Machine learning methods for the study of rare events in stochastic systems

REU: Modern topics in pure and applied mathematics

What are rare events?

Rare events are those that occur rarely on the timescale of the system

Dynamics of an alanine-dipeptide molecule pushed around by water molecules

A noise-driven transition from the high- to the low-amplitude attractor in an electromechanical nonlinear oscillator

https://ambermd.org/tutorials/basic/tutorial0/index.php

Lautaro Cilenti, Clark Fellow, Dept. of Mech. Eng. UMD

Stochastic differential equations

The overdamped Langevin dynamics

A simple and important model

$$dX_t = -\nabla V(X_t)dt + \sqrt{2\beta^{-1}}dW_t$$

Invariant pdf is the Gibbs density:

$$\mu(x) = Z^{-1}e^{-\beta V(x)}$$

Expected exit time from the basin of x_{min} :

$$\mathbb{E}[\tau_{\partial B_{x_{\min}}}]$$

$$\approx Ce^{\beta(V(x_{\text{saddle}}) - V(x_{\min}))}$$

Transition path theory

W. E and E. Vanden-Eijnden, 2006

The **committor** is the probability that the process starting at *x* will reach region *B* prior to reaching region *A*

$$q(x) := \mathsf{Prob}_x(\tau_B < \tau_A)$$

Transition path theory

W. E and E. Vanden-Eijnden, 2006

The **committor** is the probability that the process starting at *x* will reach region *B* prior to reaching region *A*

$$q(x) := \mathsf{Prob}_x(\tau_B < \tau_A)$$

$$\mu(x) = Z^{-1}e^{-\beta V(x)}$$

$$J(x) = \beta^{-1} \mu \nabla q(x)$$

The reaction rate:

$$\nu_{AB} = \beta^{-1} \int_{\Omega_{AB}} \|\nabla q\|^2 \mu dx$$

Transition path theory

W. E and E. Vanden-Eijnden, 2006

The **committor** is the probability that the process starting at *x* will reach region *B* prior to reaching region *A*

$$q(x) := \mathsf{Prob}_x(\tau_B < \tau_A)$$

$$\mu(x) = Z^{-1}e^{-\beta V(x)}$$

$$J(x) = \beta^{-1} \mu \nabla q(x)$$

The reaction rate:

$$\nu_{AB} = \beta^{-1} \int_{\Omega_{AB}} \|\nabla q\|^2 \mu dx$$

To find the committor, we need to solve:

$$\mathcal{L}q = \beta^{-1}e^{\beta V}\nabla \cdot \left(e^{-\beta V}\nabla q\right) = 0$$
$$q(\partial A) = 0$$
$$q(\partial B) = 1$$

Approach 1: finite element method

Good only for low dimensions

d = 2: easy to use

d = 3: possible but harder

$$\mathcal{L}q = \beta^{-1}e^{\beta V}\nabla \cdot (e^{-\beta V}\nabla q) = 0, \qquad q(\partial A) = 0, \qquad q(\partial B) = 1$$

• Meshless approaches: diffusion maps, neural networks

Enhanced sampling: *metadynamics*

Subsample data set: delta-net

$$\delta = 0.05$$

Approach 2: diffusion map

Ref: Coifman and Lafon (2006)

Idea: we construct a Markov chain whose dynamics approximate the dynamics of the original SDE

$$P = \{P_{ij}\}$$
 Stochastic matrix

$$L=P-I$$
 Generator matrix

The committor equation

$$\sum_{j} L_{ij} q_{j} = 0, \quad i \in (A \cup B)^{c}$$

$$q_{i} = 0, \quad i \in A$$

$$q_{i} = 1, \quad i \in B$$

Approach 2: diffusion map

Key refs: Coifman and Lafon (2006), Banisch, Trstanova, Bittracker, Klus, Koltai (2020)

Idea: we construct a Markov chain whose dynamics approximate the dynamics of the reactive trajectories

The committor found using target measure diffusion map

Error relative to the FEM solution

Approach 3: neural network

Key refs: Khoo, Lu, Ying (2018), Li, Lin, Ren (2019)

Idea: setup up an optimization problem for the committor, represent its solution as a neural network, and train the neural network

$$\mathcal{N}(x,\theta)=\sigma_1\left(A_1(\sigma_0\left(A_0x+b_0
ight)+b_1
ight)$$
 A neural network $heta=\{A_0,b_0,A_1,b_1\}$ The parameters to be found

$$q(x) = f(\mathcal{N}(x,\theta), x)$$

We represent the committor as a function of the neural network

The committor is the solution to:

$$\mathcal{L}q = \beta^{-1}e^{\beta V}\nabla \cdot \left(e^{-\beta V}\nabla q\right) = 0$$
$$q(\partial A) = 0$$
$$q(\partial B) = 1$$

$$\int_{(A \cup B)^c} \|\nabla q\|^2 \mu(x) dx \to \min$$
subject to
$$q(\partial A) = 0$$

$$q(\partial B) = 1$$

The committor as an optimal controller for sampling reactive trajectories

 $x \in \mathbb{R}^n, \quad n \text{ is very large} \qquad \qquad z \in \mathbb{R}^d, \quad d \text{ is } 2, 3, 4$ Full-space data Collective variables

- We can approximate the committor q(z) in collective variables via solving the backward Kolmogorov equation via:
 (1) Diffusion maps, (2) neural networks, (3) tensor trains, (4) FEM (if d = 2).
- Use the committor q(z(x)) as the controller for the stochastic process: Zhang, Sahai, Marzouk https://arxiv.org/abs/
 2101.07330, Gao, Li, Li, Liu https://arxiv.org/abs/2010.09988
- Sample rare events in higher-dimensional space. A good test: Alanine dipeptide: go from two to four dihedral angles.

The committor as an optimal controller for sampling reactive trajectories

Key ref: Gao, Li, Li, Liu (2020)

The original governing SDE:

$$dX_t = -\nabla V(X_t)dt + \sqrt{2\beta^{-1}}dW_t$$

Modify the drift:

$$dX_t = -\left(\nabla V(X_t) - \frac{2\nabla q(X_t)}{\beta q(X_t)}\right)dt + \sqrt{2\beta^{-1}}dW_t$$

Sample reactive trajectories:

Restore the transition rate (e.g. B. Keller et al.)

Tutorials

June 14 — June 24

- Stochastic differential equations
- Markov Chains
- Transition Path Theory
- FEM
- Diffusion Maps
- Neural Networks
- Sampling reactive trajectories with the aid of an optimal controller

Tentative projects

- How does the architecture of the neural network affect the accuracy of the solution to the committor problem?
- How should we choose a training set for the neural network?
- Can a low-dimensional approximation to the committor be used to design a controller for a high-dimensional process?
- How can we restore the true transition rate if we are using an SDE with a controller for sampling transition paths?
- How does the training set affect the accuracy of the diffusion map-based solution to the committor problem?
- How can we adapt the diffusion map algorithm to compute committors for more complicated SDEs?
- A case study: alanine-dipeptide molecule described via two or four dihedral angles.
- Extension to systems with inertia: oscillators.