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What are rare events?

Rare events are those that occur rarely on the timescale of the system

A noise-driven transition from
the high- to the low-amplitude attractor
in an electromechanical
nonlinear oscillator

Dynamics of
an alanine-dipeptide molecule
pushed around by water molecules

https://ambermd.org/tutorials/basic/tutorialO/index.php Lautaro Cilenti, Clark Fellow, Dept. of Mech. Eng. UMD



Stochastic differential equations

Deterministic Stochastic
forcing forcing

AX, =[b(X,)dt t E@J({Q)de, X, € M C R
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The overdamped Langevin dynamics

A simple and important model

dXt — —VV(Xt)dt + v 25_1th
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Invariant pdf is
the Gibbs density:

p(a) = 27 e PV

Expected exit time
from the basin of Xmin:

El7oB,,, |

1n

%C’eﬁ(v(xsaddle)_v(iﬂmin))



Transition path theory

W. E and E. Vanden-Eijnden, 2006

Reactive trajectories
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The committor is the probability that the process starting at x will

reach region B prior to reaching region A
5

q(x) := Prob, (15 < 74)
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Transition path theory

W. E and E. Vanden-Eijnden, 2006

The committor is the probability that the process starting at x will
reach region B prior to reaching region A

q(x) := Prob, (15 < T4)

The potential function The committor The reactive current
iy x107
5 5 5| 110
B

44 4 10.8 4
3 3 3 18

10.6
2+ 2 2 5

>

1r 10 1-

0.4
0 0 0 4
il -1 02 -1 »
_27 _2, _2,

: 0
4 2 0 2 4
X
. _ n—1 v 2 d
The reaction rate: vaB = f3 H CIH Hax
Qan



y

Transition path theory

W. E and E. Vanden-Eijnden, 2006

The committor is the probability that the process starting at x will
reach region B prior to reaching region A

q(x) := Prob, (15 < T4)
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Computing the committor

To find the committor, we need to solve:

Lqg=8"teVV. (6_5VVq) =0

q(04) =0
¢(0B) =1

- Approach1:
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finite element method

Good only for low dimensions

d = 2: easy to use
d = 3: possible but harder



Computing the committor

Lg=pB1eVV - (ePVVq) =0, q(0A) =0, ¢q(0B)=1

- Meshless approaches: diffusion maps, neural networks

Enhanced sampling: metadynamics Subsample data set: delta-net
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Computing the committor
- Approach 2: diffusion map

Ref: Coifman and Lafon (2006)

Idea: we construct a Markov chain whose dynamics approximate the
dynamics of the original SDE

P = {Pij} Stochastic matrix
L =P — 1  Generator matrix

The committor equation

Y Lijg;=0, i€ (AUB)"
J

qg; =0, e A
;=1 1€ B
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Computing the committor

- Approach 2: diffusion map

Key refs: Coifman and Lafon (2006), Banisch, Trstanova, Bittracker, Klus, Koltai (2020)

Idea: we construct a Markov chain whose dynamics approximate the
dynamics of the reactive trajectories

The committor found using
target measure diffusion map
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Computing the committor

« Approach 3: neural network

Key refs: Khoo, Lu, Ying (2018), Li, Lin, Ren (2019)

Idea: setup up an optimization problem for the committor, represent its
solution as a neural network, and train the neural network

N(z,0) = o1 (A1(o0 (Aox + bo) + b1)

0 = {A07 b07A17 bl}

Q(m) =/ (N($,9),ZE)

r
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The committor is the solution to:
Lqg=p"1ePVV - (6_6VVq) =0
q(0A) =0
q(0B) =1

~\
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A neural network

The parameters to be found

We represent the committor as a
function of the neural network

( )
[ IVaPa)ds — win
(AUB)c
subject to
q(0A) =0

| ¢(0B) =1 )




10,000 training points

NN committor
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The committor as an optimal controller
for sampling reactive trajectories

x € R", nis very large u zeRY dis 2,34

Full-space data % Collective variables

- We can approximate the committor q(z) in collective
variables via solving the backward Kolmogorov equation via:
(1) Diffusion maps, (2) neural networks, (3) tensor trains, (4)
FEM (if d = 2).

- Use the committor q(z(x)) as the controller for the stochastic
process: Zhang, Sahai, Marzouk https://arxiv.org/abs/
2101.07330, Gao, Li, Li, Liu https://arxiv.org/abs/2010.09988

- Sample rare events in higher-dimensional space. A good
test: Alanine dipeptide: go from two to four dihedral angles.
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The committor as an optimal controller
for sampling reactive trajectories

Key ref: Gao, Li, Li, Liu (2020)

The original governing SDE:

Modify the drift: dX; = — (VV(Xt) —

QVQ(Xt)

Bq(Xy)

Sample reactive
trajectories:

Restore the
transition rate
(e.g. B. Keller et al.)

dXt = —VV(Xt)dt + \/ 25_1th

) dt + \/23-1dW,
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Tutorials
June14 — June 24

Stochastic differential equations
Markov Chains

Transition Path Theory

FEM

Diffusion Maps

Neural Networks

Sampling reactive trajectories with the aid of an optimal
controller
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Tentative projects

How does the architecture of the neural network affect the accuracy of the
solution to the committor problem?

How should we choose a training set for the neural network?

Can a low-dimensional approximation to the committor be used to design a
controller for a high-dimensional process?

How can we restore the true transition rate if we are using an SDE with a
controller for sampling transition paths?

How does the training set affect the accuracy of the diffusion map-based
solution to the committor problem?

How can we adapt the diffusion map algorithm to compute committors for
more complicated SDEs?

A case study: alanine-dipeptide molecule described via two or four dihedral
angles.

Extension to systems with inertia: oscillators.
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