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INTRODUCTION

Energy harvesters and rotors follow a certain 

time-dependent differential equation. The 

time-dependent part of the equation comes 

from the rotation of the systems, and is 

represented by a certain periodic forcing in 

the equation.

This equation contains two attractor states ( 

states that map to the same state after one 

period of forcing): a high-amplitude 

attractor state and a low-amplitude attractor 

state. Energy harvesters prefer to be in the 

high-amplitude attractor, whereas rotors 

prefer to be in the low-amplitude attractor. 

However, the system occasionally flips 

between attractors due to disturbances from 

the environment.

Markov Chains is a technique that can 

consider a finite number of states, and can 

predict the probability that a certain state go 

to any other state after a certain time 

interval.

Transition-path theory is a theoretical 

framework for describing rare events in 

complex systems. It allows us to analyze how 

often a system moves from certain state to 

another, such as a low-amplitude attractor 

to a high-amplitude attractor.

This study analyzes a certain differential 

equation with periodic forcing using Markov 

Chains and Transition Path Theory.

Figure 1: Point Cloud with Attractors and Basin Boundaries

PROCEDURES

The following stochastic differential equation (SDE) was 
used for analysis:

The following SDE was used for creating the point cloud:

We create a point cloud with a Stochastic Matrix as 
follows:
1. Find the 2 attractors of the differential equation (states 
where after one period, , ends up at the same 
state)
2. Using the second equation, run a stochastic 
trajectory periods long. Record the state 
at the end of each period. 
The resulting recorded states, along with the 2 
attractors, by plotting each state as , form the point 
cloud.
3. From each state in the point cloud, using the 
first equation, run trajectories, each one 
period long, and from each end state, find the 
smallest Euclidean distance to a point in the point cloud 
and consider it to have ended at that point instead.
4. Create a Stochastic Matrix such that

5. Compute the committor, the backward committor, 
the probability current and the probability density of 
reactive trajectories, and the transition rate.

FUTURE RESEARCH

In the future, I will try a different procedure that 

also uses Markov Chains and Transition Path 

Theory, but this procedure creates the point 

cloud as it creates the stochastic matrix. I will 

then compare its efficiency and accuracy with my 

first procedure.

The backward committor function at a certain state is the 

probability that the state came from one of the states in the 

magenta circle before any state in the cyan circle as shown 
in Figure 3.

Shown in Figure 4 is the probability density of reactive 

trajectories, which is, at a given state, the probability that 

at a certain time step, the system is at that current state 

and is in a reactive trajectory from the magenta circle to the 

cyan circle. That is, it came from the magenta circle and is 

going to the cyan circle.

Shown in the figures is the point cloud, the committor, the 
backwards committor, and the probability density of reactive 
trajectories.

In Figure 1, the red point is the low-amplitude attractor, 

and the magenta point is the high-amplitude attractor. 

The purple lines represent basin boundaries.

The forward committor function at a certain state is 

the probability that the state will reach one of the states 

in the magenta circle before any state in the cyan circle 

as shown in Figure 2.

Figure 2: Forward Committor Function

Figure 3: Backward Committor Function

Figure 4: Probability Density of Reactive Trajectories
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