
C CODES IMPLEMENTING ORDERED LINE INTEGRAL METHODS

MARIA CAMERON AND DAISY DAHIYA

Contents

1. Contents 1
2. How to use the C codes 2
2.1. Compiling and Running 2
2.2. Input and output 2
2.3. Changing mesh size, update parameter, and the vector field 3
2.4. Visualizing the quasi-potential in MATLAB 5
References 5

In this document, we provide a user guide for the C codes implementing Ordered Line
Integral Methods for computing the quasi-potential in 2D. The description of the methods,
the results of the numerical tests, and error analysis are given in [1].

1. Contents

The package contains four C-codes implementing Ordered Line Integral Methods for
computing the quasi-potential in 2D:

• OLIM midpoint.c (using the midpoint rule for line integrals),
• OLIM trapezoid.c (using the trapezoid rule for line integrals),
• OLIM simpson.c (using Simpson’s rule for line integrals),
• OLIM righthand.c (using the righthand rectangle rule for line integrals),

and two input files

• circle.txt, a set of 399 points equispaced on the unit circle x2 + y2 = 1,
• icurve brusselator.txt, a set of 329 points lying on the limit cycle of the Brusselator

with a = 1, b = 3.

We favor OLIM-midpoint.c because it has the best balance between the CPU time and
accuracy. OLIM-trapezoid.c is almost as good. OLIM-simpson.c may produce even smaller
numerical error on the same mesh sizes as OLIM-midpoint.c but requires larger CPU times.
OLIM-righthand.c is the fastest method. It is provided mainly for comparison. It’s numerical
scheme is equivalent to the one in the OUM (the Ordered Upwind Method) implemented in
the r-package QPot available at https://cran.r-project.org/web/packages/QPot/index.html
All the OLIMs provided here are faster than the OUM.

1

https://en.wikipedia.org/wiki/Brusselator
 https://cran.r-project.org/web/packages/QPot/index.html

2 MARIA CAMERON AND DAISY DAHIYA

2. How to use the C codes

2.1. Compiling and Running. We run the codes using the gcc C compiler available in
the Command Line Tool. Any other C compiler should be applicable.

Open Terminal, change the directory to the one where you stored the files from the
package, and type:

gcc OLIM_midpoint.c -lm -O3

Then type:

./a.out

If the program runs normally with the default settings, you should see:

in param()

in olim()

576605 (511 2) is accepted, g=9.9223e-01

cputime of olim() = 33.2306

NX = 1024, NY = 1024

errmax = 3.9602e-05, erms = 2.6238e-05

2.2. Input and output. The C codes are designed for computing the quasi-potential in
2D with respect to two kinds of attractors: asymptotically stable equilibria and asymptot-
ically stable limit cycles. If you run any of them for computing the quasi-potential with
respect to an asymptotically stable equilibrium, no input is required. If you run any of
them for computing the quasi-potential with respect to a limit cycle, you need to provide
a plain text file with the set of points more or less uniformly distributed along the limit
cycle. Format of the input file:

x1 y1
x2 y2
...

...
xM yM

If the number of points M exceeds 399, defined in

#define NCURVEMAX 399

(line 18 of the codes), change NCURVEMAX to M or any reasonable number greater than
M . The name of the input files is specified in the line

const char *ficurve_name = "circle.txt"; // input file with points of the initial curve

(approximately line 125). The default input file name is circle.txt. Change it to the name
of your input file.

The codes produce two output files: Qpot.txt and stype.txt. The file Qpot.txt contains
the computed quasi-potential on the Ny ×Nx mesh in the format:

u11 u12 . . . u1Nx

u21 u22 . . . u2Nx

...
...

...
...

uNy1 uNy2 . . . uNyNx

http://railsapps.github.io/xcode-command-line-tools.html

C CODES IMPLEMENTING ORDERED LINE INTEGRAL METHODS 3

The computation terminates as soon as the boundary of the computational domain is
reached at some point. The values of the quasi-potential (the global variable double
g[NX*NY]; in the codes) where it was not computed are equal to 106 (which plays the role
of ∞ in the codes).

The file stype.txt provides the information what kind of update, the one-point update or
the triangle update, has produced the final value of the solution at each mesh point. The
format of stype.txt is an Ny ×Nx array corresponding to the array in Qpot.txt.
stype(i,j) = -1 means that the quasi-potential was not computed at the mesh point (i, j);
stype(i,j) = 0 means that the accepted value at the mesh point (i, j) was produced by the
initialization procedure;
stype(i,j) = 1 means that the accepted value at the mesh point (i, j) was produced by the
one-point update;
stype(i,j) = 2 means that the accepted value at the mesh point (i, j) was produced by the
triangle update.

The names of the output files are specified in lines

const char *f_qpot_name = "Qpot.txt"; // output file with the quasipotential

const char *f_solinfo_name = "stype.txt"; // output file with the solution type

(approximately lines 126-127).

2.3. Changing mesh size, update parameter, and the vector field. The mesh size
Ny ×Nx and the update parameter K are specified in lines 15-17:

#define NX 1024

#define NY 1024

#define K 22

We recommend to pick the value of the update parameter K according the following rules-
of-thumb:

The Rule-of-Thumb for OUM and OLIM-R. For an N ×N mesh where 27 ≤ N ≤
212, pick

(1) K(N) = round[log2N]− 3.

The Rule-of-Thumb for OLIM-MID, OLIM-TR, and OLIM-SIM. For an N×N
mesh where 27 ≤ N ≤ 212, pick

(2) K(N) = 10 + 4(round[log2N]− 7).

The codes contain 5 options for choosing the vector field b(x) in the SDE dx = b(x)dt+√
εdw for which the quasi-potential is computed. These options are specified by the global

variable chfield in line approximately 110:

// choose the vector field b

const char chfield=’l’;

// Vector fields with asymptotically stable equilibrium

// chfield = ’l’: b = [-2, -alin; 2*alin, -1][x; y]; (in the Matlab notations),

// analytic solution U = 2x^2 + y^2

4 MARIA CAMERON AND DAISY DAHIYA

const double alin = 10.0;

// chfield = ’q’ -> Maier-Stein model;

// chfield = ’r’ -> FitzHugh-Nagumo model with a = 1.2

// Vector fields with stable limit cycle

// chfield = ’b’ -> Brusselator;

// CHANGE const char *ficurve_name = "circle.txt"; to

// const char *ficurve_name = "icurve_brusselator.txt";

// chfield = ’c’ -> analytic solution U = (1/2)(r^2-1)^2, l = (y,-x)

In order to add your own 2D vector field, do the following

(1) pick some character to indicate it, for example, set chfield = ’x’; (approximately
line 110).

(2) In function struct myvector myfield(struct myvector x) (approximately line 131), add
above the default:

case ’x’:

v.x = < insert your b_1(x.x, x.y) here >;

v.y = < insert your b_2(x.x, x.y) here >;

break;

(3) If you want to compute the quasi-potential with respect to an asymptotically
stable equilibrium (x0, y0), in function void param() (approximately line 178),
add (above the default) the coordinates of the equilibrium point and the limits of
the rectangular computational domain:

case ’x’:

x_ipoint.x=< insert the value of x0 here >;

x_ipoint.y=0.< insert the value of y0 here >;

XMIN = ... ; XMAX = ... ;

YMIN = ... ; YMAX = ... ;

break;

If you want to compute the quasi-potential with respect to a stable limit cycle
in function void param() (approximately line 178), add (above the default) the limits
of the rectangular computational domain:

case ’x’:

XMIN = ... ; XMAX = ... ;

YMIN = ... ; YMAX = ... ;

break;

(4) If you want to compute the quasi-potential with respect to an asymptotically
stable equilibrium, in function int main(), modify the piece of code with switch
operator (approximately lines 962-973) to

switch(chfield) {

case ’l’: case ’q’: case ’r’: case ’x’:

ipoint();

C CODES IMPLEMENTING ORDERED LINE INTEGRAL METHODS 5

break;

case ’c’: case ’b’:

initial_curve();

break;

default:

printf("Enter a correct value of the char variable chfield\n");

exit(1);

break;

}

If you want to compute the quasi-potential with respect to a stable limit cycle,
in function int main(), modify the piece of code with switch operator (approximately
lines 962-973) to

switch(chfield) {

case ’l’: case ’q’: case ’r’:

ipoint();

break;

case ’c’: case ’b’: case ’x’:

initial_curve();

break;

default:

printf("Enter a correct value of the char variable chfield\n");

exit(1);

break;

}

(5) If you want to compute the quasi-potential with respect to a stable limit cycle,
create a .txt file (e.g. mycycle.txt) with the initial curve representing the stable limit
cycle (see Section 2.2) and change the name of the input file to your mycycle.txt.

Now run the code!

2.4. Visualizing the quasi-potential in MATLAB. The most basic Change the direc-
tory in Matlab to the directory where the codes are and type in the command window:

u = load(’Qpot.txt’);

ind = find(u > 1e5);

u(ind) = NaN;

figure

imagesc(u)

References

[1] D. Dahiya and M. Cameron, Ordered Line Integral Methods for Computing the Quasi-potential, sub-
mitted to Journal of Scientific Computing, Springer, 2017, arXiv:

	1. Contents
	2. How to use the C codes
	2.1. Compiling and Running
	2.2. Input and output
	2.3. Changing mesh size, update parameter, and the vector field
	2.4. Visualizing the quasi-potential in MATLAB

	References

