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Consider a process governed by a stochastic differential equation (SDE) 
that evolves  between some regions A and B. Below is a sample trajectory 
of the random process:

We look at a process  governed by the SDE 
The probability that at a given point x , the process will first visit B rather 
than A is given by the committor function q(x). The committor function 
q(x) satisfies the backward Kolmogorov equation and the following 
boundary conditions:

We show that physics informed neural networks (PINNs) [Raissi 2019] 
can be used to approximate the committor. Prior to our research, this 
method had not been applied to the committor problem. We model the 
committor for 2D (x,y) systems as follows:

M denotes the number of training points in the region outside of A and B. 
We also take 100 points uniformly sampled from each of the boundaries of 
A and B. With this model for the committor, we approximate the boundary 
conditions by including them in the above loss function. We also show the 
success of a hybrid model for the committor, a variation of the PINN 
method. The argument below is inspired by [Li,Lin, Ren 2019]:

Sampling: We choose the training set to be a quasi-uniform sampling from 
the space where trajectories likely visit. Since trajectories spend more 
time in A and B, we use the enhanced sampling technique “metadynamics” 
to encourage trajectories to sample regions of lower density. 
Advantages and Disadvantages:
1. Suitable for general SDEs including non-gradient SDEs
2. Suitable for complex regions A and B (not true for hybrid approach)
3. Does not require knowledge of the system’s  invariant density 
4. Does not require knowledge of the sampling distribution, which allows 

us to easily use any training set of adequate size 
5. Disadvantages: see advantages of the Variational Form Minimization. 

NN approach 2: Variational Form Minimization
Advantages and Disadvantages:
Though the PINN approach has proven to be successful, a drawback is that it 
can have slow run time in high dimensions. The loss function includes a 
Laplacian term, which is computationally the same as computing d2 
derivatives. This motivates an approach using the variational form of the PDE, 
which gives that 
Artificial Temperature Sampling: 
As input for the neural network, we need a 
distribution of points that approximates the 
probability distribution of the system (a downside of 
this approach). To do this we run simulations of the 
process for many iterations. When the temperature 
is low, there will not be enough outside the 
metastable states to model effectively. To solve this 
problem, we can run the simulation for a 
temperature that is higher than our target 
temperature, then adjust the loss function of the 
neural net accordingly.
Direct Sampling:
When running simulations, there is a tendency 
for the process to get stuck in certain regions. To 
help minimize this effect, we introduce direct 
sampling. This approach starts with a 
quasi-uniform initial sample as was used in the 
PINN framework, then adds points around each 
initial point based upon the invariant probability 
there and the total number of points we want.

Case Study: Maier-Stein System 
The Maier-Stein (MS) System is a 2D 
non-gradient SDE admitting 2 stable 
equilibria (as illustrated) surrounded by 
the regions A in pink and B in green. 

The sample trajectory shown begins at 
(-1,0) before travelling to region B. 

We approximate q with a neural network of the form

Approximations: 
    PINN approximation     Hybrid Approximation

Case Study: Overdamped Langevin dynamics with the Mueller potential

The process X in overdamped Langevin dynamics evolves according to the 
following stochastic differential equation, where V is the Mueller potential, dw is 
Brownian motion and beta inverse is temperature:

Using the PINN framework with 1 hidden layer with 20 neurons, and a tanh 
activation function,  the following estimation of the committor is achieved for 
constant beta = 0.2 on a uniform mesh training dataset of about 30,000 points 
within the -21 contour of the Mueller potential:
 

Background: Transition Path Theory

Ongoing work:
● Explore the effects of 

neural net architecture 
on error

● Apply methods of 
weighing training points 
to reduce error in the 
transition region

a) Simulation at 
Temperature 10

b) Simulation at 
Temperature 20

Results: The best results were 
found using a neural network 
with 2 hidden layers and 20 
neurons per layer. We 
achieved the following error 
plot compared to the FEM 
solution for the Mueller 
potential at temperature 10 
after 1000 epochs of training. 
The root mean squared error 
was 0.007 and the maximum 
absolute error was 0.024

Error Testing: 
For low dimensional systems, there are techniques such as the finite element 
method which can be used to estimate the committor to a high degree of 
accuracy. We use this method to test the neural network.

Method Temp=10 Temp=20

Artificial
Temp

0.024 0.025

Standard 0.56 0.048

Neural Network approach 1: PINN

c) RMSE using artificial temperature 
(without direct sampling)

Similar results have been 
achieved  for beta = 0.1 and 
smaller training datasets.
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