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Plasmonics Iin 2D Materials Dispersion Relation from a Classical View Model with Schrodinger Dynamics

= The classical model considers electrons to be point charges. = The quantum model considers the wave fluctuations of the electron.

= Plasmons are excitations due to the coupling of electrons with
electromagnetism in conducting m.aterlals. ( BoundarY Conditions: (Ho + Hy Y o(x, 1) = idph(x, 1) , X € R3
= Surface plasmons - electromagnetic waves confined between a E(x,t) =~ —Vo(X,t) ¢ : continuous on X CAG = L
dielectric and an atomically-thin material. < “Ad = pex(,y,2,:)+0™(2,y,t)0(2) ” 2=0" e ¢
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& oA & Tle=om Ho = ——A — Vpld(z), £ : small length scale of confinement
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EEEEEEEEEE i i Classical Approach pelx, £) = —e{[(x, ) — [Yo(x)*}, where Hoto(x) = pyto(x)
[Yoon,Yeung, Kim, Ham, 2014] [Pollard,Clifford, Kim, Ham, 2017] = The derivation of the Dispersion Relation is based on using Green'’s Approach: Perturbation Theory
- Key property of surface plasmons: Contraction of wavelength function and the C(?nvoluhon Theorem for the Fourier Transform in
. \ - z,y,t of the potential ¢(x,?) . = Main Idea: Introduce a scattered wave function and linearize pe(X, t).
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. e ox.1) = GIX) + p X0 = [ Py 1/ dy (10, — Ho (%, 1) = T(x,1) = Hy(x, 1)
- : ’ — L . . & Perturbation: ¢(X7 t) - ¢0(X>€ b+ ,Qbs(x? t): ‘¢S(X, t)| << |¢0<X7 t)|
= Apply the Convolution Theorem for the Fourier transform of ¢(x, t) o Linearization: p.(x,t) ~ %( )*%( £) 4 (X, t)bs(X, 1)
= Using the fact that ¢5(x,t) = G(t,x,t/,X") « T (X, 1),

Ok, by, 2, w) = Glhig, ky, 2)p> (ke by, w)

[Martin-Cano, et al.,2017]
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= Surface plasmons have a wide range of applications: nanotechnology, Calculate G(x) such that AG/(x) 0°(x), and its Fourier transform /3/ Gt—t,x—a,y—1y, 22Tt x) dt'ax
spectroscopy, remote sensing, and optical imaging. Bl b ) — 1 —/ kit 2] R o ,
(ks ky, 2) = 2\/k2 N k2€ = (G(-) is the propagator for the Schrédinger equation.
v (mat Ho)G(t, x, ¢, X) = —5(x-X")§(t — ')
Geometry of the Problem = Use the physics of the material to express the Fourier Transform of / s 1 / ,
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Eq. for Physics of the Material o where § = /97 (wx — )2, Wi = 55k + k)
‘ ' . for sics of the Material: . .
(Em7 Bm) d YySli I e « Ansatz: ¢S<X, t) ~ f+<z)€z(qg;x+qyy ez(az—Q) 4 f_(z) (qlezﬂqyy) (cv +Q)

Oip™ +V - J= =0 Ce?
Classical Resul 752 = L [ (B0 a0,y e Fop [ (75 4 17 () 0
Surface plasmonic wave R

%L -
_ __ € 1 i
y OV = mE” (Classical)
Dispersion Relation:

Frequency

Dispersion Relation et Conclusion
= Relation between frequency and wavenumber. Problem in the Quantum Regime = We obtained linear corrections due to the kinetic energy of the plane
. gagegijttzeded by: How is the plasmon dispersion relation derived by coupling the wavesin @ anc.j 4 . .
Schrédinger equation (for the electron) with the electrostatic field? ) Tlhe?ce corrections are caused by the wave-particle duality of the
electron.

< Boundary Conditions (Physics of the material)
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