CUR decomposition
Motivation

• Need for low-rank approximation for a matrix.

• SVD $A = U\Sigma V^T$ gives the best approximation: $\| A - A_k \|_F \to \text{min}$, but columns of U and V are hard-to-interpret

• Columns often correspond to products or features, while rows correspond to users. A joking example from Mahoney and Drineas:

$$[(1/2)\text{age} - (1/\sqrt{2})\text{height} + (1/2)\text{income}],$$
Visual examples (Mahoney and Drineas, PNAS 2009)

A. Scatter plot for data from multivariate normal distribution

B. Scatter plot for data from the union of two multivariate normal distributions

C. Five examples of noisy sine functions in synthetic data

D. Five examples of noisy exponential functions in synthetic data

E. Singular vectors of the synthetic data

F. Projection scatter plot onto the span of the top two singular vectors
Even more examples...

- Spearman, a social scientist interested in models for human intelligence, invented “factor analysis”. Computed first principal component of a set of mental tests and reined it as an entity. He called it “the general intelligence factor”. He called the subsequent principal component “group factors”.

- Application of this analysis resulted in ranking individuals in single intelligence scale, dubious social applications of data analysis such as involuntary sterilization of imbeciles in Virginia. See S. J. Gould “Mismeasure of Man”.
What do we want from a matrix decomposition

- Provable worst-case optimality and algorithmic properties
- Should have a natural statistical interpretation associated with its construction
- Should perform well in practice
CUR decompositions

• Goreinov, Tyrtshnikov, Zamarashkin (1997): CUR with choice of columns related to max uncorrelatedness.

• Frieze, Kannan, Vempala (2004): random sampling of columns according to a probability distribution that depended on columns Euclidean norm. Worst-case scenario guarantee: $\|A - P_C A\|_F \leq \|A - A_k\|_F + \epsilon \|A\|_F$ with high probability.

• Drineas, Kannan, Mahoney (2006): CUR, columns and rows chosen simultaneously based on their Euclidean norm. Worst-case scenario guarantee: $\|A - CUR\|_F \leq \|A - A_k\|_F + \epsilon \|A\|_F$ with high probability.

• Drineas, Mahoney, Muthukrishnan (2008 SIAM J Matr Anal Appl): CUR based on leverage scores: $\|A - P_C A\|_F \leq (1 + \epsilon/2) \|A - A_k\|_F$

• Mahoney and Drineas (PNAS, 2009) “CUR matrix decomposition for improved data analysis”: $\|A - CUR\|_F \leq (2 + \epsilon) \|A - A_k\|_F$
Leverage scores
S. Chatterjee and A. S. Hadi (1986)

Linear regression model

\[Y = X\beta + \epsilon, \quad Y \in \mathbb{R}, \quad X \in \mathbb{R}^{n \times d}, \quad \beta \in \mathbb{R}^{d} \]

\(\epsilon \) is a random variable, mean 0, variance \(\sigma^2 \)

\[\hat{\beta} = (X^TX)^{-1}X^TY, \]

\[\text{Var}(\hat{\beta}) = \sigma^2(X^TX)^{-1}, \]

\[\hat{Y} = X\hat{\beta} = PY, \]

\[P = X(X^TX)^{-1}X^T, \]

\[\text{Var}(\hat{Y}) = \sigma^2P, \]

\[e = Y - \hat{Y} = (I - P)Y, \]

\[\text{Var}(e) = \sigma^2(I - P), \]
Outlier, does not affect the result much

Highly influential point
Leverage scores

\[\hat{Y} = PY = X(X^\top X)^{-1} X^\top Y \]

Diagonal entries
\[x_i (X^\top X)^{-1} x_i^\top \]

can be though of as the amount of leverage of
\[y_i \] on \[\hat{y}_i \]
CUR Algorithm
Mahoney and Drineas, PNAS 2009

\[A^i = \sum_{\xi=1}^{r} (\sigma_{\xi} u_{\xi}) v_{j,\xi} \]

Since we seek columns of \(A \) that are simultaneously correlated with the span of all top \(k \) right singular vectors, we then compute the normalized statistical leverage scores:

\[\pi_j = \frac{1}{k} \sum_{\xi=1}^{k} (v_{j,\xi})^2, \quad [3] \]

for all \(j = 1, \ldots, n \). With this normalization, it is straightforward to show that \(\pi_j \geq 0 \) and that \(\sum_{j=1}^{n} \pi_j = 1 \), and thus that these scores form a probability distribution over the \(n \) columns.
Algorithm CUR(A, k, epsilon)

1. Run COLUMNSELECT on A with $c = O(k \log k / \epsilon^2)$ to choose columns of A and construct the matrix C.
2. Run COLUMNSELECT on A^T with $r = O(k \log k / \epsilon^2)$ to choose rows of A (columns of A^T) and construct the matrix R.
3. Define the matrix U as $U = C^+ A R^+$, where X^+ denotes a Moore–Penrose generalized inverse of the matrix X (17).

$$\|A - CUR\|_F \leq (2 + \epsilon) \|A - A_k\|_F,$$
Two variants of algorithm for selecting columns

Exactly(c)

Data : $A \in \mathbb{R}^{m \times n}$, $p_i \geq 0, i \in [n]$ s.t. $\sum_{i \in [n]} p_i = 1$, positive integer $c \leq n$.

Result : Sampling matrix S, rescaling matrix D, and sampled and rescaled columns C.

Initialize S and D to the all zeros matrices.

for $t = 1, \ldots, c$ do

Pick $i_t \in [n]$, where $\text{Pr}(i_t = i) = p_i$;

$S_{i_t t} = 1$;

$D_{tt} = 1 / \sqrt{cp_{i_t}}$.

end

$C = ASD$.

Algorithm 4. The EXACTLY(c) algorithm to create S, D, and C.
Data: $A \in \mathbb{R}^{m \times n}$, $p_i \geq 0, i \in [n]$ s.t. $\sum_{i \in [n]} p_i = 1$, positive integer $c \leq n$.

Result: Sampling matrix S, rescaling matrix D, and sampled and rescaled columns C.

Initialize S and D to the all zeros matrices.

$t = 1$;

for $j = 1, \ldots, n$ do

Pick j with probability $\min\{1, c p_j\}$;

if j is picked then

$S_{jt} = 1$;

$D_{tt} = 1/ \min\{1, \sqrt{cp_j}\}$;

$t = t + 1$;

end

end

$C = ASD$.

Algorithm 5. The Expected(c) algorithm to create S, D, and C.

Theorem 4. Let \(A \in \mathbb{R}^{m \times n} \), let \(C \in \mathbb{R}^{m \times c} \) be a matrix consisting of any \(c \) columns of \(A \), and let \(\epsilon \in (0, 1] \). If we set \(r = 3200c^2/\epsilon^2 \) and run Algorithm 2 by choosing \(r \) rows exactly from \(A \) and from \(C \) with the EXACTLY\((c)\) algorithm, then with probability at least 0.7

\[
\| A - CUR \|_F \leq (1 + \epsilon) \| A - CC^+ A \|_F .
\]

Similarly, if we set \(r = O(c \log c/\epsilon^2) \) and run Algorithm 2 by choosing no more than \(r \) rows in expectation from \(A \) and from \(C \) with the EXPECTED\((c)\) algorithm, then (18) holds with probability at least 0.7.
\[\|A - P_C A\|_F \leq (1 + \epsilon/2) \|A - A_k\|_F \]

\[\|A - CUR\|_F = \|A - CC^+AR^+R\|_F \]

\[\|A - CUR\|_F \leq \|A - CC^+A\|_F + \|CC^+A - CC^+AR^+R\|_F \leq \|A - CC^+A\|_F + \|A - AR^+R\|_F \]

\[= \|A - P_C A\|_F + \|A - AP_R\|_F. \]

\[\|A - CUR\|_F \leq (2 + \epsilon) \|A - A_k\|_F. \]
Experiment with text categorization data

![Graph showing the relationship between \(c/k\) and \(\|\text{IIM-CUR}||_{F}/\|\text{IIM-M}_{k}\|_{F}\) for different values of \(k\). The graph includes curves for \(k = 2, 3, 4, 5, 6, 7, 8, 9, 10\).]