBw − J(w)Sww] = 0.

The last expression means that the desired direction w is the eigenvector corresponding to
the largest eigenvalue of the generalized eigenvalue problem:

(2) Sbw = λSww or, equivalently S−1
w Sbw = λw.

Furthermore, since Sb is a rank-1 matrix, as Sb = (m1 −m2)(m1 −m2)>, the vector Sbw
is parallel to m1 −m2. Hence, we readily set

w = S−1
w (m1 −m2) and normalize: w 7→ w

‖w‖
.

5. Multiple discriminant analysis

Reference: [5]. Multiple discriminant analysis (MDA) is a generalization of Fisher’s
linear discriminant to the case of more than two classes. We assume that the dataset
consists of data coming from c > 1 classes. Let Ii denote the set of indices of data from
class i, i = 1, . . . , c. We are seeking a projection to at most (c− 1)-dimensional space

yi = W>xi,

such that the projected class means are separated as much as possible relative to class
scatters. As before, we have:

m̃i =
1

ni

∑
k∈Ii

yk = W>mi,

S̃i =
∑
k∈Ii

(yk − m̃i)(yk − m̃i)
> = W>SiW.

The within-class scatter matrix is straightforwardly generalized:

Sw :=
c∑
i=1

Si.

The generalization of the between-class scatter matrix is less straightforward. We define
Sb as the difference between the total scatter matrix St := X0(X0)> where X0 denotes the
centered data matrix (i.e., column sums of X0 are zeros) and Sw. We calculate:

St =

n∑
i=1

(xi −m)(xi −m)> =

c∑
i=1

∑
k∈Ii

(xi −mi +mi −m)(xi −mi −mi +m)>,

Fall 2020 AMSC808N/CMSC828V

where

m =
1

n

c∑
i=1

nimi

is the overall mean. We continue:

St =
c∑
i=1


∑
k∈Ii

(xi −mi)(xi −mi)
> + 2(mi −m)>

∑
k∈Ii

(xi −mi)︸ ︷︷ ︸
=0

+ni(mi −m)(mi −m)>


= Sw +

c∑
i=1

ni(mi −m)(mi −m)>.

Therefore, we define the between-class scatter matrix as

Sb =

c∑
i=1

ni(mi −m)(mi −m)>.

Its rank is at most c−1 as it is a sum of c rank-1 matrices not all of which are independent.
Similarly to Fisher’s discriminant, we set the objective function

J(w) =
w>Sbw

w>Sww
.

There are at most c − 1 nonzero eigenvalues. We define the projection by picking the
eigenvectors corresponding to the top d ≤ rank(Sb) eigenvalues.

6. Isomap

Isomap (Tenenbaum, de Silva, and Langford, 2000) [6] is one of the first nonlinear
dimensionality reduction techniques introduced. It computes a globally optimal solution
for a low-dimensional embedding and is guaranteed to converge asymptotically to the true
structure. The idea behind the isomap is to construct a graph by connecting near data
points, compute the all-to-all distance matrix for this graph, and then use the MDS to
embed it to the desired low-dimensional space. Let us workout details of the isomap
algorithm and illustrate it on the Swiss Roll example.

Input. The input for the isomap is the data matrix X ∈ Rn×D, i.e. n data points each
of which is d-dimensional, and the desired output dimension d.

For the Swiss Roll example, we generate an input by sampling n points (xi, yi) uniformly
distributed in a rectangle, and then subjecting them to the Swiss Roll map:

(x, y) 7→ (x cosx, y, x sinx).

I used the following parameters:

function MakeSwissRollData()

n = 1600;

data2 = rand(n,2)*[12,0;0,6] + 6;

https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Tenenbaum-2000-Isomap.pdf

Fall 2020 AMSC808N/CMSC828V

%% Convert from 2D to 3D with the Swiss Roll mapping (x,y)->(xcosx,y,xsinx)

X = data2(:,1);

Y = data2(:,2);

data3 = [X.*cos(X) Y X.*sin(X)];

figure();

hold on;

plot3(data3(:,1),data3(:,2),data3(:,3),’.’,’Markersize’,15,’color’,’b’);

daspect([1,1,1])

set(gca,’Fontsize’,16);

view(3);

save(’SwissRollData.mat’,’data3’);

end

Step 1: Construct a graph G by connecting data points xi and xj if

• either the Euclidean distance between xi and xj is closer than some chosen thresh-
old ε (ε-isomap),
• or xj is one of the k nearest neighbors of xi for some chosen number k (k-isomap).

I implemented the k-isomap with k = 10:

dat = load(’SwissRollData.mat’);

X = dat.data3;

[n,d] = size(X);

%% compute pairwise distances

d = zeros(n);

e = ones(n,1);

for i = 1 : n

d(i,:) = sqrt(sum((X - e*X(i,:)).^2,2));

end

%% k-isomap

% STEP 1: find k nearest neighbors and define weighted directed graph

k = 10; % the number of nearest neighbors for computing distances

% for each point, find k nearest neighbors

ineib = zeros(n,k);

dneib = zeros(n,k);

for i = 1 : n

[dsort,isort] = sort(d(i,:),’ascend’);

dneib(i,:) = dsort(1:k);

ineib(i,:) = isort(1:k);

end

figure();

hold on;

plot3(X(:,1),X(:,2),X(:,3),’.’,’Markersize’,15,’color’,’b’);

daspect([1,1,1])

for i = 1 : n

Fall 2020 AMSC808N/CMSC828V

for j = 1 : k

edge = X([i,ineib(i,j)],:);

plot3(edge(:,1),edge(:,2),edge(:,3),’k’,’Linewidth’,0.25);

end

end

set(gca,’Fontsize’,fsz);

view(3);

The resulting graph is shown in Fig. 1(a).
Step 2: Compute shortest paths in the graph G from each vertex to all other

vertices and obtain the distance matrix ∆ = (δij)
n
i,j=1. Since the fact that j is among

the k nearest neighbors of i does not imply that i is among the k nearest neighbors of
j, we symmetrize the weight matrix of the graph. All-to-all shortest distance matrix can
be computed using Dijkstra’s shortest path algorithm. This algorithm is implemented in
Matlab in the command graphshortestpath. In the code below, I make the required input
for this command: sparse matrix G and the source. I also randomly select a start point
m and an end point mf and display the shortest path between them. The graph is colored
according to the distance from m.

% STEP 2: compute shortest paths in the graph

D = zeros(n);

ee = ones(1,k);

g = ineib’;

g = g(:)’;

w = dneib’;

w = w(:)’;

G = sparse(kron((1:n),ee),g,w);

G = G+abs(G-G’);

m = randi(n);

mf = randi(n);

c = zeros(n,3);

for i = 1 : n

[dist,path,~] = graphshortestpath(G,i);

D(i,:) = dist;

if i == m

figure()

hold on

dmax = max(dist);

N = 1000;

col = parula(N);

for ii = 1 : n

c(ii,:) = col(getcolor(dist(ii),dmax,N),:);

plot3(X(ii,1),X(ii,2),X(ii,3),’.’,’Markersize’,15,’color’,c(ii,:));

end

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

Fall 2020 AMSC808N/CMSC828V

p = path{[mf]};

for j = 2 : length(p)

I = [p(j-1),p(j)];

plot3(X(I,1),X(I,2),X(I,3),’Linewidth’,2,’color’,’r’);

end

view(3)

daspect([1,1,1])

set(gca,’Fontsize’,fsz);

end

end

The resulting colored graph and a path in it is displayed in Fig. 1 (b).
Step 3: use MDS to do embedding to Rd. We use Matlab’s command mdscale to

do MDS embedding.

% STEP 3: do MDS

% symmetrize D

D = 0.5*(D + D’);

Y = mdscale(D,2);

figure();

hold on

for ii = 1 : n

plot(Y(ii,1),Y(ii,2),’.’,’Markersize’,15,’color’,c(ii,:));

end

% plot edges

for i = 1 : n

for j = 1 : k

edge = Y([i,ineib(i,j)],:);

plot(edge(:,1),edge(:,2),’k’,’Linewidth’,0.25);

end

end

% plot path

for j = 2 : length(p)

I = [p(j-1),p(j)];

plot(Y(I,1),Y(I,2),’Linewidth’,2,’color’,’r’);

end

set(gca,’Fontsize’,fsz);

daspect([1,1,1]);

The resulting emdedding is shown in Fig. 1 (c).
A weakness of the isomap algorithm is that the approximation of the geodesic distance

is not robust to noise perturbation. I reduced the number of samples from 1600 to 800 and
added Gaussian noise to X:

noisestd = 0.8;

X = X + noisestd*randn(size(X)); % perturb by Gaussian noise

Fall 2020 AMSC808N/CMSC828V

(a) (b)

(c)

Figure 1. The k-isomap applied to Swiss Roll data. (a): The graph G.
(b): The distances from a randomly chosen point and the shortest path
between it and a randomly chosen endpoint. (c): The embedding.

The result is shown in Fig. 2. Apparently, isomap failed to recognize that the data lie on
a 2D manifold just perturbed by noise.

7. Locally linear embedding (LLE)

The locally linear embedding algorithm (LLE) was proposed by S. Roweis and L. Saul
(2000) [7]. Unlike the isomap requiring the calculation of all-to-all shortest paths, the LLE
utilizes only local information to recover the global structure. It involves solving two linear
least squares optimization problems. Sam Roweis who tragically died in January 2010 at
the age of 37, left a web site on his research. In particular, there is a page devoted to the
LLE with a description of the algorithm and Matlab codes. Below we elaborate the LLE
algorithm with k nearest neighbors.

Input:

https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Roweis-2000-LLE.pdf
https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Roweis-2000-LLE.pdf
https://cs.nyu.edu/~roweis/
https://cs.nyu.edu/~roweis/lle/algorithm.html
https://cs.nyu.edu/~roweis/lle/code.html

Fall 2020 AMSC808N/CMSC828V

(a) (b)

(c)

Figure 2. The k-isomap applied to Swiss Roll data perturbed by Gaussian
noise with mean 0 and standard deviation 0.8. (a): The graph G has some
undesirable interconnections. (b): The distances are messed up by these
extra shortcuts. (c): The embedding is not what we would like to have.

• A D× n matrix X, whose columns represent the data points in RD. Note that his
is the transpose of the data matrix we used before. The transposition is done for
arithmetic convenience.
• The size on nearest neighborhood k. Alternatively, one can use ε-ball nearest

neighborhood – the same two options as for the isomap.
• The desired output dimension d.

Step 1: select k nearest neighbors for each point. For each data point xi, the
D × k matrix of its nearest neighbors will be denoted by XN (i).

Step 2: find weights for representing each data point as a linear combination of its
nearest neighbors subject to constraint that their sum must be 1. Let us fix i and find the
weight vector w ∈ Rk for it. This vector is the solution to the following constrained least

Fall 2020 AMSC808N/CMSC828V

squares problem:

(3) min
w

1

2
‖xi −XN (i)w‖2 subject to 11×kw = 1.

Since the vector w must sum up to 1, the objective function can be rewritten as

1

2
‖xi −XN (i)w‖2 =

1

2
w>
(
xi11×k −XN (i)

)> (
xi11×k −XN (i)

)
w.

Introducing Z :=
(
xi11×k −XN (i)

)
, we write the Lagrangian function

L(w, λ) =
1

2
w>Z>Zw − λ(11×kw − 1).

Its gradient with respect to w is given by

∇wL = Z>Zw − λ1k×1 = 0.

Hence w can be found by setting

w̃ =
(
Z>Z

)−1
1k×1 and enforcing the constraint w =

w̃

11×kw̃
.

Note that if k > D, the k × k matrix Z>Z is singular. In this case, it is regularized by
adding a small multiple of the identity matrix:

tol=1e-3; % if k>D

C = z’*z; % local covariance

C = C + eye(k,k)*tol*trace(C); % regularlization (k>D)

We do it for all i = 1 . . . n and obtain the weight matrix W by defining a zero n×n matrix
and replacing its entries in row i corresponding to the nearest neighbors of i with the found
weights for that i.

Step 3: map to embedded coordinates. The idea behind step 3 is that if the
data truly lie on a low-dimensional manifold, this manifold can be approximated with a
collection of local charts (neighborhoods) which are patched together to form the global
manifold by rotation, translation, and rescaling. The collection of weights found in the
previous step is invariant with respect to these transformations. Therefore, we expect that
these weights are equally valid to represent the original manifold in RD and the “unfolded”
manifold in Rd. Hence, to find the desired manifold, we set up and solve the following least
squares problem

(4) min
Y

1

2
‖Y −WY ‖2F subject to 11×nY = 01×d,

1

n
Y >Y = Id×d.

Here Y is the n× d matrix of data mapped to Rd, W is the n× n weight matrix obtained
in the previous step. The constraint 11×nY = 01×d forces the embedding to be centered at
the origin. The constraint 1

nY
>Y = Id×d is imposed to avoid degenerate solutions. The

solution to (4) is given by the bottom d+ 1 eigenvectors of

M := (I −W)>(I −W).

Fall 2020 AMSC808N/CMSC828V

We discard the unit eigenvector corresponding to the eigenvalue 0. Indeed, the matrix W
has row sums 1, hence (I −W)1n×1 = 0. The bottom eigenvectors from 2 to d+ 1 give the
desired embedding.

Let us clarify this. We will compute columns of Y = [y1, y2, . . . , yd] one-by-one to solve
the constrained minimization problem (4):

‖(I −W)y0‖22 → min, ‖y0‖22 = n,

‖(I −W)y1‖22 → min, ‖y1‖22 = n, y>0 y1 = 0,

‖(I −W)y2‖22 → min, ‖y2‖22 = n, y>j y2 = 0, j = 0, 1

...

‖(I −W)yd‖22 → min, ‖yd‖22 = n, y>j yd = 0, j = 0, 1, . . . , d− 1.

Solving this system we find that y0 = 1n×1 corresponding to eigenvalue 0 of M . Since M
is symmetric, its eigenvectors are orthogonal. Therefore, all eigenvectors of M starting for
y1 are orthogonal to y0. Hence, the condition 11×nY = 01×d holds. Then, the solution to

‖(I −W)y1‖22 → min, ‖y1‖22 = n, y>0 y2 = 0

is the eigenvector y1 with appropriate normalization corresponding to the smallest positive
eigenvalue of M . the solution to

‖(I −W)y2‖22 → min, ‖y2‖22 = n, y>j y2 = 0, j = 0, 1

is the eigenvector y2 with appropriate normalization corresponding to the second smallest
positive eigenvalue of M . And so on. The first d rows of Y give the desired embedding.

An application of this algorithm to a Swiss Roll data is shown in Fig. 3.

Figure 3. An application of the LLE algorithm to a Swiss Roll data. Left:
the Swiss Roll. Middle: the input data. Right: the embedding to 2D
obtained by the LLE algorithm. This figure is made using S. Roweis’s code.

https://cs.nyu.edu/~roweis/lle/code.html

Fall 2020 AMSC808N/CMSC828V

8. t-distributed stochastic neighbor embedding (t-SNE)

The technique called t-SNE (L. van der Maarten and G. Hinton, 2008 [8]) is a powerful
nonlinear tool for data visualization, organization, and clustering. It was shown in [8] that
it is superior to the isomap, LLE, its predecessor SNE (stochastic neighbor embedding),
and some other nonlinear tools. In particular, it almost perfectly clusters the MNIST
dataset of handwritten digits (Fig. 2(a) in [8]). Here is a web page for t-SNE maintained
by L. van der Maarten. t-SNE is implemented in the Matlab command tsne.

8.1. The predecessor: SNE. t-SNE had a predecessor technique called stochastic neigh-
bor embedding (SNE) by G. Hinton and S. Roweis (2002) [9]. SNE was motivated by the
need for placing ambiguous data points (such as the word bank that can be related to
finance or river) without forcing its multiple home clusters to be imaged close to each
other. This technique featured the use of Gaussian kernels to design probability distri-
butions P = (pij) in the original space and Q = (qij) in the embedding space, and the
Kullback-Leibler divergence (a non-symmetric measure of the difference between two prob-
ability distributions) as the cost function function to optimize the placement of the images
in the embedding space. While SNE had involved beautiful and promising ideas, it suffered
from two problems. First, the cost function in it was hard-to-optimize. Optimization was
taking hours and required lots of adjustments of parameters. Second, it tended to create
crowding in the middle of the embedding space as the repulsive forces in its cost function
were very weak in the case of placing originally far objects close in the embedding space.

8.2. Background: entropy, information, Kullback-Leibler divergence. The con-
struction of t-SNE borrows some ideas from the information theory. Below we will go over
some concepts useful for understanding the construction of the SNE and the t-SNE. In
addition, here is a very elementary article by V. Kulkarni on entropy and cross-entropy
oriented toward data scientists that might be helpful.

8.2.1. Entropy of an information source. Let X be a discrete random variable, and p be its
probability mass function (pmf). Imagine that X is a message, then p(x) is the probability
that X = x. We want to evaluate the expected gain of information upon receiving the
message. If the message is known in advance, i.e., the probability space consists of a single
point assumed with probability 1, no information is gained upon receiving the message.
On the other hand, if X takes one of n possible values with equal probability, then the
expected information gain upon receiving the message is maximal. The function

(5) H(p) = −
∑
i

pi log pi

possesses exactly this property. H = 0 if the probability mass is concentrated at a sin-
gle outcome. On the other hand, the uniform distribution maximizes H. Indeed, the
Lagrangian function is given by:

(6) L(p, λ) = −
∑
i

pi log pi − λ

(∑
i

pi − 1

)
.

https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/vanderMaaten-2008-tsne.pdf
http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://www.mathworks.com/help/stats/tsne.html
https://cs.nyu.edu/~roweis/papers/sne_final.pdf
https://cs.nyu.edu/~roweis/papers/sne_final.pdf
https://en.wikipedia.org/wiki/Kullback?Leibler_divergence
https://towardsdatascience.com/cross-entropy-for-dummies-5189303c7735

Fall 2020 AMSC808N/CMSC828V

Taking its gradient with respect to p and setting it to zero we get:

∂

∂pi
L(p, λ) = 1− log pi − λ = 0, i = 1, . . . n.

Hence, for all i, pi = exp(1−λ). Since the probability mass function sums up to 1, pi = 1/n,
and λ = 1− log n.

The Shannon entropy of a distribution p measured in bits or nats is defined, respectively,
by

(7) H(p) = −
∑
i

pi log2 pi or H(p) = −
∑
i

pi log pi.

Note that if X is the set of all possible binary sequences of length n, each of which has
equal probability 2−n, then

H = −
2n∑
i=1

2−n log2(2−n) = n,

the length of the sequences, i.e., the number of information bits.
The Shannon entropy generalized for continuous random variables is called the differen-

tial entropy:

(8) h(f) = −
∫
f(x) log f(x)dx, where f(x) is the pdf of X.

One can prove a theorem that for a given variance σ2, the Gaussian random variable
X ∼ N (m,σ2) has the maximal entropy. A proof can be conducted e.g. using calculus of
variation – see wiki.

Thus, the Shannon entropy of a random variable X is a measure of uncertainty associated
with X if only its distribution is known. For a random variable, discrete with pmf p or
continuous with pdf p, the Shannon entropy can be expressed as

(9) H(p) = −Ep[log p].

8.3. Cross-entropy. Let X and Y be two random variables defined over the same set of
outcomes, and p and q be their pmfs (or pdfs), respectively. The cross-entropy of the pmf
(or pdf) q relative to the pmf (or pdf) p is

(10) H(p, q) = −Ep[log q].

In words, H(p, q) is a measure of uncertainty in the predicted distribution q while the true
distribution is p. Let us show that for a fixed p, the cross-entropy is minimized if q = p. We
will conduct the proof for discrete distributions. For continuous ones, the proof is similar,
but the gradients are replaced with variations. We set the Lagrangian function

(11) L(q, λ) = −
∑
i

pi log qi − λ

(∑
i

qi − 1

)
.

https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Cross_entropy

Fall 2020 AMSC808N/CMSC828V

Taking its gradient with respect to q and setting it to zero we get:

∂L

∂qi
= −pi

qi
− λ = 0, i.e. pi = −λqi ∀i.

Since the distribution q must sum up to 1, we find that qi = pi for all i. To check that this
is a minimum, we calculate

∂2L

∂q2
i

=
pi
q2
i

> 0 ∀i.

8.4. The Kullback-Leibler divergence. The Kullback-Leibler (KL) divergenceDKL(p||q)
is a measure of how the probability distribution q is different from the probability distri-
bution p. It is defined by
(12)

DKL(p||q) = H(p, q)−H(p) = −
∑
x

p(x) log q(x) +
∑
x

p(x) log p(x) =
∑
x

p(x) log
p(x)

q(x)
.

The definition for continuous distributions is similar. Note that DKL(p||q) ≥ 0 and the
equality takes place if and only if p = q a.e..

8.5. The construction of the t-SNE.

8.5.1. Probability distribution in the original space. Let {xi}i∈I be the original dataset with
all xi ∈ RD. For each i ∈ I, we define the conditional probability pj|i that xj will be picked
as a neighbor of xi:

(13) pj|i =
exp

(
−‖xi−xj‖

2

2σ2
i

)
∑

k 6=i exp
(
−‖xi−xk‖

2

2σ2
i

) ,
where σ2

i is the variance of the Gaussian centered at xi. The probabilities pi|i are set to
zero for all i ∈ I. Since the data points are not distributed uniformly, it is not reasonable
to use the same variance for all i. In denser regions, σi’s should be smaller than in rarefied
ones. Both SNE and t-SNE look for σi for each i so that the perplexity of xi which is a
smooth measure of the effective number of neighbors of xi is equal to a user-picked number
(usually between 5 and 50). The perplexity is defined by

(14) Perp(Pi) = 2H(Pi) where Pi = {pj|i | j ∈ I}, H(Pi) = −
∑
j∈I

pj|i log2 pj|i,

i.e., Pi is the probability distribution for j being picked as a neighbor of i, and H(Pi) is the
Shannon entropy of this distribution measured in bits. Then σi is found by binary search,
i.e., a bisection search in a sorted array.

Then the probability distribution is symmetrized by

(15) pij :=
pi|j + pj|i

2n
.

https://en.wikipedia.org/wiki/Kullback?Leibler_divergence
https://en.wikipedia.org/wiki/Perplexity
https://en.wikipedia.org/wiki/Binary_search_algorithm

Fall 2020 AMSC808N/CMSC828V

Defined this way, pij is the probability that data points i and j are selected as neighbors.
We check that

∑
i

∑
j

pij =
1

2n

∑
i

∑
j

pj|i +
∑
j

∑
i

pi|j

 =
n+ n

2n
= 1.

8.5.2. Probability distribution in the embedding space. The probability distribution in the
embedded space is constructed using Student’s t-distribution with one degree of freedom
whose pdf is

(16) f(t) =
1

π(1 + t2)
.

This distribution is picked thanks to its heavy-tails that help to fight the crowding problem
in the low-dimensional embedding space. The symmetrized distribution q is defined by

(17) qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l (1 + ‖yl − yk‖2)−1 , qii = 0.

Its sum over all i and j is 1. It is suggested in [8] to sample the initial guess for {yi}i∈I
from the Gaussian distribution with mean 0 and variance 10−4, i.e., all y’s are initially
near the origin.

8.6. Objective function: the KL divergence between q and p. The KL divergence
between q and p is picked as the objective function. The closer these distributions are, the
smaller is the value of this function. Therefore, this is a quite natural choice:

(18) C(Y) = DKL(p||q(Y)) =
∑
i

∑
j

pij log
pij

qij(Y)
, where Y = {yi}i∈I .

The computation of the gradient of C with respect to y is tedious but the result is simple:

(19)
∂C

∂yi
= 4

∑
j

(pij − qij)
yi − yj

1 + ‖yi − yj‖2
.

8.6.1. Minimizing the objective function. The optimization algorithm proposed in [9, 8] for
optimizing C(y) is the gradient descent with momentum of the form:

(20) Y (t) = Y (t−1) + η∇C + α(t)
(
Y (t−1) − Y (t−2)

)
,

where Y (t) is the set of y’s at iteration t, η is referred to as the learning rate, and α(t)
represents the momentum at iteration t. The number of iterations T for the examples in
[8] was set to 1000, and α(t) = 0.5 for t < 250 and α(t) = 0.8 for t ≥ 250. The learning
rate η was originally set to 100 and then adapted using Jacob’s (1988) scheme. In addition,
two more tricks were used:

https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://web.cs.umass.edu/publication/docs/1987/UM-CS-1987-117.pdf

Fall 2020 AMSC808N/CMSC828V

• Early compression i.e., adding Tikhonov regularization. This forces y’s to stay close
together at the start of optimization. When the distances between map points are
small, it is easy for clusters to move through one another so it is much easier to
explore the space of possible global organizations of the data.
• Early exaggeration i.e., multiplying all pij ’s by 4. This forces large pij ’s to be

modeled by large qij ’s, i.e., natural clusters form tight clusters in the embedded
space. This creates, in turn, a lot of empty space in the y-space and facilitates
easy motion of tight clusters relative to each other. This was done for the first 50
iterations in [8].

8.7. Example: Swiss Roll with noise. To get sense how t-SNE works and compare it
with other techniques, we apply it to the Swiss Roll example with noise. The data X used
are the same as in Section Isomap, and the noise intensity is the same as in Fig. 2 where
the embedding by isomap was corrupted by extra connections due to the noise:

dat = load(’SwissRollData.mat’);

X = dat.data3;

noisestd = 0.8;

X = X + noisestd*randn(size(X)); % perturb by Gaussian noise

The t-SNE embedding was done by the built-in Matlab function.

[Y,loss] = tsne(X,’Algorithm’,’exact’,’Perplexity’,30,’Exaggeration’,4);

fprintf(’KL divergence = %d\n’,loss);

The option ’Algorithm’, ’exact’ optimizes the Kullback-Leibler divergence of distri-
butions between the original space and the embedded space. The default ’Algorithm’ is
’barneshut’. It performs an approximate optimization that is faster and uses less memory
when the number of data rows is large. The option ’Exaggeration’ is set to its default value.
The default value of ’Perplexity’ is 30. I also tried to set it to 12 which is the number of
neighbors used in the LLE algorithm. The results are shown in Fig. 4. As you see, t-SNE
tries to split the dataset to clusters. Decreasing perplexity leads to more clusters.

8.8. Example: MNIST digits. tSNE is a tool for unsupervised learning. The code
below shows how one can apply it to cluster MNIST digits. The result is shown in Fig. 5.
We see that the t-SNE algorithm successfully clustered the set of 10000 mnist digits.

close all

% load data

data = load(’mnist.mat’);

imgs_test = data.imgs_test;

labels_test = data.labels_test;

%%

[d1,d2,n] = size(imgs_test);

X = zeros(n,d1*d2);

for j = 1:n

aux = squeeze(imgs_test(:,:,j));

X(j,:) = aux(:)’;

Fall 2020 AMSC808N/CMSC828V

(a)

(b)
-60 -40 -20 0 20 40 60

-40

-30

-20

-10

0

10

20

30

40

50

(c)
-100 -50 0 50 100

-60

-40

-20

0

20

40

60

80

Figure 4. t-SNE applied to a Swiss roll data. (a): Data per-
turbed by Gaussian noise with standard deviation 0.8. (b): [Y,loss]

= tsne(X,’Algorithm’,’exact’,’Perplexity’,30); (c): [Y,loss] =

tsne(X,’Algorithm’,’exact’,’Perplexity’,12);

end

%%

[Y,loss] = tsne(X,’Algorithm’,’exact’,’Perplexity’,30,’Exaggeration’,4);

fprintf(’KL divergence = %d\n’,loss);

%%

figure;

hold on

grid

col = jet(10);

for k = 1 : 10

Fall 2020 AMSC808N/CMSC828V

ind = find(double(labels_test) == k);

plot(Y(ind,1),Y(ind,2),’.’,’Markersize’,20,...

’color’,col(k,:),’Displayname’,sprintf(’%d’,k-1));

end

legend;

set(gca,’Fontsize’,20)

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
0
1
2
3
4
5
6
7
8
9

4

6

9

8
5

7

3

0

2

1

Figure 5. t-SNE applied to 10000 MNIST digits (the test set).

9. Diffusion maps

While the PCA is a power tool when the data points lie near a d-dimensional hyperplane
in RD, it might fail to give a nice embedding if the data are instead located near some
d-dimensional curved manifold. To handle this case, Coifman and Lafon (Yale University,
2006) introduced the so-called diffusion maps [10]. The key idea of this approach is to
devise a discrete-time Markov chain on the data points and define the distances between
remote points using the stochastic matrix of this Markov chain. This approach is robust to
noisy data and is capable of adequately representing complex geometries of data structures.

https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf
https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf

Fall 2020 AMSC808N/CMSC828V

This dimensional reduction technique has been successfully applied to problems arising
in protein dynamics (e.g. [11, 12]). The diffusion map algorithm requires providing a
bandwidth parameter ε whose choice is nontrivial and has been a subject of active research.
One of the first approaches to tackle the problem of choosing ε was proposed by A. Little,
M. Maggioni, and L. Rosasco. Later, simpler and more robust approaches were proposed
by Lindenbaum et al. [13] and T. Berry, J. Harlim, and D. Giannakis [14, 15, 16].

9.1. Background: properties of stochastic matrices. An n × n matrix P is called
stochastic if its entries are nonnegative and its row sums are equal to 1. The entries Pi,:
can be interpreted as the transition probabilities from state i: pij is the probability that
the system currently at state i will go next to state j.

Definition 2. We say that a sequence of random variables (Xk)k≥0, Xk : Ω → S ⊂ Z, is
a Markov chain with initial distribution λ and stochastic matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xk+1 = ik+1 | Xk = ik, . . . , X0 = i0) = P(Xk+1 = ik+1 | Xk = in) = pikik+1
.

We will write a probability distribution as a row vector. One can show that if λ is the
initial probability distribution, then the probabiliby distribution after one step becomes
λP , in two steps λP 2, in k steps λP k, and so on. A probability distribution π is invariant
if

πP = π and
n∑
i=1

πi = 1.

If µ is a row vector with n entries such that µP = µ, we say that µ is an invariant probability
measure. Note that µ does not need to sum up to 11.

We will limit ourselves to a special kind of Markov chains arising in diffusion maps:

• The number of states is finite: |S| = n.
• The stochastic matrix P is irreducible and aperiodic. Irreducibility means that any

state can be reached from any state in a finite number of jumps, i.e, for any pair
i, j, (P t)ij > 0 for some t ∈ N. Aperiodicity means that for any state i and for all
sufficiently large t, there is a nonzero probability of returning to i in t steps, i.e,
(P t)ii > 0 for all large enogh t and for all i. In this case, one can prove that there
exists a unique invariant probability distribution π, and for any initial probability
distribution λ we have

lim
k→∞

λP k = π.

• The Markov chain is time-reversible, or, equivalently, possesses the property of
detailed balance: if π is the invariant probability distribution then

πiPij = πjPji,

1Note that is the set of states is infinite, invariant measure may exist while invariant distribution does not
exist. For example, consider a symmetric random walk on Z.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf

Fall 2020 AMSC808N/CMSC828V

The detailed balance means that, on average, the number of transitions from i to
j per time unit is the same as that from j to i.

9.1.1. Spectral decomposition. The detailed balance property can be written in the matrix
form:

ΠP = P>Π, where Π := diag{π1, . . . , πn}.
Note that the detailed balance condition ΠP = P>Π implies that ΠP is symmetric. Indeed,
its transpose is P>Π. Hence, the stochastic matrix P is decomposable as

P = Π−1K̃, where K̃ is symmetric.

Furthermore, P has one eigenvalue equal to 1. The corresponding right eigenvector is
r0 = [1, . . . , 1]> (as row sums are all 1), while the corresponding left eigenvector is π, the
invariant distribution (as πP = π). All other eigenvalues of P are less than 1 in absolute
value. The fact that they do not exceed 1 in absolute value readily follows for Gershgorin
circle theorem saying that the eigenvalues of a matrix A are located within the union of
Gershgorin discs D(aii, Ri) ⊂ C, where Ri =

∑
j 6=i |aij |. Each such disc is centered on the

real axis in the interval [0, 1] and has a radius at most 1. The fact that all other eigenvalues
are less than 1 in absolute value follows from aperiodicity and irreducibility.

Exercise Prove this.

The detailed balance condition ΠP = P>Π implies that P is similar to a symmetric
matrix

Π1/2PΠ−1/2 = Π−1/2(ΠP)Π−1/2.

Hence all eigenvalues of P are real. Furthermore, let

V ΛV >

be the spectral decomposition of Π1/2PΠ−1/2. Then

V >Π1/2PΠ−1/2V = (Π−1/2V)−1/2P (Π−1/2V) = Λ.

Hence

P = (Π−1/2V)Λ(Π−1/2V)−1

is the eigendecomposition of P . Denoting the matrix Π−1/2V of right eigenvectors of P
by R, we express V = Π1/2R. Hence, the matrix L = (Π−1/2V)−1 = V >Π1/2 of left
eigenvectors of P is expressed via R and Π as:

L = V >Π1/2 = R>Π.

Hence, the eigendecomposition of P is

(21) P = RΛR>Π.

Since RL = LR = I, we have

(22) R>ΠR = I.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem

Fall 2020 AMSC808N/CMSC828V

9.2. A basic construction of a diffusion map. First, we present the most basic diffu-
sion map algorithm corresponding to α = 0 in [10]. This construction is very similar to
the construction of Laplacian eigenmap by Belkin and Niyogi (2003) [17].

Let X = (xik) be an n × D matrix of data. The rows xi, i = 1, . . . , n, of X represent
data points lying in RD.

• First, we compute the squared-distance matrix between the data points:

∆(i, j) =

D∑
k=1

(xik − xjk)2.

• Next, we pick a scaling parameter ε and define the diffusion kernel, an n×n matrix
K = (kij) where

kij = exp

(
−∆(i, j)

ε

)
.

A good choice of ε is very important. ε should be comparable to squared distances
from the data points to their neighbors. In practice, pick a reasonable initial guess
for ε and then tune it experimentally. One way to pick an initial ε is the following.
We find row minima among off-diagonal entries for the matrix ∆ . Then we find
the mean of these minima and set ε to be double this mean:

for i = 1 : N

drowmin(i) = min(d(i,setdiff(1:N,i)));

end

epsilon = 2*mean(drowmin);

Then, if the result is not satisfactory, keep increasing the factor by which the mean
of row minima is multiplied in the last line until the embedding starts making sense.
This recipe is good for now. A detailed discussion on choosing ε is found in Section
9.7 below.
• Convert the diffusion kernel K into a stochastic matrix P = (pij) by dividing each

row of K by the corresponding row sum:

P = Q−1K where Q := diag


n∑
j=1

k1j , . . . ,
n∑
j=1

knj

 := diag{q1, . . . , qn}.

Indeed, all entries of the resulting matrix P are nonnegative, and its row sums are
one.

Note that the diagonal entries of Q constitute an invariant probability measure.
Indeed:

[q1, . . . , qn]Q−1K = [1, . . . , 1]K = [q1, . . . , qn]

as K = K> and both ith row and ith column sum of K is qi. To obtain the
invariant probability distribution, we normalize [q1, . . . , qn] so that it sums up to
one:

π =
q∑n
i=1 qi

where q := [q1, . . . , qn].

http://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf

Fall 2020 AMSC808N/CMSC828V

• Let us take tth power of the matrix P and denote its entries by ptij ≡ (P t)ij . The

entry ptij is the probability to transition from i to j in t steps, t ∈ N. A family of
diffusion distances indexed by t ∈ N is defined by

(23) Dt(xi, xj)
2 :=

n∑
m=1

1

πm

∣∣ptim − ptjm∣∣2 .
Hence, the diffusion distance is a weighted l2 distance between rows i and j of
the matrix P t. Note that Dt(xi, xj) will be small if there is a large number of
short paths connecting xi and xj , which makes the transition for either of them to
any state xm approximately equally likely. The power t plays the role of a scale
parameter. Let us list interesting features of the diffusion distance:

– Since it reflects the connectivity of the data at a given scale, points are closer
if they are highly connected in the graph. Therefore, this distance emphasizes
the notion of a cluster.

– The quantity Dt(xi, xj) involves summing over all paths of length t connect-
ing xi and xj . This number is very robust to noise perturbation, unlike the
geodesic distance.

• The family of diffusion maps Ψt : RD → Rn−1 indexed by t ∈ N from the data space
RD to the diffusion space Rn−1 is defined so that the Euclidean distances ‖Ψt(xi)−
Ψt(xj)‖ in the diffusion space are equal to the diffusion distances Dt(xi, xj).

Let

P = RΛL ≡ RΛR>Π

be the spectral decomposition of P with ordered eigenvalues:

1 = λ0 > |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1|.

The diffusion map Ψt is defined by:

(24) Ψt(xi) :=

 λt1r1(i)
...

λtn−1rn−1(i)

 ,
where R := [r0, r1, . . . , rN−1] is the matrix of right eigenvectors of P normalized so
that R>ΠR = I. Respectively, λtm, is the tth power of λm, m = 1, . . . , n− 1. Note
that since P is irreducible and aperiodic (as Pii > 0, i = 1, . . . , n) by construction,
λ0 = 1 and r0 = [1, . . . , 1]>. In Eq. (24), rm(i) denotes the ith entry of the vector
rk. In other words, Ψt(xi) is the transposed ith row of the matrix

(RΛt)> ≡ [λt1r1, λ
t
2r2, . . . , λ

t
n−1rn−1]>.

Note that we remove the first column of R because it consists of all ones and hence
is not informative.

Fall 2020 AMSC808N/CMSC828V

Proposition 1.

(25) Dt(xi, xj)
2 =

n−1∑
m=1

λ2t
m|rm(i)− rm(j)|2,

i.e., the diffusion distance in the data space equals the Euclidean distance in the
diffusion space.

We will prove this proposition after we finish the description of the construction.
• The diffusion maps allow us to do dimensional reduction by keeping only the first

few components of Ψt(·). Often it is desirable to keep only the first two or three
entries of Ψt(·) as then the diffusion map is readily visualizable. To make the
dimension of the embedding space justified, we introduce an accuracy parameter
δ ∈ (0, 1) and define the number of terms to keep:

(26) s(δ, t) = max{m ∈ N such that |λm|t > δ|λ1|t}.
Then, up to relative precision δ, we have:

(27) Dt(xi, xj)
2 =

s(δ,t)∑
m=1

λ2t
m|rm(i)− rm(j)|2,

and

(28) Ψt(xi) =

 λt1r1(i)
...

λts(δ,t)rs(δ,t)(i)

 .
This allows us to determine the power t for embedding into Rd as follows. We pick
δ ∈ (0, 1), for example, δ = 0.2, and then define t so that t is the smallest integer
such that

(29)

(
|λd|
|λ1|

)t
≤ δ Rightarrow t = ceil

[
log(1/δ)

log (|λ1|/|λd|)

]
.

Once the appropriate power for the desired dimension of embedding space (2 or 3)
is found, we can define diffusion maps (abusing the term) to 2D or 3D diffusion
spaces by

(30) Ψt(xi) =

[
λt1r1(i)
λt2r2(i)

]
and Ψt(xi) =

 λt1r1(i)
λt2r2(i)
λt3r3(i)

 .
Now let us prove Proposition 1.

Proof. Let us redefine the diffusion kernel K as

K →

(
N∑
i=1

qi

)−1

K.

Fall 2020 AMSC808N/CMSC828V

Then the stochastic matrix P with the new K can be decomposed as

P = Π−1K.

P is similar to the symmetric matrix

A := Π1/2PΠ−1/2 = Π1/2Π−1KΠ−1/2 = Π−1/2KΠ−1/2.

Hence, the eigenvalues of A coincide with those of P . Let

A = ΦΛΦ> =
n−1∑
k=0

λkφkφ
>
k .

be an eigendecomposition of A where Φ is orthogonal, and the diagonal entries of Λ, the
eigenvalues, are ordered in the decreasing order. Then the desired eigendecomposition of
P can be obtained as follows:

(31) P = Π−1/2AΠ1/2 = Π−1/2ΦΛΦ>Π1/2 =: RΛL =
n−1∑
k=0

λkrklk,

where rk := Π−1/2φk, the columns of R, are the right eigenvectors of P , and lk := φ>k Π1/2,
the rows of L, are the left eigenvectors of P . It can be readily verified that the left and
right eigenvectors satisfy the following conjugacy relationships:

(32)
n∑

m=1

πmri(m)rj(m) = r>i Πrj = φ>i Π−1/2ΠΠ−1/2φj = φ>i φj = δi,j ,

(33)
n∑

m=1

li(m)lj(m)

πm
= liΠ

−1l>j = φ>i Π1/2Π−1Π1/2φ = φ>i φj = δi,j .

Eq. (31) allows us to write entries of P t as

(34) ptim =

n−1∑
k=0

λtkrk(i)lk(m).

Plugging ptim and ptjm into the definition of Dt(i, j) (equation (23)), we get:

Dt(xi, xj)
2 =

n∑
m=1

1

πm

[
n−1∑
k=0

λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2

=

n∑
m=1

1

πm

n−1∑
k=0

[
λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2
+

n∑
m=1

n−1∑
k=0

∑
s6=k

lk(m)ls(m)

πm
λtkλ

t
s[rk(i)− rk(j)][rs(i)− rs(j)].

Fall 2020 AMSC808N/CMSC828V

Let us show that the second term in this sum is zero. Rearranging the order of summation
and using (33) we get

n−1∑
k=0

∑
s 6=k

λtkλ
t
s[rk(i)− rk(j)][rs(i)− rs(j)]

n∑
m=1

lk(m)ls(m)

πm
= 0.

Returning to the first term, we calculate:

Dt(xi, xj)
2 =

n∑
m=1

1

πm

n−1∑
k=0

[
λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2
=

n∑
m=1

n−1∑
k=0

[lk(m)]2

πm
λ2t
k [rk(i)− rk(j)]2

=

n−1∑
k=0

λ2t
k [rk(i)− rk(j)]2

n∑
m=1

[lk(m)]2

πm

=

n−1∑
n=0

λ2t
n [rn(i)− rn(j)]2 .

Finally, we take into account that since r0 = [1, . . . , 1]>, r0(i)− r0(j) = 0. Therefore,

Dt(xi, xj) =

n−1∑
k=1

λ2t
k [rk(i)− rk(j)]2

as desired. �

9.3. Relation to Laplacian eigenmap. As we have mentioned, the presented construc-
tion of the diffusion map is the most basic one and is very similar to the construction of
Laplacian eigenmap [17]. Step 1 of Laplacian eigenmap is the construction of a graph with
vertices at the data points which is done in one of the two following ways. Vertices xi and
xj are connected by an edge

• if ‖xi − xj‖ < ε, or
• if xi is among k nearest neighbors of xj or xj is among k nearest neighbors of xi.

Then, either way, the kernel matrix K is defined by

kij =

{
exp

(
−‖xi−xj‖

2

t

)
, ‖xi − xj‖ < ε,

0, otherwise.
,

where t is interpreted as time for the heat equation on the manifold occupied with the data.
Note that t =∞ corresponds to kij = 1 if xi and xj are connected and zero otherwise, i.e.,
K is merely the adjacency matrix.

Fall 2020 AMSC808N/CMSC828V

Next, we set up the matrix called the graph Laplacian:

(35) L := Q−K, where Q = diag

∑
j

k1j , . . . ,
∑
j

knj

 .

Then the following generalized eigenvalue problem is solved:

(36) LR = QRM, M = diag{µ0, µ1, . . . , µn−1},

where

(37) 0 = µ0 ≤ µ1 ≤ . . . ≤ µn−1.

Note that the matrix of the right eigenvectors R coincides with that of P . The matrix M
relates to Λ via

(38) Λ = I −M.

Finally, the Laplacian eigenmap to Rm, m ≤ n, is defined by

(39) xi 7→ (r1(i), . . . , rm(i)).

Exercise Show that the Laplacian eigenmap to Rm is the solution to the following opti-
mization problem:

(40)
∑
i,j

kij‖yi − yj‖22 = tr
(
Y >LY

)
→ min subject to Y >QY = I, Y >Q1n×1 = 0.

Here, yi’s are columns of Y , and Y is n×m.

Remark It is shown in [17] that LLE and Laplacian eigenmap are closely related. The
minimization problem for LLE involves graph Laplacian squared.

9.4. Illustrative examples.

9.4.1. Swiss Roll. First we make an approximately uniform mesh of points on the Swiss
Roll as shown in Fig. 6(a). The number of points is n = 1060. We set δ = 0.2 and find the
values for ε and t as described above:

ε = 0.7717928, t = 147.

The points are sorted and colored according to the approximate geodesic distance to the
data point closest to the origin. The matrix P t is displayed in Fig. 6(b). The absolute
eigenvalues of P t starting from |λ1| are shown in Fig. 6(c). The embedding to 3D is in
Fig. 6(d). The Swiss Roll has been mostly unrolled.

Next, we repeat this experiment by adding noise to the data:

noisestd = 0.4;

X = X + noisestd*randn(size(X)); % perturb by Gaussian noise

Fall 2020 AMSC808N/CMSC828V

(a) (b)
200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

(c)
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Figure 6. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh. (b): The matrix P t for ε = 0.7717928, t = 147. (c): The
absolute eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffu-
sion map to 3D.

Setting δ = 0.2 as before, we find:

ε = 0.6108029, t = 300.

The results are shown in Fig. 7.
Finally, we take the same Swiss Roll data that we used for the isomap experiments with

Gaussian noise of standard deviation 0.8. With δ = 0.2, we found

ε = 2.104531, t = 1705.

The results are shown in Fig. 8.

Fall 2020 AMSC808N/CMSC828V

(a) (b)
200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

(c)
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 7. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh and perturbed by Gaussian noise with standard deviation
0.4. (b): The matrix P t for ε = 0.6108029, t = 300. (c): The absolute
eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffusion map
to 3D.

9.4.2. Pacman. Let us consider a data set consisting of 200 images depicting the Pacman.
This example is similar to the one in this article1. Each image is 65 × 65 pixels either
black (color = 0) or white (color = 255). The images differ from each other by the angle
of rotation of the Pacman around the center of the image. The angles of rotation are

αi =
2πi

200
.

A sample of 20 such images is shown in Fig. 9(a). This dataset is naturally embedded into

R652 = R4225 space. Note that D > N in this case. The PCA mapping into 3D applied to

1While this article offers a nice exposition, I do not recommend to rely on it as it contains a number of
errors in important formulas. For example, Eqs. (6) and (7) contain errors, the comments following Eq.
(9) are misleading, etc.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6590&rep=rep1&type=pdf

Fall 2020 AMSC808N/CMSC828V

(a) (b)
200 400 600 800

100

200

300

400

500

600

700

800

(c)
0 100 200 300 400 500 600 700 800

0

0.1

0.2

0.3

0.4

0.5

0.6

(d)

Figure 8. (a): The Swiss Roll dataset used for the experiments with
isomap perturbed by Gaussian noise with standard deviation 0.8. (b): The
matrix P t for ε = 2.104531, t = 1705. (c): The absolute eigenvalues of the
eigenvalues of P t starting from |λ1|. (d): Diffusion map to 3D.

this dataset is shown in Fig. 9(b). The absolute eigenvalues and the embedding into 3D
are shown in Figs. 9(c) and (d) respectively. Both the PCA and the diffusion map show
that the set of images is well-approximated by a 1D manifold as we would expect.

9.4.3. Cat-in-the-hat. A similar example with a more complex image of the Cat-in-the-hat
is shown in Fig. 10. Each image is 500 × 500. The double-loop formed by the mapped
data is caused by the fact that the image rotated by π is closer to the original image than
those rotated by an angle between π/6 and 5π/6.

9.5. The continuous counterpart of the diffusion map algorithm. Reference for this
section: [18] arXiv:2208.13772. The basic diffusion map algorithm presented in Section 9.2
leaves us with two questions. What is a good choice of the bandwidth parameter ε? What
is a good choice of power t? The first question will be answered in Section 9.7 below. The
second question will become irrelevant as we will renormalize the kernel and eliminate the

https://arxiv.org/abs/2208.13772

Fall 2020 AMSC808N/CMSC828V

(a)

-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1

-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1

-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1

-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1
-1 0 1

-1

0

1

(b) -2000 -1000 0 1000 2000
-3000

-2000

-1000

0

1000

2000

3000

0

0.5

1

1.5

2

2.5

3

(c)
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

(d)

Figure 9. The dataset consists of 200 images of the Pacman rotated around
the center of the image by angles αi = 2πi/200. (a): A sample of 20 data
points. (b): The PCA mapping into 3D. (c): The absolute eigenvalues
of the eigenvalues of P t starting from |λ1|. Here: δ = 0.5, ε = 2335698,
t = 187. (d): Diffusion map to 3D.

need for taking power t altogether. To understand to answers to these questions, we will
consider the continuous counterpart of the diffusion map algorithm also described in the
paper by Coifman and Lafon (2006).

Why the diffusion map algorithm contains the word diffusion in its name? What is
the underlying diffusion process? Looking at the basic construction we can think that the
dynamics of the Markov chain with the constructed stochastic matrix P is, perhaps, a
diffusion process. In fact, it is indeed a diffusion process discretized to a point cloud. To

Fall 2020 AMSC808N/CMSC828V

(a)

(b) (c)
0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10-5

(d)

Figure 10. The dataset consists of 200 images of the Cat-in-the-hat ro-
tated around the center of the image by angles uniformly distributed in
(0, 2π). (a): A sample of 20 data points. (b): The PCA mapping into 2D.
(c): The absolute eigenvalues of the eigenvalues of P t starting from |λ1|.
Here: δ = 0.2, ε = 7.318159 · 107, t = t. (d): Diffusion map to 3D.

see it, let us start with a diffusion equation in Rd:

(41) ut =
1

4
∆u, x ∈ Rd, u(x, 0) = f(x),

Fall 2020 AMSC808N/CMSC828V

where ∆u = ux1x1 + ux2x2 + . . .+ uxdxd is Laplace’s operator applied to u. The solution to
(41) at time t = ε given by

(42) u(x, ε) =
1

(πε)d/2

∫
Rd
e−
||x−x′||2

ε f(x′)dx′.

On the other hand, if ε is small, u(x, ε) can be found using a Taylor expansion:

(43) u(x, ε) = u(x, 0) +
∂

∂t
u(x, 0)ε+O(ε2) = f(x) +

ε

4
∆f(x) +O(ε2).

Matching (42) and (43), we obtain the following Taylor expansion for the integral operator
with the Gaussian kernel kε(x, x

′) := exp(−||x− x′||2/ε):

(44)
1

(πε)d/2

∫
Rd
e−
||x−x′||2

ε f(x′)dx′ = f(x) +
ε

4
∆f(x) +O(ε2).

Now let us connect this integral operator with the matrix operators K and P constructed
in Section 9.2. We observe that the normalizing factor (πε)d/2 is obtained by integrating
the kernel with respect to its second argument over Rd:

(45) (πε)d/2 =

∫
Rd
e−
||x−x′||2

ε dx′.

Let X be an n × d data matrix whose rows x>i ∈ Rd are the data points forming a point
cloud. Let f be a smooth function with compact support. We discretize f to the point
cloud {xi}ni=1 by setting fi = f(xi), 1 ≤ i ≤ n, [f] = [f1, . . . , fn]>, and compute P [f]. We
have:

[P [f]]i =
[P [f]]i

[K1n×1]i
=

∑
j e
−
||xi−xj ||

2

ε f(xj)∑
j e
−
||xi−xj ||2

ε

.

Taking limit as n→∞ we get:

lim
n→∞

∑
j e
−
||xi−xj ||

2

ε f(xj)∑
j e
−
||xi−xj ||2

ε

=

∫
Rd e

− ||x−x
′||2

ε f(x′)ρ(x)dx′∫
Rd e

− ||x−x
′||2

ε ρ(x)dx′,

where ρ(x) is the probability density function that the point cloud is sampled from. Using
the Taylor expansion (44) we calculate:

lim
n→∞

∑
j e
−
||xi−xj ||

2

ε f(xj)∑
j e
−
||xi−xj ||2

ε

=

∫
Rd e

− ||xi−x
′||2

ε f(x′)ρ(x)dx′∫
Rd e

− ||xi−x
′||2

ε ρ(x)dx′
(46)

=
(fρ)(xi) + ε

4∆(fρ)(xi) +O(ε2)

ρ(xi) + ε
4∆ρ(xi) +O(ε2)

=f(xi) +
ε

4

[
∆f(xi) + 2∇f(xi) ·

∇ρ(xi)

ρ(xi)

]
+O(ε2).(47)

Fall 2020 AMSC808N/CMSC828V

To obtain the last equality we used

1

ρ+ ε
4∆ρ(x) +O(ε2)

=
1

ρ

(
1− ε

4

∆ρ

ρ
+O(ε2)

)
.

Therefore, subtracting [f] from P [f] and dividing the result by ε we obtain a point-wise
approximation to the action of the differential operator

(48)
1

4

[
∆ + 2

∇ρ · ∇
ρ

]
≡ 1

4

[
∆ +∇ log ρ2 · ∇

]
on the function f :

(49) Lεf(xi) := lim
ε→0

lim
n→∞

[P [f]]i − fi
ε

=
1

4

[
∆f(xi) +∇ log ρ2 · ∇f(xi)

]
The operator 1

ε (P − I) in the left-hand side of (49) is the generator of the Markov chain
constructed in Section 9.2 for the discrete time steps of size ε. As we see, the generator
approximates not the Laplacian but the differential operator (48). If the sampling density
ρ were uniform in some region Ω, this operator would be proportional to Laplace’s operator
in Ω.

9.6. Removing the effect of nonuniform sampling. Usually, the sampling density
of data points is nonuniform. In this case, it is advantageous to modulate the effect of
nonuniform density by the right renormalization of the kernel function originally developed
by Coifman and Lafon [10] and then simplified in later works [19, 20]. We define a family
of right-renormalized kernels by

(50) kε,α(xi, xj) = e−
‖xi−xj‖

2

ε ρ−αε (xj),

where ρε(x
′) is the estimate for the sampling density at x′. Note that typically the sampling

density is not known but can be estimated using the fact that the Gaussian kernel with a
proper normalization approximates the Dirac δ-function:

(πε)−d/2e−
‖x−x′‖

ε ≈ δ(x− x′).

Indeed, it is easy to check using Taylor expansion in ε that

(51) (πε)−d/2
∫
Rd
e−
‖x−x′‖2

ε ρ(x′)dx′ = ρ(x) +O(ε).

Motivated by this, we define the following density estimate:

(52) ρε(xi) = (πε)−d/2
1

n

∑
j

e−
‖xi−xj‖

2

ε .

If the kernel e−
||x−xj ||

2

ε is replaced with the right-normalized kernel

(53) e−
||x−xj ||

2

ε ρ−αε (xj),

Fall 2020 AMSC808N/CMSC828V

a calculation of a limit similar to the one in the left-hand side of (46) results in the following
family of differential operators

(54) Lε,α :=
1

4

[
∆f +∇f · ∇

[
log ρ2(1−α)

]]
,

For α = 1, the resulting operator is the Laplacian. Another case of interest is α = 0.5. In
this case, the generator Lε,0.5 is the generator for the overdamped Langevin dynamics.

Let us summarize the diffusion map algorithm with α = 1.

• Step 1. Set a rotation-invariant kernel

kε(x, y) = exp
[
−‖x− y‖2/ε

]
.

To make the kernel matrix sparse, define

[Kε]ij =

{
exp

[
−‖xi − xj‖2/ε

]
, ‖xi − xj‖ < 3

√
0.5ε,

0, otherwise.

• Step 2. Calculate row sums qε(x) =
∑

y kε(x, y) and form the new kernel

(55) k(1)
ε (xi, xj) =

kε(xi, xj)

qε(xj)
, or K = KQ−1.

• Step 3. Calculate row sums

d(1)
ε (xi) =

∑
j

k(1)
ε (xi, xj)

and define the stochastic matrix

(56) Pε,1 =
[
D(1)
ε

]−1
K(1)
ε ,

where

D(1)
ε = diag

{
d(1)
ε (x1), . . . , d(1)

ε (xn)
}
, K(1)

ε = (k(1)
ε (xi, xj))

n
i,j=1.

The rest of the construction is the same as in Section 9.2 except for the formula for the
embeddings to 2D or 3D are

(57) Ψ(xi) =

[
r1(i)
r2(i)

]
, Ψ(xi) =

 r1(i)
r2(i)
r3(i)

 .
9.7. Choosing ε. Reference for this section: [18] arXiv:2208.13772. In practice, the limit
ε→ 0 cannot be taken for a finite dataset. Instead, one generally tries to choose ε as small
as possible without making the corresponding generator matrix Lε,µ reducible. Many
heuristics exist for choosing the scaling parameter ε in diffusion maps, relating back to
bandwidth selection in kernel density estimation [13]. Here, we present the method of
Berry, Harlim and Giannakis [14, 15, 16, 21] which we refer to as the “Ksum test”.

https://arxiv.org/abs/2208.13772

Fall 2020 AMSC808N/CMSC828V

The idea for the heuristic is to find the range of ε where the asymptotic results of diffusion
maps hold true for the given dataset. We find this range by analyzing the double sum

S(ε) :=
1

N2

n∑
i=1

n∑
j=1

[Kε]ij

over a range of ε values. Here, [Kε]ij = kε(xi, xj) where kε(x, x
′) = exp(−‖x − x′‖2/ε) is

the Gaussian kernel. We assume that the point cloud is located in a finite region Ω ⊂ Rd.
For large n, the intermediate asymptotic for S(ε) is [22, 15]

S(ε) ≈
∫

Ω
dx

∫
Ω
dx′kε(x, x

′) ≈ πd/2εd/2vol(Ω) ≡ Cεd/2

where C is a constant independent of ε. Hence,

(58) logS(ε) ≈ d

2
log ε+ logC,

i.e., logS is a linear function of log ε if ε is not too large and not too small.
On the other hand, if ε is large, [Kε]ij ≈ 1 for all i, j, and hence S(ε) → 1 as ε → ∞.

For small ε, [Kε]ij ≈ 0 for all i, j, i 6= j, and [Kε]ii = 1. Therefore, S(ε) → N−1 as
ε→ 0. Therefore, if we plot log ε against logS(ε), we expect to see a linear region of slope
approximately d

2 , where d is the dimension of the dataset.This region demarcates the range
of suitable values of ε [14, 15, 16, 21]. On the other hand, the slope of this graph should
tend to zero as ε→ 0 and as ε→∞.

In particular, we expect to have ∂ logS(ε)
∂ log ε ≈

d
2 where the slope is maximal. For a practical

calculation, it is useful to note that the slope is given by

(59)
∂ logS(ε)

∂ log ε
= −

∑N
i,j=1[Kε]ij log[Kε]ij∑N

i,j=1[Kε]ij
.

References

[1] J. P. Cunningham and Z. Ghahramani, “Linear dimensionality reduction: Survey, insights, and gener-
alizations,” Journal of Machine Learning Research, vol. 16, pp. 2859–2900, 2015.

[2] I. Jolliffe, Principal component analysis. Springer-Verlag New York, 1986.
[3] I. Borg and P. J. F. Groenen, Modern multidimensional scaling: theory and applications. Springer,

2005.
[4] V. de Silva and J. B. Tenenbaum, “Sparse multidimensional scaling using landmark points,” tech. rep.,

Stanford University, 2004.
[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second Edition. Wiley and Sons,

2001.
[6] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear

dimensionality reduction,” Science, vol. 290, pp. 2319–2323, 2000.
[7] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science,

vol. 290, pp. 2323–2326, 2000.
[8] L. van der Maarten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning

Research, vol. 9, pp. 2579–2605, 2008.
[9] G. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” Neural Information Processing Systems

(NIPS’02), vol. 15, pp. 357–864, 2003.

Fall 2020 AMSC808N/CMSC828V

[10] R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon. Anal., vol. 21, pp. 5–30, 2006.
[11] A. L. Ferguson, A. Z. Panagiotopoulosa, P. G. Debenedettia, and K. I. G., “Systematic determination

of order parameters for chain dynamics using diffusion maps,” PNAS, vol. 107, no. 31, pp. 13597–13602,
2010.

[12] S. B. Kim, C. J. Dsilva, I. G. Kevrekidis, and P. G. Debenedetti, “Systematic characterization of
protein folding pathways using diffusion maps: Application to trp-cage miniprotein,” J. Chem. Phys,
vol. 142, p. 085101, 2019.

[13] O. Lindenbaum, M. Salhov, A. Yeredor, and A. Averbuch, “Gaussian bandwidth selection for manifold
learning and classification,” Data mining and knowledge discovery, vol. 34, no. 6, pp. 1676–1712, 2020.

[14] T. Berry, D. Giannakis, and J. Harlim, “Nonparametric forecasting of low-dimensional dynamical
systems,” Physical Review E, vol. 91, no. 3, p. 032915, 2015.

[15] T. Berry and J. Harlim, “Variable bandwidth diffusion kernels,” Applied and Computational Harmonic
Analysis, vol. 40, no. 1, pp. 68–96, 2016.

[16] D. Giannakis, “Data-driven spectral decomposition and forecasting of ergodic dynamical systems,”
Applied and Computational Harmonic Analysis, vol. 47, no. 2, pp. 338–396, 2019.

[17] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,”
Neural Comput, vol. 13, pp. 1373–1397, 2003.

[18] A. L. Evans, M. K. Cameron, and P. Tiwary, “Computing committors via mahalanobis diffusion maps
with enhanced sampling data,” Journal of Chemical Physics, 2022. arXiv:2208.13772.

[19] R. Banisch, Z. Trstanova, A. Bittracher, S. Klus, and P. Koltai, “Diffusion maps tailored to arbitrary
non-degenerate itô processes,” Applied and Computational Harmonic Analysis, vol. 48, no. 1, pp. 242–
265, 2020.

[20] Z. Trstanova, B. Leimkuhler, and T. Lelièvre, “Local and global perspectives on diffusion maps in the
analysis of molecular systems,” Proceedings of the Royal Society A, vol. 476, no. 2233, p. 20190036,
2020.

[21] A. D. Davis and D. Giannakis, “Graph-theoretic algorithms for kolmogorov operators: Approximat-
ing solutions and their gradients in elliptic and parabolic problems on manifolds,” arXiv preprint
arXiv:2104.15124, 2021.

[22] R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, “Diffusion maps, reduc-
tion coordinates, and low dimensional representation of stochastic systems,” Multiscale Modeling &
Simulation, vol. 7, no. 2, pp. 842–864, 2008.

https://arxiv.org/abs/2208.13772

	1. Linear dimensionality reduction
	2. Principal Component Analysis
	2.1. Derivation
	2.2. Calculation in practice

	3. Multidimensional scaling
	4. Fisher's linear discriminant
	5. Multiple discriminant analysis
	6. Isomap
	7. Locally linear embedding (LLE)
	8. t-distributed stochastic neighbor embedding (t-SNE)
	8.1. The predecessor: SNE
	8.2. Background: entropy, information, Kullback-Leibler divergence
	8.3. Cross-entropy
	8.4. The Kullback-Leibler divergence
	8.5. The construction of the t-SNE
	8.6. Objective function: the KL divergence between q and p
	8.7. Example: Swiss Roll with noise
	8.8. Example: MNIST digits

	9. Diffusion maps
	9.1. Background: properties of stochastic matrices
	9.2. A basic construction of a diffusion map
	9.3. Relation to Laplacian eigenmap
	9.4. Illustrative examples
	9.5. The continuous counterpart of the diffusion map algorithm
	9.6. Removing the effect of nonuniform sampling
	9.7. Choosing

	References

