A USER GUIDE FOR 0LIM3D PACKAGE
FOR COMPUTING THE QUASIPOTENTIAL

SHUO YANG, SAMUEL POTTER, AND MARIA CAMERON

CONTENTS
1. Compiling and running 2
2. Available options 3
3. Output and visualization 3
4. Changing the SDE, the parameters, and the computational domain 4
References)

The package contains two C source files implementing the ordered line integral method
with the midpoint quadrature rule for computing the quasipotential for nongradient SDEs
in 3D on regular rectangular meshes, and a MATLAB code for visualization:

e 01im3D.c, a C source code, the version without local factoring,

e 0lim3DLFac.c, a C source code, the version with local factoring,

e olim3Dvisualize.m, a MATLAB script visualizing the quasipotential and the
MAP.

The SDE should be of the form,
(1) dx = b(x)dt + edW, x€QCR3,

where b(x) is a continuously differentiable vector field, € is a small parameter, and dW

is the standard 3D Brownian motion. The detailed description of the solver is found in

[l]. The codes 0lim3D.c and olim3DLFac.c are are written so that the computation

of the quasipotential is initialized near an asymptotically stable equilibrium x* of the
1

2 SHUO YANG, SAMUEL POTTER, AND MARIA CAMERON

corresponding ODE x = b(x). The computational domain must be set up so that x* is a
mesh point.

1. COMPILING AND RUNNING

Any C compiler should be applicable for running 01im3D.c and olim3DLFac.c. At the
command line, type

\$ clang 0lim3D.c -1lm -03
\$./a.out

If the program runs normally with the default settings, you should see something like:

chfield = d

x_ipoint: Iindex = 67502848, -1.0000e+00, 0.0000e+00, 0.0000e+00
in param()

in ipoint

in olim()

The boundary is reached:

34308742 accepted points, (511,247,247) is accepted, g=9.9889%e-01
NX = 513,NY = 513, NZ = 513, K = 14

cputime of olim() = 5944.45

of Accepted points = 34308769, umax = 9.9962e-01

Per mesh point: <#lptupdates> = 1820.87, <#2ptupdates> = 17.81
<#3ptupdates> = 10.26, <#2call> = 49.14, <#3call> = 25.88
ErrMax = 1.5688e-03, ERMS = 4.2508e-04

Normalized ErrMax = 1.5694e-03, Normalized ERMS = 6.3319e-04
MAP, the initial point: -2.0508e-02, 0.0000e+00, 0.0000e+00
distance to equilibrium: 9.7949e-01

The last point: -9.9360e-01, 2.1284e-03, 2.1154e-03

distance to equilibrium: 7.0691e-03

Npath = 12933

Here, Umax is the maximal value of the quasipotential among Accepted and Accepted Front
points. NX, NY and NZ indicate the size of the computational domain; K is the update
factor; ErrMax is the maximal absolute error; ERMS is the root mean square error; Npath is
the number of points in the minimum action path (MAP) from the asymptotically stable
equilibrium x* to the user-specified point struct myvector x_ShootMAP.

A USER GUIDE FOR 0LIM3D PACKAGE FOR COMPUTING THE QUASIPOTENTIAL 3

2. AVAILABLE OPTIONS

The codes 01im3D.c and olim3dLFac.c come with several options for choosing the
vector field b(x). The settings in 0olim3DLFac.c and 01im3D.c are all the same except
that olim3DLFac.c contains one extra setting: the radius of the ball for local factoring is
assigned in line 37. From now on, we will refer only to 01im3D.c, and all line numbers
below will be given for 01im3D. c.

The choice of the vector field is done by the variable char chfield whose value is as-
signed at its declaration in line 182. Choose its value out of {°1’,’s’,’r’,’a’,’t’,’u’,’d’}.
The corresponding vector fields are defined in the function struct myvector myfield(struct
myvector x) starting on line 252.

e char chfield

’a’ defines the linear vector field in Example 1 in [1].

e char chfield = ’1’ and char chfield = ’s’ define the linear vector fields in
Examples 2 and 3 in [1] respectively.

e char chfield = ’t’ defines Tao’s nonlinear vector field in Example 6 in [1].

e char chfield = ’u’ defines Tao’s nonlinear vector field in Example 7 in [1].

e char chfield = ’d’ defines the nonlinear vector fields in Examples 4 and 5 in [1]:

the variable fac in line 303 is the variable p in Examples 4 and 5.
01im3D.c and olim3DLFac.c have three running options defined in line 37.

e Set #define CH_SHOOT_MAP ’y’ if you want to compute the quasipotential and
shoot a MAP right after that.

e Set #define CH_SHOOT_MAP ’n’ if you want to compute the quasipotential but do
not want to shoot a MAP. You will be able to do it later.

e Set #define CH_SHOOT_MAP ’s’ if you have already computed the quasipotential
and want to shoot a MAP now.

3. OUTPUT AND VISUALIZATION

Depending on the running option CH_SHOOT_MAP there will be two or three output files,
with the quasipotential, with the parameters for visualization in MATLAB, and with the
MAP. The names of these files are set up in lines 248-250:

const char *f_gpot_name = "Qpot.txt"; // output file with the quasipotential
const char *f_MAP_name = "MAP.txt"; // output file with the MAP
const char *f_par_name = "parameters.txt"; // output file with parameters

4 SHUO YANG, SAMUEL POTTER, AND MARIA CAMERON

If CH_SHOOT_MAP is s, the input file with the quasipotential having the same name as the
one defined in line 248 is required. Otherwise, no input file is necessary.

The quasipotential and the MAP can be visualized by MATLAB. Once 01im3D.c pro-
duced the three output files above, run the MATLAB script olim3Dvisualize.m to plot
the level sets of the quasipotential and the MAP.

4. CHANGING THE SDE, THE PARAMETERS, AND THE COMPUTATIONAL DOMAIN

The mesh size NXXNYXNZ and the update factor K are specified in lines 29-33. We
recommend to choose the value of K according to a guideline in Table 2 in [!] also written
in commented lines 6-10 for your convenience.

The computational domain is set up in the function void param() starting on line 389.

The index of the asymptotically stable equilibrium x* with respect to which the quasipo-
tential should be computed is specified by the variable long Iindex whose value is assigned
in void param().

The point from which you want to shoot a MAP back to the equilibrium is specified by
the variable struct myvector x_ShootMAP whose value is assigned in void param().

If you want to add your own vector field, please do the following steps:

(1) Pick a character to denote your vector field, e.g. ’x’, and change the value of the
variable chfield in line 182 to ’x’:

char chfield = ’x’;

(2) Add case ’x’ to the operator switch in the function
struct myvector myfield(struct myvector x) starting on line 252 and define
your field.

(3) If the quasipotential is available analytically, add case ’x’ to the operator switch
in the function double exact_solution(struct myvector x) starting on line 318
and define the exact solution. Also, add

| chfield == ’x’
right before) in line 392.

(4) Calculate the Jacobian of your field and evaluate it at the asymptotically stable
equilibrium with respect to which you want to compute the quasipotential. Let J be
the matrix that you obtained. If its quasipotential decomposition is not apparent,
use MATLAB to find the quasipotential matrix Q:

format long

A USER GUIDE FOR 0LIM3D PACKAGE FOR COMPUTING THE QUASIPOTENTIAL 5

Q = inv(sylvester(J,J’,-2xeye(size(J))))

The matrix Q is defined in 01im3D.c in the variable Qmatrix of type struct
matrixS3. Since it is symmetric, it suffices to record it entries with j > i. Add case
’x’: to the operator switch in the function void makeQmatrix(char chfield)
starting on line 337 and define Qmatrix.

(5) Add case ’x’ to the operator switch in the function void param() starting
on line 389. You will need to define the computational domain which is a box
[XMIN,XMAX] x [YMIN,YMAX] x [ZMIN,ZMAX], and the index Iindex of the mesh point
at which the asymptotically stable equilibrium x* is located. If you want to shoot
a MAP, define the starting point for shooting it in the variable x_ShootMAP of type
struct myvector.

Now you are ready to compile and run the program.

REFERENCES

[1] S. Yang, S. Potter, and M. Cameron, Computing the quasipotential for non-gradient SDEs in 3D,
submitted to Journal of Computational Physics, 2018, arXiv:

	1. Compiling and running
	2. Available options
	3. Output and visualization
	4. Changing the SDE, the parameters, and the computational domain
	References

