## AMSC808N/CMSC828V

# Processes on complex networks

#### **Keywords:**

network growth,
preferential attachment,
power-law degree distribution,
random failure vs attack,
percolation

**Maria Cameron** 

## References

- M. Newman, The structure and function of complex networks, SIAM Review, 45/2, 167—256, 2003
- A.-L. Barabasi and R. Albert, Emergence of Scaling in Random Networks, Science, 286, 509—512, 1999
- A. L. Barabasi, Network Science, 2017
- R. Albert, H. Jeong, and A.-L. Barabasi, Error and attack tolerance of complex networks, Nature, 406, 378—382, 2000
- R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Resilience of the Internet to Random Breakdowns, Physical Review Letters, 85/21, 4626—4628
- D. Callaway, M. Newman, S. Strogatz, and D. Watts, Network Robustness and Fragility: Percolation on Random Graphs, Physical Review Letters, 85/25, 5468—5471
- M. Newman, Spread of epidemic disease on networks, Physical review E, 66, 016128 (2002)

## Degree fluctuations in real networks

#### A. L. Barabasi, Network Science

| Network               | # verts<br>N | # edges<br><b>L</b> | Mean<br>degree<br><b>(k)</b> | (k <sub>in</sub> ²) | (k <sub>out</sub> <sup>2</sup> ) | Mean 2nd<br>moment<br>(k²) | Yin   | Yout  | o <sub>k</sub> ~ k <sup>-γ</sup> |
|-----------------------|--------------|---------------------|------------------------------|---------------------|----------------------------------|----------------------------|-------|-------|----------------------------------|
| Internet              | 192,244      | 609,066             | 6.34                         | -                   | -                                | 240.1                      | -     | -     | 3.42*                            |
| WWW                   | 325,729      | 1,497,134           | 4.60                         | 1546.0              | 482.4                            | -                          | 2.00  | 2.31  | -                                |
| Power Grid            | 4,941        | 6,594               | 2.67                         | -                   | -                                | 10.3                       | -     | -     | Exp.                             |
| Mobile-Phone Calls    | 36,595       | 91,826              | 2.51                         | 12.0                | 11.7                             | -                          | 4.69* | 5.01* | -                                |
| Email                 | 57,194       | 103,731             | 1.81                         | 94.7                | 1163.9                           | -                          | 3.43* | 2.03* | -                                |
| Science Collaboration | 23,133       | 93,437              | 8.08                         | -                   | -                                | 178.2                      | -     | -     | 3.35*                            |
| Actor Network         | 702,388      | 29,397,908          | 83.71                        | -                   | -                                | 47,353.7                   | -     | -     | 2.12*                            |
| Citation Network      | 449,673      | 4,689,479           | 10.43                        | 971.5               | 198.8                            | -                          | 3.03* | 4.00* | -                                |
| E. Coli Metabolism    | 1,039        | 5,802               | 5.58                         | 535.7               | 396.7                            | -                          | 2.43* | 2.90* | -                                |
| Protein Interactions  | 2,018        | 2,930               | 2.90                         | -                   | -                                | 32.3                       | -     | -     | 2.89*-                           |

## Exponential vs power-law networks

Figure is from R. Albert, H. Jeong, and A.-L. Barabasi



Red: 5 nodes with highest degree, green: their first neighbors.

# Growth and preferential attachment lead to power-law degree distribution

#### A.-L. Barabasi and R. Albert (1999)

- Observed that numerous real-world networks exhibit power-law degree distribution  $p_k \sim k^{-\gamma}$
- Argued that this is the result of two factors: (1) growth and (2) preferential attachment
- Proposed a simple growth model leading to  $p_k \sim k^{-3}$



**Fig. 1.** The distribution function of connectivities for various large networks. **(A)** Actor collaboration graph with N=212,250 vertices and average connectivity  $\langle k \rangle=28.78$ . **(B)** WWW, N=325,729,  $\langle k \rangle=5.46$  **(6)**. **(C)** Power grid data, N=4941,  $\langle k \rangle=2.67$ . The dashed lines have slopes (A)  $\gamma_{\rm actor}=2.3$ , (B)  $\gamma_{\rm www}=2.1$  and (C)  $\gamma_{\rm power}=4$ .

## Poisson vs power-law



Poisson distribution is sharply peaked at  $z = \langle k \rangle$ , indicating that there is a characteristic scale for k.



Power-law distribution does not have a characteristic scale.

## Barabasi-Albert growth model

#### Preferential attachment

- Start with m vertices and no edges
- Step 1: add a vertex and link it to all vertices.
- **Step 2, 3, 4, ...**: add a vertex with m edges and link it to m different vertices. The probability that at step t the new vertex will be linked to vertex i is  $P(k_i) = k_i/\sum_j k_j$ , where  $k_i$  is the degree of vertex i.
- After t steps, there will be m + t vertices and mt edges.



- (A) The power-law connectivity distribution at t ? 150,000 (circles) and t ? 200,000 (squares) as obtained from the model, using  $m_0 = m =$  ? 5. The slope of the dashed line is ? 2.9.
- (B) The exponential connectivity distribution for model A, in the case of  $m_0 = m = ?1$  (circles),  $m_0 = m = ?3$  (squares),  $m_0 = m = ?5$  (diamonds), and  $m_0 = m = ?7$  (triangles)?

A.-L. Barabasi and R. Albert, (1999)

#### Make time continuous to facilitate calculations

The rate at which a vertex acquires edges is  $\frac{dk_i}{dt} = \frac{k_i}{2t}$ .

Justification: the rate must be proportional to  $k_i$  and all rates must sum up to m.

$$\sum_{i} \frac{dk_i}{dt} = \frac{1}{2t} \sum_{i} k_i = \frac{2mt}{2t} = m$$

Initially,  $k_i(t_i) = m$ . Here,  $t_i$  is the time at which vertex i is added.

A.-L. Barabasi and R. Albert, (1999)

#### Make time continuous to facilitate calculations

The rate at which a vertex acquires edges is  $\frac{dk_i}{dt} = \frac{k_i}{2t}$ . Initially,  $k_i(t_i) = m$ .

Justification: the rate must be proportional to  $k_i$  and all rates must sum up to m.

$$\sum_{i} \frac{dk_i}{dt} = \frac{1}{2t} \sum_{i} k_i = \frac{2mt}{2t} = m$$

Hence,  $k_i(t) = m \left(\frac{t}{t_i}\right)^{1/2}$ , where  $t_i$  is the time when vertex i was added.

A.-L. Barabasi and R. Albert, (1999)

#### Make time continuous to facilitate calculations

The rate at which a vertex acquires edges is  $\frac{dk_i}{dt} = \frac{k_i}{2t}$ . Initially,  $k_i(t_i) = m$ .

Justification: the rate must be proportional to  $k_i$  and all rates must sum up to m.

$$\sum_{i} \frac{dk_i}{dt} = \frac{1}{2t} \sum_{i} k_i = \frac{2mt}{2t} = m$$

Hence,  $k_i(t) = m \left(\frac{t}{t_i}\right)^{1/2}$ , where  $t_i$  is the time when vertex i was added.

The probability that at time t a vertex i has < k edges is  $P[k_i(t) < k] = P \left| t_i > \frac{m^2 t}{k^2} \right|$ .

A.-L. Barabasi and R. Albert, (1999)

#### Make time continuous to facilitate calculations

The rate at which a vertex acquires edges is  $\frac{dk_i}{dt} = \frac{k_i}{2t}$ . Initially,  $k_i(t_i) = m$ .

Justification: the rate must be proportional to  $k_i$  and all rates must sum up to m.

$$\sum_{i} \frac{dk_i}{dt} = \frac{1}{2t} \sum_{i} k_i = \frac{2mt}{2t} = m$$

Hence,  $k_i(t) = m \left(\frac{t}{t_i}\right)^{1/2}$ , where  $t_i$  is the time when vertex i was added.

The probability that at time t a vertex i has < k edges is  $P[k_i(t) < k] = P \left| t_i > \frac{m^2 t}{k^2} \right|$ .

$$P\left[t_i > \frac{m^2 t}{k^2}\right] = 1 - P\left[t_i \le \frac{m^2 t}{k^2}\right] = 1 - \frac{m^2 t/k^2 + m}{t + m}$$

A.-L. Barabasi and R. Albert, (1999)

#### Make time continuous to facilitate calculations

The rate at which a vertex acquires edges is  $\frac{dk_i}{dt} = \frac{k_i}{2t}$ . Initially,  $k_i(t_i) = m$ .

Justification: the rate must be proportional to  $k_i$  and all rates must sum up to m.

$$\sum_{i} \frac{dk_i}{dt} = \frac{1}{2t} \sum_{i} k_i = \frac{2mt}{2t} = m$$

Hence,  $k_i(t) = m \left(\frac{t}{t_i}\right)^{1/2}$ , where  $t_i$  is the time when vertex i was added.

The probability that at time t a vertex i has < k edges is  $P[k_i(t) < k] = P \left| t_i > \frac{m^2 t}{k^2} \right|$ .

$$P\left[t_i > \frac{m^2 t}{k^2}\right] = 1 - P\left[t_i \le \frac{m^2 t}{k^2}\right] = 1 - \frac{m^2 t/k^2 + m}{t + m}$$

Now, find the pdf: 
$$p(k) = \frac{\partial P[k_i(t) < k]}{\partial k} = \frac{2m^2t}{k^3(t+m)} \to \frac{2m^2}{k^3}$$
.

#### A. L. Barabasi, Network Science



#### A. L. Barabasi, Network Science



Image 4.14

#### Networks With γ < 2 are Not Graphical

- Degree distributions and the corresponding degree sequences for two small networks. The difference between them is in the degree of a single node. While we can build a simple network using the degree distribution (a), it is impossible to build one using (b), as one stub always remains unmatched. Hence (a) is graphical, while (b) is not.
- Fraction of networks, g, for a given  $\gamma$  that are graphical. A large number of degree sequences with degree exponent  $\gamma$  and  $N = 10^5$  were generated, testing the graphicality of each network. The figure indicates that while virtually all networks with  $\gamma$  2 are graphical, it is impossible to find graphical networks in the 0  $\langle \gamma \rangle$  2 range. After [39].

## **Error and Attack tolerance**

R. Albert, H. Jeong, and A.-L. Barabasi

- Two types of random networks: Poisson and scale-free
- Two types of disturbances: random failures and targeted attacks.
- Poisson random graphs are equally tolerant to random failures and targeted attacks.
- Scale-free random graphs are highly tolerant to random failures but extremely vulnerable to targeted attacks.



E = "Exponential" = "Poisson" = "Erdos-Renyi"

SF = "Scale-free" = "Power law"d = the average length of theshortest path

f = fraction of removed nodesFailure = removal of randomlypicked nodes

Attack = removal of nodes of highest degree



## A debate about scale-free networks

- Scale-free networks are rare. A. Broido, A. Clauset.
  - Nature Communications 10, 1017 (2019)
  - a supplement
  - ArXiv preprint (2018)(contains more details)
  - An article in Quanta Magazine
- A. L. Barabasi's response: Love is All You Need. (2018)
  - Conceptual problem. Power law is an idealized model. Real networks formed as a result of more complex processes.
  - Methodological problem. The criterion for a power-law networks set up by B&C is highly artificial. Even some truly scale-free networks fail to satisfy it.

## Resilience to random breakdowns

Cohen, Erez, ben Avraham, Havlin, 2000

 Recall the criterion for the phase transition from no giant component to its existence

$$0 = z_2 - z_1 = \langle k^2 \rangle - 2\langle k \rangle$$
, or  $\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} = 2$ 

## Resilience to random breakdowns

#### Cohen, Erez, ben Avraham, Havlin, 2000

 Recall the criterion for the phase transition from no giant component to its existence

$$0 = z_2 - z_1 = \langle k^2 \rangle - 2\langle k \rangle$$
, or  $\kappa := \frac{\langle k^2 \rangle}{\langle k \rangle} = 2$ 

Imagine that each node is destroyed with probability p.



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k \rangle = \sum_{k=0}^{\infty} k \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$
$$= \sum_{k_0=0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$





$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k \rangle = \sum_{k=0}^{\infty} k \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$= \sum_{k_0=0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$(x+y)^{k_0} = \sum_{k=0}^{k_0} \begin{pmatrix} k_0 \\ k \end{pmatrix} x^k y^{k_0-k}$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$x\frac{d}{dx}(x+y)^{k_0} = xk_0(x+y)^{k_0-1} = \sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} x^k y^{k_0-k}$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$





$$(x+y)^{k_0} = \sum_{k=0}^{k_0} \binom{k_0}{k} x^k y^{k_0-k}$$

$$x\frac{d}{dx}(x+y)^{k_0} = xk_0(x+y)^{k_0-1} = \sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} x^k y^{k_0-k}$$

$$x \mapsto 1 - p, \quad y \mapsto p$$
 
$$\sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} (1 - p)^k p^{k_0 - k} = k_0 (1 - p)$$



 $k_0 = 0$ 

$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k \rangle = \sum_{k=0}^{\infty} k \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$= \sum_{k_0=0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$= \sum_{k_0=0}^{\infty} P(k_0) k_0 (1-p) = \langle k_0 \rangle (1-p)$$



$$\langle k \rangle = \langle k_0 \rangle (1 - p)$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$
$$= \sum_{k_0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k^2 \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$\langle k \rangle = \langle k_0 \rangle (1 - p)$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$
$$= \sum_{k_0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k^2 \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$\langle k \rangle = \langle k_0 \rangle (1 - p)$$

$$\left(x\frac{d}{dx}\right)^{2} (x+y)^{k_{0}} = x\frac{d}{dx} \left[xk_{0}(x+y)^{k_{0}-1}\right] = xk_{0}(x+y)^{k_{0}-1} + x^{2}k_{0}(k_{0}-1)(x+y)^{k_{0}-2}$$

$$= \sum_{k=0}^{k_{0}} k^{2} \binom{k_{0}}{k} x^{k}y^{k_{0}-k}$$

$$x\mapsto 1-p, \quad y\mapsto p$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$
$$= \sum_{k_0}^{\infty} P(k_0) \sum_{k=0}^{k_0} k^2 \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$



$$\langle k \rangle = \langle k_0 \rangle (1 - p)$$

$$\left(x\frac{d}{dx}\right)^{2} (x+y)^{k_{0}} = x\frac{d}{dx} \left[xk_{0}(x+y)^{k_{0}-1}\right] = xk_{0}(x+y)^{k_{0}-1} + x^{2}k_{0}(k_{0}-1)(x+y)^{k_{0}-2}$$

$$= \sum_{k=0}^{k_{0}} k^{2} \binom{k_{0}}{k} x^{k}y^{k_{0}-k} \qquad x \mapsto 1-p, \quad y \mapsto p$$

$$\sum_{k=0}^{\kappa_0} k^2 \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k} = k_0(1-p) + k_0(k_0-1)(1-p)^2 = k_0^2(1-p)^2 + k_0p(1-p)$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k^2 \rangle = \sum_{k_0=0}^{\infty} P(k_0) \left[ k_0^2 (1-p)^2 + k_0 p (1-p) \right]$$
$$= \langle k_0^2 \rangle (1-p)^2 + \langle k_0 \rangle p (1-p)$$



$$\langle k \rangle = \langle k_0 \rangle (1 - p)$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

$$\langle k \rangle = \langle k_0 \rangle (1-p)$$
  
 $\langle k^2 \rangle = \langle k_0^2 \rangle (1-p)^2 + \langle k_0 \rangle p (1-p)$ 

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

$$= \frac{\langle k_0^2 \rangle (1 - p) + \langle k_0 \rangle p}{\langle k_0 \rangle}$$

$$= \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} (1 - p) + p$$



$$P'(k) = \sum_{k_0=k}^{\infty} P(k_0) \begin{pmatrix} k_0 \\ k \end{pmatrix} (1-p)^k p^{k_0-k}$$

#### $\langle k \rangle = \langle k_0 \rangle (1 - p)$

$$\langle k^2 \rangle = \langle k_0^2 \rangle (1-p)^2 + \langle k_0 \rangle p (1-p)$$

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

$$= \frac{\langle k_0^2 \rangle (1 - p) + \langle k_0 \rangle p}{\langle k_0 \rangle}$$

$$= \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} (1 - p) + p$$

#### Critical probability of failure

$$\kappa = \kappa_0 (1 - p_c) + p_c = 2$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

# Random failures in random graphs with power-law degree distribution

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

# Random failures in random graphs with power-law degree distribution

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$\int_{m}^{K} ck_0^{-\alpha} dk_0 = \left[ c(1-\alpha)k_0^{1-\alpha} \right]_{m}^{K} = c(1-\alpha)[K^{1-\alpha} - m^{1-\alpha}] = 1$$

Hence 
$$c \approx \frac{m^{\alpha - 1}}{\alpha - 1}$$

# Random failures in random graphs with power-law degree distribution

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$
  $c \approx \frac{m^{\alpha-1}}{\alpha-1}$ 

Estimate maximal vertex degree for a finite network with N nodes

$$\int_{K}^{\infty} P(k_0)dk_0 = \frac{1}{N}$$

I.e., the probability that a node has at least K first neighbors is 1/N, i.e., we expect to have at most one such a node.

#### Random failures in random graphs with power-law degree distribution

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$
  $c \approx \frac{m^{\alpha-1}}{\alpha-1}$ 

Estimate maximal vertex degree for a finite network with N nodes

$$\int_{K}^{\infty} P(k_0)dk_0 = \frac{1}{N}$$

I.e., the probability that a node has at least K first neighbors is 1/N, i.e., we expect to have at most one such a node.

$$\int_{K}^{\infty} P(k_0)dk_0 = c(\alpha - 1)K^{1-\alpha} = \left(\frac{m}{K}\right)^{\alpha - 1} = \frac{1}{N}$$

$$K = mN^{1/(\alpha-1)}$$
 Hence  $K \to \infty$  as  $N \to \infty$ .

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$\kappa_0 = \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} = \frac{(3-\alpha)}{(2-\alpha)} \frac{[K^{3-\alpha} - m^{3-\alpha}]}{[K^{2-\alpha} - m^{2-\alpha}]}$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$\kappa_0 = \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} = \frac{(3-\alpha)}{(2-\alpha)} \frac{[K^{3-\alpha} - m^{3-\alpha}]}{[K^{2-\alpha} - m^{2-\alpha}]}$$

$$K \to \infty$$

$$\kappa_0 \approx \left| \frac{3 - \alpha}{2 - \alpha} \right| \begin{cases} m, & \alpha > 3 \\ m^{\alpha - 2} K^{3 - \alpha}, & 2 < \alpha < 3 \\ K, & 1 < \alpha < 2. \end{cases}$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$\kappa_0 = \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} = \frac{(3-\alpha)}{(2-\alpha)} \frac{[K^{3-\alpha} - m^{3-\alpha}]}{[K^{2-\alpha} - m^{2-\alpha}]}$$

$$K \to \infty$$

$$\kappa_0 \approx \left| \frac{3 - \alpha}{2 - \alpha} \right| \begin{cases} m, & \alpha > 3 \\ m^{\alpha - 2} K^{3 - \alpha}, & 2 < \alpha < 3 \\ K, & 1 < \alpha < 2. \end{cases}$$

$$p_c = 1 - \frac{\alpha - 2}{(\alpha - 3)m - (\alpha - 2)} < 1, \quad \alpha > 3$$

$$p_c = 1 - \frac{\alpha - 2}{(3 - \alpha)m^{\alpha - 2}K^{3 - \alpha} - (\alpha - 2)} \to 1 \text{ as } K \to \infty, 2 < \alpha < 3$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$\kappa_0 = \frac{\langle k_0^2 \rangle}{\langle k_0 \rangle} = \frac{(3-\alpha)}{(2-\alpha)} \frac{[K^{3-\alpha} - m^{3-\alpha}]}{[K^{2-\alpha} - m^{2-\alpha}]}$$

$$K \to \infty$$

$$\kappa_0 \approx \left| \frac{3 - \alpha}{2 - \alpha} \right| \begin{cases} m, & \alpha > 3 \\ m^{\alpha - 2} K^{3 - \alpha}, & 2 < \alpha < 3 \\ K, & 1 < \alpha < 2. \end{cases}$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

Most real-world networks:

$$2 < \alpha < 3$$

Hence 
$$\kappa_0 \to \infty$$
 as  $K \to \infty$ 

$$p_c = 1 - \frac{\alpha - 2}{(\alpha - 3)m - (\alpha - 2)} < 1, \quad \alpha > 3$$

$$p_c = 1 - \frac{\alpha - 2}{(3 - \alpha)m^{\alpha - 2}K^{3 - \alpha} - (\alpha - 2)} \to 1 \text{ as } K \to \infty, 2 < \alpha < 3$$

$$P(k_0) = ck_0^{-\alpha}, \quad k_0 = m, m+1, \dots, K$$

$$p_c = 1 - \frac{1}{\kappa_0 - 1}$$

Most real-world networks:  $2 < \alpha < 3$ 

Hence  $\kappa_0 \to \infty$  as  $K \to \infty$  which is caused by  $N \to \infty$ .

Ratio of fractions in giant component



FIG. 1. Percolation transition for networks with power-law connectivity distribution. Plotted is the fraction of nodes that remain in the spanning cluster after breakdown of a fraction p of all nodes,  $P_{\infty}(p)/P_{\infty}(0)$ , as a function of p, for  $\alpha=3.5$  (crosses) and  $\alpha=2.5$  (other symbols), as obtained from computer simulations of up to  $N=10^6$ . In the former case, it can be seen that for  $p>p_c\approx0.5$  the spanning cluster disintegrates and the network becomes fragmented. However, for  $\alpha=2.5$  (the case of the Internet), the spanning cluster persists up to nearly 100% breakdown. The different curves for K=25 (circles), 100 (squares), and 400 (triangles) illustrate the finite size effect: the transition exists only for finite networks, while the critical threshold  $p_c$  approaches 100% as the networks grow in size.

Callaway, Newman, Strogatz, Watts (2000)

• The failure probability is allowed to depend on degree: the probability that a vertex of degree *k* survives (is occupied) is *q<sub>k</sub>*.

Callaway, Newman, Strogatz, Watts (2000)

- The failure probability is allowed to depend on degree: the probability that a vertex of degree k survives (is occupied) is  $q_k$ .
- Note that if  $q_k = q$  for all k, then q = 1 p from Cohen et al.

Callaway, Newman, Strogatz, Watts (2000)

- The failure probability is allowed to depend on degree: the probability that a vertex of degree k survives (is occupied) is  $q_k$ .
- Note that if  $q_k = q$  for all k, then q = 1 p from Cohen et al.
- Method of generating functions is used. Result from Cohen et al. is rederived and refined.

Callaway, Newman, Strogatz, Watts (2000)

- The failure probability is allowed to depend on degree: the probability that a vertex of degree *k* survives (is occupied) is *q<sub>k</sub>*.
- Note that if  $q_k = q$  for all k, then q = 1 p from Cohen et al.
- Method of generating functions is used. Result from Cohen et al. is rederived and refined.
- Disappearance of the giant component is shown for targeted attack removing highest degree nodes.

#### Spread of epidemic disease on network

#### M. Newman (2002)

SIR model: Susceptible → Infecting → Removed (L. Reed, W. H. Frost, 1920s, unpublished)

$$\frac{ds}{dt} = -\beta is, \quad \frac{di}{dt} = \beta is - \gamma i, \quad \frac{dr}{dt} = \gamma i$$
  $s + i + r = 1$ 



r = rate of disease-causing contacts  $\tau$  = duration of being infecting

$$T = 1 - e^{-r\tau} = \text{transmission rate}$$

Grassberger (1983): Mapping on the bond percolation problem: each edge is transmitting with probability *T*.



$$G_0(x) = \sum_{k=0}^{\infty} p_k x^k$$
 = generating function for degree distribution

$$G_1(x) = \sum_{k=0}^{\infty} q_k x^k = \sum_{k=0}^{\infty} \frac{(k+1)p_{k+1}}{\sum_{j=0}^{\infty} jp_j} x_k = \frac{G'_0(x)}{z}$$

= generating function for the excess degree distribution

$$G_0(x;T) = \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} p_k \binom{k}{m} T^m (1-T)^{k-m} x^m$$

$$= \sum_{k=0}^{\infty} p_k \sum_{m=0}^{k} \binom{k}{m} (xT)^m (1-T)^{k-m}$$

$$= \sum_{k=0}^{\infty} p_k (1-T+xT)^k = G_0(1+(x-1)T)$$

= generating function for distribution of transmitting edges adjacent to a node

$$G_1(x;T) = G_1(1 + (x-1)T)$$

= generating function for distribution of transmitting edges adjacent to a node arrived at by a randomly chosen edge

 $H_1(x;T) = xG_1(H_1(x;T);T) =$ generating function for the size of transmitting cluster reached from a randomly chosen edge  $H_0(x;T) = xG_0(H_1(x;T);T) =$ generating function for the size of transmitting cluster reached from a randomly chosen vertex

$$P_s(T) = \frac{1}{s!} \left. \frac{d^s H_0}{dx^s} \right|_{x=0} = \frac{1}{2\pi i} \oint \frac{H_0(\zeta;T)}{\zeta^{s+1}} d\zeta \qquad \text{Recipe for finding the distribution of cluster sizes numerically}$$

= probability that transmitting cluster has size s

$$\langle s \rangle = H'_0(1;T) = 1 + G'_0(1;T)H'_1(1;T)$$
  
= average outbreak size

$$H'_{1}(1;T) = 1 + G'_{1}(1;T)H'_{1}(1;T) = \frac{1}{1 - G'_{1}(1;T)}$$

$$\langle s \rangle = H'_{0}(1;T) = 1 + \frac{G'_{0}(1;T)}{1 - G'_{1}(1;T)} = 1 + \frac{TG'_{0}(1)}{1 - TG'_{1}(1)}$$

$$= \text{average outbreak size}$$

If *T* is below the epidemic threshold

$$T_c = \frac{1}{G_1'(1)} = \frac{G_0'(1)}{G_0''(1)} = \frac{\sum_{k=1}^{\infty} kp_k}{\sum_{k=1}^{\infty} k(k-1)p_k}$$

Critical transmission:

- for  $T > T_c$  we have a giant component connected by transmitting edges (an epidemic);
- for  $T < T_c$  all components are small (no epidemic).

## Critical transmission probability for power law degree distribution

$$p_k = \frac{k^{-\alpha}}{\zeta(\alpha)}, \quad \zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha} = \text{Riemann zeta function}$$

$$T_c = \frac{\sum_{k=1}^{\infty} k p_k}{\sum_{k=1}^{\infty} k (k-1) p_k} = \frac{\zeta(\alpha-1)}{\zeta(\alpha-2) - \zeta(\alpha-1)}$$

- If  $\alpha \le 3$  then  $T_c = 0$ , hence, there is always an epidemic.
- If  $3 < \alpha < \alpha_c \approx 3.4788$ , then  $0 < T_c < 1$ , hence, there is epidemic threshold.
- If  $\alpha \ge \alpha_c \approx 3.4788$ , no epidemic can occur unless T = 1.



- For T>Tc, we redefine  $H_0$  as the generating function for outbreaks other than the giant component.
- Note: we cannot use  $H_0$  for the giant cluster as the "no loop" assumption no longer holds.

$$H_0(1;T) = \sum_{s=1}^{\infty} P_s(T) = 1 - S(T), \quad S(T) = \text{fraction in the giant component}$$
 $H_0(1;T) = G_0(u;T), \quad \text{where} \quad u = H_1(1;T)$ 
 $H_1(1;T) = G_1(H_1(1;T);T), \quad \text{hence we get an equation for } u: \quad u = G_1(u;T)$ 

The quantity u is the probability that the vertex at the end of a randomly chosen edge remains uninfected during an epidemic ?i.e., that it belongs to one of the finite components?.

#### $G_0$ , $G_1$ , u, and S for power law degree distribution

```
Li_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^k}{k^{\alpha}} = \text{polylogarithm}
```

```
function SIR()
close all
fsz = 16:
% power law degree distribution p k = k^{-1}/2eta(a)
                                                                G_0 = \frac{Li_{\alpha}(x)}{Li_{\alpha}(1)}
a = 2.5;
G0 = @(x)polylog(a,x)/polylog(a,1);
G1 = @(x)polylog(a-1,x)./(x*polylog(a-1,1));
x=linspace(0,1,100);
%
figure(1);
                                       G_1 = \frac{G_0'(x)}{G_0'(1)} = \frac{Li_{\alpha-1}(x)}{xLi_{\alpha-1}(1)}
hold on;
grid:
plot(x,G0(x),'Linewidth',2)
plot(x,G1(x),'Linewidth',2)
legend('G_0(x)', 'G_1(x)');
xlabel('x','Fontsize',fsz);
set(gca, 'Fontsize', fsz)
% critical transissibility = 0, hence, there is always an epidemic
nt = 100:
t = linspace(0,1,nt); % transimissibility
u = zeros(nt,1);
S = zeros(nt,1);
for i = 1: nt
  T = t(i);
  u(i) = fzero(@(x)G1(1-T+T*x)-x,0.3);
  S(i) = 1 - GO(1-T+T*u(i));
end
figure(2);
hold on;
arid:
plot(t,u,'Linewidth',2)
plot(t,S,'Linewidth',2)
legend('u','S');
xlabel('T','Fontsize',fsz);
set(gca, 'Fontsize', fsz)
```

end

*u* = probability that a vertex at the end of a random edge stays uninfected duding the epidemic; S = fraction in the giant component.





The quantity u is the probability that the vertex at the end of a randomly chosen edge remains uninfected during an epidemic ?i.e., that it belongs to one of the finite components?.

The probability that a vertex does not become infected via one of its edges is

$$v$$
? = 1 - ? $T$  +? $Tu$ ,

which is the sum of the probability (1-?T) that the edge is non-transmitting, and the probability Tu that it is transmitting but connects to an uninfected vertex. The total probability of being uninfected if a vertex has degree k is  $v^k$ , and the probability of having degree k given that a vertex is uninfected is

$$\frac{p_p v^k}{\sum_{k=0}^{\infty} p_k v^k}$$
. This distribution is generated by  $\frac{G_0(vx)}{G_0(v)}$ .

The average vertex degree outside the giant component:

$$z_{\notin Giant} = \left. \frac{d}{dx} \frac{G_0(vx)}{G_0(v)} \right|_{x=1} = \frac{vG_0'(v)}{G_0(v)} = \frac{vzG_1(v)}{G_0(v)}$$

Recall that  $G_1(x;T) = G_1(1-T+xT)$ . Hence  $G_1(v) = G_1(u;T) = u$ .

Also recall that  $G_0(v) = G_0(1 - T + Tu) = G_0(u; T) = 1 - S(T)$ .

Hence 
$$z_{\notin Giant} = \frac{vzG_1(v)}{G_0(v)} = \frac{(1 - T + Tu)u}{1 - S(T)}z$$

The average vertex degree inside the giant component:

$$z_{\in Giant} = \left. \frac{d}{dx} \frac{G_0(x) - G_0(vx)}{G_0(1) - G_0(v)} \right|_{x=1} = \left. \frac{vG_0'(v)}{G_0(v)} = \frac{1 - vG_1(v)}{1 - G_0(v)} z = \frac{1 - u(1 - T + Tu)}{S} z \right.$$

#### Mean degrees for the power law degree distribution

$$p_k = \frac{k^{-\alpha}}{\zeta(\alpha)}, \quad \zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha} = \text{Riemann zeta function}$$

$$z = \frac{Li_{\alpha-1}(1)}{Li_{\alpha}(1)} =$$
the mean degree

$$\alpha = 2.5$$



