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Degree fluctuations in real networks

A. L. Barabasi, Network Science
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Exponential vs power-law networks

Figure is from R. Albert, H. Jeong, and A.-L. Barabasi

s * ®
a a . b . e a®® ®
*® - ¢ “
- S N e
e -1 o * - ®.
o Y A * 4 ®
- ® \ ot & _ * - o _ o ~0 ®
o g . . p - .
® wgn WL . . a1 % e B
. N o A e .
[ 1T . = ¢. b L v - y . ;. 4 A :’_ . ¢
‘e A L i L v
o—3i 1% I R o * » - e I =
4 O iy B oY , S Yoo Wl el " .
a \ ; a oy - -'-'4..“ > . &, ‘% (M “"- NS ’ g ®
A4 LA A o atew, * e o® " Rt Otn-»:\;‘: '. o .
' s ST | 2 W P e,
. e .’s : . | e -9 . * ‘. : ' \J? "‘-:;.-:'i xﬂ‘ &
@ . * »- ‘ - .- = .‘ » “- ¥ ..‘2\'.:_:'-.. :" O o »
® ® ot % NI * N *’f et 0 ®
s b 3 - '. . ° .. | v :.
. i Yy “ o CHE I P
. X e @ - ..
. ® Sese a4
i @
@ -
Exponential Scale-free
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Growth and preferential attachment
lead to power-law degree distribution

A.-L. Barabasi and R. Albert (1999)

- Observed that numerous real-world networks exhibit power-law degree
distribution px ~ k7

- Argued that this is the result of two factors: (1) growth and (2) preferential
attachment

- Proposed a simple growth model leading to p« ~ k3
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
SlOPES (A) ‘Yactor = 23' (B) ywww = 21 and (C) YDOWGT - 4



Poisson vs power-law
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Poisson distribution is sharply
peaked at z = <k>,
indicating that there is a
characteristic scale for k.

Power-law distribution does
not have a characteristic
scale.



Barabasi-Albert growth model

Preferential attachment

Start with m vertices and no edges
Step 1: add a vertex and link it to all vertices.

Step 2, 3, 4, ...: add a vertex with m edges and link it to m
different vertices. The probability that at step t the new
vertex will be linked to vertex i is P(ki) = ki/Zjk;, where ki is

the degree of vertex |.

After t steps, there will be m + t vertices and mt edges.
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(A) The power-law connectivity distribution at 7 [2] 150,000 (circles) and ¢ [2] 200,000
(squares) as obtained from the model, using m, = m = [2]5. The slope of the dashed line

1s [?2] [?2] 2.9.

(B) The exponential connectivity distribution for model A, in the case of my, =m = [2]1

(circles), m, = m = [2]3 (squares), m, = m = [2]5 (diamonds) , and m, =m = [2]7

(triangles)|2].




Emergence of a power law

A.-L. Barabasi and R. Albert, (1999)

Make time continuous to facilitate calculations
dk,  k;

The rate at which a vertex acquires edges is praaive

Justification: the rate must be proportional to k£; and all rates must sum up to m.

p dt 2t - 2t

Initially, k;(t;) = m.  Here, t; is the time at which vertex ¢ is added.
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Make time continuous to facilitate calculations
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Emergence of a power law

A.-L. Barabasi and R. Albert, (1999)

Make time continuous to facilitate calculations
dk,  k;

The rate at which a vertex acquires edges is v Initially, k;(t;) = m.

Justification: the rate must be proportional to k; and all rates must sum up to m.

= — k’L = — =1m
p dt 21 - 21

1/2

t

Hence, k;(t) = m (—) , where t; is the time when vertex ¢ was added.
- : . : m?t
The probability that at time ¢ a vertex ¢ has < k edges is Plk;(t) < k] = P |t; > 23|
m?t i m?t m?t/k* +m
Plt,>—|=1—-Plt; < — | =1—
[ k? ] k? t+m
OPk;(t) < k| 2m?2t 2m?

\

Ok Tk (t+m) | k3

Now, find the pdf: p(k) =



The y Dependent Properties of Scale-Free Networks

A. L. Barabasi, Network Science
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A. L. Barabasi, Network Science

a. Graphical b. Not Graphical C.

1 1
2/3 2/3
1/3 1/3

VAVAVAVAVAVAR

Lle LDe

Networks With y < 2 are Not Graphical

e Degree distributions and the corresponding degree sequences for two small networks. The difference between
them is in the degree of a single node. While we can build a simple network using the degree distribution (a), it is
impossible to build one using (b), as one stub always remains unmatched. Hence (a) is graphical, while (b) is not.
e Fraction of networks, g, for a given y that are graphical. A large number of degree sequences with degree

exponent yand N = 10° were generated, testing the graphicality of each network. The figure indicates that while
virtually all networks with y» 2 are graphical, it is impossible to find graphical networks in the O <y « 2 range. After
[39].




Error and Attack tolerance
R. Albert, H. Jeong, and A.-L. Barabasi

Two types of random networks: Poisson and scale-free

Two types of disturbances: random failures and targeted
attacks.

Poisson random graphs are equally tolerant to random
failures and targeted attacks.

Scale-free random graphs are highly tolerant to random
failures but extremely vulnerable to targeted attacks.
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Attack = removal of nodes of

highest degree
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A debate about scale-free networks

« Scale-free networks are rare. A. Broido, A. Clauset.

« Nature Communications 10, 1017 (2019)

- a supplement

 ArXiv preprint (2018)(contains more details)

- An article in Quanta Magazine

 A.L.Barabasi's response: Love is All You Need. (2018)

« Conceptual problem. Power law is an idealized model. Real
networks formed as a result of more complex processes.

- Methodological problem. The criterion for a power-law
networks set up by B&C is highly artificial. Even some truly
scale-free networks fail to satisfy it.


https://www.nature.com/articles/s41467-019-08746-5
https://static-content.springer.com/esm/art:10.1038/s41467-019-08746-5/MediaObjects/41467_2019_8746_MOESM1_ESM.pdf
https://arxiv.org/pdf/1801.03400.pdf
https://www.quantamagazine.org/scant-evidence-of-power-laws-found-in-real-world-networks-20180215/
https://uploads-ssl.webflow.com/58bcae2c9d6c401e73a26fed/5aa01d3e24eebb000199a0a2_loveisallyouneed.pdf

Resilience to random breakdowns
Cohen, Erez, ben Avraham, Havlin, 2000

- Recall the criterion for the phase transition from no giant
component to its existence

0222—21:<k2>—2<k>, or /431:%:2



Resilience to random breakdowns
Cohen, Erez, ben Avraham, Havlin, 2000

- Recall the criterion for the phase transition from no giant
component to its existence

0222—21:<k2>—2<k>, or /432:%:2

- Imagine that each node is destroyed with probability p.

ko = the original number of first neighbors of v
k = the number of first neighbors of v that are not destroyed

P = 3 Pk (0 ) (- ptptet
ko=k
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ko = the original number of first neighbors of v
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ko = the original number of first neighbors of v
k = the number of first neighbors of v that are not destroyed

’ P = 3 Pk (0 ) (- ptptet
ko=k
4
(k?) = > P(ko) [kg(1 —p)* + kop(1 — p)] — .

= (k3)(1 —p)? + (ko)p(1 — p)
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ko = the original number of first neighbors of v
k = the number of first neighbors of v that are not destroyed

P = 3 Pk (0 ) (- ptptet

ko=k

Critical probability of failure

kK =ro(l —pc)+pc=2

Pc — _/i()—l
_ (k)




Random failures in random graphs
with power-law degree distribution

P(ko)ZCkO_a, ko=mm+1,.... K



Random failures in random graphs
with power-law degree distribution

P(ko)ZCkO_a, ko=mm+1,.... K

™m
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Random failures in random graphs
with power-law degree distribution

P(k()):(iko_a, ko=mm+1,.... K C ~

Estimate maximal vertex degree for a finite network with N nodes
/ h P(ko)dk !
0 0 — X+
K N

l.e., the probability that a node has at least K first neighbors is
1/N, i.e., we expect to have at most one such a node.



Random failures in random graphs
with power-law degree distribution

P(k()):CkO_aa kO:m7m+17'°°7K C%m

Estimate maximal vertex degree for a finite network with N nodes
/me)M: !
0 0 — X+
K N

l.e., the probability that a node has at least K first neighbors is
1/N, i.e., we expect to have at most one such a node.

o0 a—1 1
Pko)dko = —IKP“:(ﬂ) _ 2

| Ptk = cta =1 ) =5

s p

K = mN1/(e-1) Hence K = © as N — .

\_ y




Random failures in random graphs
with power-law degree distribution

Pc = 1 — 1
8) _ (3—a) [KS —mt o




Random failures in random graphs
with power-law degree distribution
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Random failures in random graphs
with power-law degree distribution
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Random failures in random graphs
with power-law degree distribution
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Random failures in random graphs
with power-law degree distribution

P(k()):CkO_a, kozm,m+1,...,K

1

c=1-—
b lﬁlo—l

Most real-world networks: 2 < a<3

Hence ko = © as K — o which is
caused by N — o,

Ratio of fractions in giant component
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FIG. 1. Percolation transition for networks with power-law
connectivity distribution. Plotted is the fraction of nodes that
remain in the spanning cluster after breakdown of a fraction p
of all nodes, P«(p)/P~(0), as a function of p, for & = 3.5
(crosses) and a@ = 2.5 (other symbols), as obtained from com-
puter simulations of up to N = 10°. In the former case, it
can be seen that for p > p. = 0.5 the spanning cluster dis-
integrates and the network becomes fragmented. However, for
a = 2.5 (the case of the Internet), the spanning cluster persists
up to nearly 100% breakdown. The different curves for K = 25
(circles), 100 (squares), and 400 (triangles) illustrate the finite
size effect: the transition exists only for finite networks, while
the critical threshold p. approaches 100% as the networks grow
in size.



Percolation on random graphs
Callaway, Newman, Strogatz, Watts (2000)

 The failure probability is allowed to depend on
degree: the probability that a vertex of degree k
survives (is occupied) is g«.
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Percolation on random graphs
Callaway, Newman, Strogatz, Watts (2000)

 The failure probability is allowed to depend on
degree: the probability that a vertex of degree k
survives (is occupied) is gx.

« Note that if g« = g for all k, then g =1 - p from Cohen
et al.

- Method of generating functions is used. Result
from Cohen et al. is rederived and refined.

 Disappearance of the giant component is shown
for targeted attack removing highest degree nodes.



Spread of epidemic disease on network
M. Newman (2002)

SIR model: Susceptible — Infecting -+ Removed
(L. Reed, W. H. Frost, 1920s, unpublished)

d di d .
d—i:—ﬁis, d—zzﬁis—wj, d—::7i s+i+r=1

r = rate of disease-causing contacts
7 = duration of being infecting

T =1—¢e " = transmission rate

Grassberger (1983): Mapping on the bond percolation problem:
each edge is transmitting with probability T.



A smaller outbreak
Epidemic

Ny




Go(z) = Z prx”® = generating function for degree distribution
k=0

(k+1 Go(x
qux Z )Pk+1 o 0(z)
k=0

ZJ O]p] <

= generatmg function for the excess degree distribution

— fé fé Dr ( T]:L )Tm(1 — T)kmgpm

_ ]ipk; < :/L ) (zT)™(1 — T)F—™

— f:pk(l — T+ 2T)" = Go(1 + (z —1)T)

= generating function for distribution of transmitting edges adjacent to a node

Gi(z;T)=G1(1+ (x — 1)T)
= generating function for distribution of transmitting edges adjacent to a node

arrived at by a randomly chosen edge



Hi(x;T) = xG1(Hy(x;T); T) = generating function for the size of
transmitting cluster reached from a randomly chosen edge
Hy(x;T) = xGo(Hy(x;T); T) = generating function for the size of

transmitting cluster reached from a randomly chosen vertex

1 d°Hy
sl dxs

1 Hy(¢;T) Recipe for finding the distribution of

Py (T) — 9 s+l cluster sizes numerically

x=0
= probability that transmitting cluster has size s

(s) = Hy(1;T) = 1+ Go(1; T)Hy (1;T)

= average outbreak size 5 If Tis below the
1 epidemic threshold
H(1:T)=1+G,(1;TYH{(1;T) =
(1T) (GDH(LT) = { =
G,(1;7T) TGH(1)
= Hy(1;T)=1 o =1 :
(8) o(1:T) +1—Gumm +1—TG’1(1)
= average outbreak size _
a / o )
T o 1 Gy(1) D=1 KDk - .
c G/l(l) — Gg(l) — 22021 k(k‘ o 1)pk Critical transmission:
\_ _J

- for T >T. we have a giant component connected by transmitting edges (an epidemic);
« for T < T¢ all components are small (no epidemic).



Critical transmission probability for
power law degree distribution

Pk = ; , ((a) = Z k% = Riemann zeta function
(@ 2
T, — Zzozl kpk . C(a o 1)

v k(k—1Dpr  ((a—2)—((a—1)

3 _

. If a < 3then T =0, hence, there is 257
always an epidemic.

2 L

. If 3<a<ac=3.4788,then 0 < Tc<1,
hence, there is epidemic threshold. — 15}

e If a2 ac=3.4788, no epidemic can 1
occur unless T =1.
0.5
0 | |
3 3.2 3.4 3.6 3.8



- For T>Tc, we redefine Ho as the generating function for outbreaks other than
the giant component.

- Note: we cannot use Ho for the giant cluster as the “no loop” assumption no
longer holds.

Hy(1;T) = Z P,(T)=1-5(T), S(T)=fraction in the giant component
s=1
Hy(1;T) = Go(uw;T), where uw= Hy{(1;T)

H.(1;T)=Gy(H.1(1;T);T), hence we get an equation for u: u=Gq(u;T)

The quantity u is the probability that the vertex at the end of a randomly chosen edge remains
uninfected during an epidemic [2]i.e., that it belongs to one of the finite components[?].




<k
Lio(x) = Z a:a = polylogarithm

Go, G1, U, and S for
power law degree distribution
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function SIR()

close all

fsz = 16;

% power law degree distribution p_k = k/(-a)/zeta(a)
a=2.5;

GO0 = @(x)polylog(a,x)/polylog(a,1);

G1 = @(x)polylog(a-1,x)./(x*polylog(a-1,1));
x=linspace(0,1,100);

%

figure(1); /
hold on; GO (37) _

grid;

plot(x,GO(x), Linewidth',2)
plot(x,G1(x),'Linewidth',2)
legend('G_0(x)",'G_1(x)");
xlabel('x','Fontsize',fsz);
set(gca,'Fontsize',fsz)

Y%

~ Lig(x)
"7 T

% critical transissibility = 0, hence, there is always an epidemic X
nt = 100;
t = linspace(0,1,nt); % transimissibility r —
u = zeros(nt,1); 0.9 ‘., xomr — 3
ir:i Z_e:O_Sﬁ]T’”; u = probability  ggl
T = t(i): thatavertexat |
u(i) = fzero(@(x)G1(1-T+T*x)-x,0.3); the end of a 0l
S(i)=1-GO(1-T+T*u(i)); random edge .
end inf d 05F
figure(2): stays u.nln ecte
hold on; duding the 0.4 ¢
gridé | epidemic; 0.3+
plot(t,u, Linewidth',2 _ . .
olot(t.S, Linewidh' 2) S =fractioninthe oz}
legend('u','S)); glant component. 4|
xlabel('T','Fontsize',fsz); . | | | | |
set(gca,'Fontsize',fsz) 00 02 04 06 08 1

end



The quantity u is the probability that the vertex at the end of a randomly chosen edge remains
uninfected during an epidemic [2]i.e., that it belongs to one of the finite components[?].

The probability that a vertex does not become infected via one of its edges is

v[?] =1-[2]T +[?]Tu,

which is the sum of the probability (1-[2]T) that the edge is non-transmitting, and the
probability Tu that it is transmitting but connects to an uninfected vertex. The total probability
of being uninfected if a vertex has degree k is vk, and the probability of having degree k given
that a vertex is uninfected is

k
Ppv
©.@) k y
Zk:o PEU

Go(vr)
GO (U) .

This distribution is generated by



The average vertex degree outside the giant component:

S d Go(vz) _ vGo(v) _ vzGi(v)
gGiant = Go(v) Go(v) Go(v)

r=1

Recall that Gi(x;T)=G1(1 =T +2T). Hence Gi(v)=G1(w;T) = u.
Also recall that Gg(v) = Go(1 =T +Tu) = Go(u; T) =1 - S(T).

G 1-T+4+T
Hence zggiant = 02G1 (V) = ( - u)uz

Go(v) 1 —5(T)

The average vertex degree inside the giant component:

A G@) = Goler)| _uGhlv) _ 1-vGi(w)
SCrnt T 4 Go(1) — Go(v)

1 —u(l—-T+Tu)
T Golv) L 1-Golv) T S

<

r=1



Mean degrees for the power law degree distribution
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((a) = Z k™% = Riemann zeta function

ko =
Pk = )
(@) -
Lio_1(1
z = Zof (1) = the mean degree
Lio (1)
o —s
Oj2 054 056 Oj8

—— 2, the mean degree
——z, in giant comp.
z, not in giant comp.
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