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Optimal Controllers for Stochastic Systems

Introduction

We consider motion in ℝ𝑛

governed by the equation:

𝒃 𝒙 is the drift vector and 

𝝈 𝒙 is the diffusion matrix

Take the reactive trajectories, i.e. transitions from set A to set 

B. A useful tool is the commitor function:

𝑞 = 𝑃 𝜏𝐵 < 𝜏𝐴

𝑞 𝛿𝐴 = 0
𝑞 𝛿𝐵 = 1

When our temperature is low, these transitions are rare, but 

they happen almost surely when we think of our process as a 

controlled process.

TPT as a controlled process
Controller 𝑣(𝑥) is such that as 𝑥 → 𝛿𝐴, 𝑣 𝑥 → ∞ and 𝑥 →
𝛿𝐵, 𝑣 𝑥 → 0, i.e. it drives our process from A to B. Thus, we 

have the controlled trajectory:

𝑑𝒙 = [𝒃 𝒙 + 𝝈 𝒙 𝒗 𝑥 ]𝑑𝒕 + 𝝈 𝒙 𝑑𝒘

with penalty                            . The minimum cost is:

We must solve the Hamilton Jacobi Bellman equation:

A practical problem to consider is what is the optimal 

controller, i.e. the control that takes our trajectory on the most 

efficient path, i.e. minimizing 

with

We get                         assuming 𝝈 is positive-definite, 

invertible. We have a similar result for Full Langevin.

Overdamped Langevin dynamics: We have the controlled 

differential equation of the form:

Running trajectories for 10,000 time

steps 10e-5, we get that the controlled 

process transitions with rate 0.932 and 

uncontrolled with rate 0

Duffing Oscillator: This is when  we consider full Langevin 

dynamics in two dimensions, given by the equation:

Running trajectories for time step 0.01 until T = 

10, we get that the controlled process transitions 

with rate 0.977 and uncontrolled with 0.313. Note 

that we are running this at a relatively high 

temperature.

Examples of Optimal Control
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2D Lennard Jones Potential 
Background: The Lennard Jones Potential is a common

potential function used to model intermolecular forces

between atoms. When used in 2D with 7 atoms we find 4

metastable states in the energy landscape shown here:

But first we need to validate our

controller. To do so we must run

overdamped Langevin dynamics

to see if the controller yields

many reactive trajectories. In

our case we see that it does!

Choice of Collective Variable:In this free energy

diagram, the second and third moments of coordination

were used. These collective variables are effective for

separating the metastable states of the system, but for

Langevin dynamics we require a controller that relies on

the kinetic energy of our system. Using kinetic energy

and the third moment of coordination, a new free energy

map is attained and a committor is found using a simple

neural network. These, and a map of the controller are

shown: (Region A on the left and Region B on the right)

Implementing the Controller: All that is left to do is to

implement the controller into the simulation and compare

the uncontrolled and controlled trajectories. Each trajectory

starts at the boundary of A and ends when it hits the

boundary of B. The results of 100 reactions are shown here:

Future Work: TPT: Extend optimal control result for a

general 𝝈. Develop a better commitor for Duffing Oscillator

and expand to higher dimensions. LJ7: Implement a diffusion

map to strengthen the neural networks commitor and thus our

controller. Implement the overdamped collective variable

controller into a full 14 - dimensional overdamped system.

𝑑𝒙 = 𝒃 𝒙 𝑑𝒕 + 𝝈 𝒙 𝑑𝒘


