

Neural Networks Case Study: Face Potential

¹Department of Mathematics, Towson University ²Department of Mathematics, University of Maryland

Background

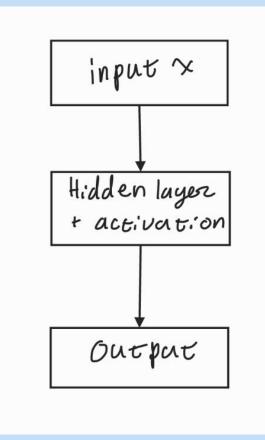
Committor:

Probability that, given a set of data with two states A and B and starting at some point x, you will reach B before reaching A: $q(x) = Prob\{T_{B}(x) < T_{A}(x)\}$

Equation: $dx = -\nabla V dt + \sqrt{2\beta^{-1}} dw$

Gradient Value Problem: $-\nabla V \cdot \nabla q + \beta^{-1} \Delta q = 0, q(\partial A) = 0, q(\partial B) = 1$ with boundary conditions q at boundary A = 0 and q at boundary B = 1.

Neural Networks:



Fully Connected Neural Network with one hidden layer Architecture:

 $f(x; \theta) = \sigma_1 (W_1 \sigma_0 (W_0 x + b_0) + b_1),$ where σ_1 is the sigmoid and σ_0 is the hyperbolic tangent: $\sigma_1 = \frac{1}{1 + \exp(-x)}, \ \sigma_0 = \tanh(x).$

 W_1 is full matrix with unknown entries that are discovered through optimization

Goal

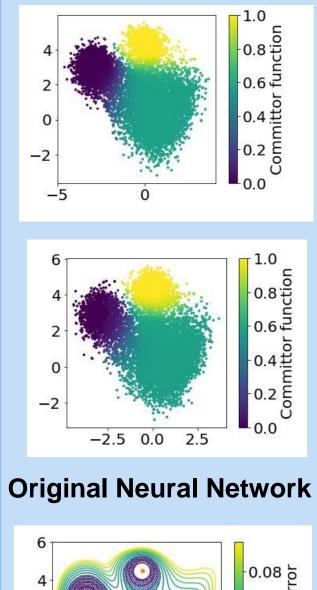
Explore neural network(NN)-based committor solvers and increase accuracy in a predictable manner.

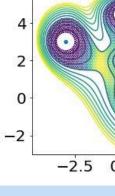
Methods

Replicating Li, Lin, Ren (2019)[1] Neural Network Committor Model: $q(x, \theta) = (1 - X_A(x))[(1 - X_B(x))q_{NN}(x) + X_B(x)]$ where $q_{NN}(x, \theta) = \sigma_1(W_1(\sigma_0(W_0x + b_0)) + b_1)$ and X_A and X_B are smooth functions such that $X_A(x)|\partial A = 1$, $X_A(x)|\partial B = 0$, and $X_B(x)|\partial B = 1$.

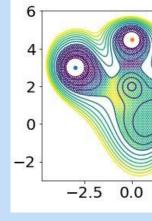
Experimentation:

- Neurons
- Hidden layers
- Scheduler
- Training set

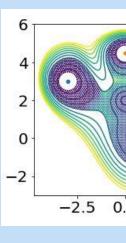




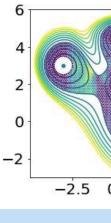
Neuron Experimentation



Hidden Layer Experimentation

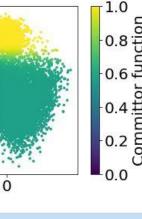


Scheduler Experimentation



Prisca Calkins¹ (pcalki1@students.towson.edu), Maria Cameron² (mariakc@umd.edu), Margot Yuan² (jyuan98@umd.edu)

Artificial Temperature



- Artificial temperature training set with 10000 training points.
- Artificial temperature involves artificially raising the
- temperature of the function Loss function: $f(\theta) =$
 - $\frac{l}{N}\sum_{i=1}^{N} \|\nabla x q(x_{j}, \theta)\|^{2} e^{-(\beta \beta') V(x_{j})}$ where the data points were sampled at β' .
- β ' = 0.5, and β = 1.
- Solution model is based on the one outlined in Li, Lin, Ren (2019) [1].
- Loss function is in Dirichlet form.
- Original committor and best committor shown here

-	
	-0.08
2	-0.06
\square	-0.04
	-0.02
0.0 2.5	0.00

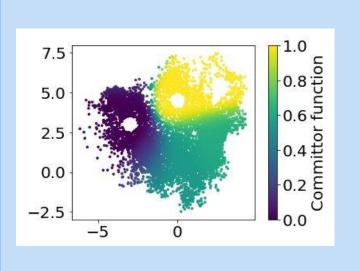
MAE	Neurons	Layers	Learning Rate	Epochs
0.046	10	One hidden layer	5e-3	1000

-0.06 -0.04	Μ	IAE	Neurons	Layers	Learning Rate	Epochs
	0.	.029	20	One hidden layer	5e-3	1000

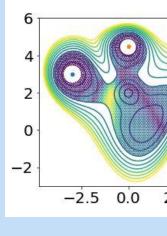
-0.06 È	MAE	Neurons	Layers	Learning Rate	Epochs
0.04 bi 0.02 bi 0.00 2.5	0.015	10 on first layer, 20 on second layer	Two hidden layers	5e-3	1000

o.06 ج	MAE	Neurons	Layers	Learning Rate	Epochs
0.04 by 0.02 by 0.00 0.0 2.5	0.014 (Best Error)	10 on first layer, 20 on second layer	Two hidden layer	Started at 5e-3, reduced by 0.2 every 500 epochs	2000

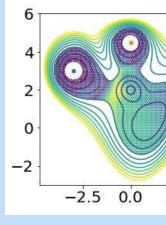
Metadynamics



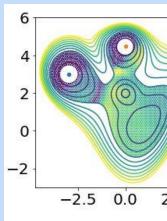
Original:



Hidden Layers



Scheduler



Sources of Error

Further Work

Literature cited [1] Li, Lin, Ren. (2019). Computing committor functions for the study of rare events using deep learning. J. Chem. Phys. 151, 054112 (2019); https://doi.org/10.1063/1.5110439

- Metadynamics training set with 7000 training points.
- Metadynamics sampling uses Gaussian functions to fill the areas around local minima of potential energy. Loss function: $f(\theta) =$
- $\frac{l}{N}\sum_{i=1}^{N} ||\nabla x q(xj, \theta)||^2 e^{(\beta V bias(xj))}$ where the data points
- were sampled under the biased potential $V+V_{bias}$. Beta, solution model, and loss function same as artificial
- temperature
- Original committor shown here

	0.08
3	L Error
	-0.04 Jitto
	-0.04 -0.02 Committor 0.00
2.5	0.00

MAE	Neurons	Layers	Learning Rate	Epochs
0.019	10	One hidden layer	5e-3	1000

-0.100 0.075 –	MAE	Neurons	Layers	Learning Rate	Epochs
0.050 -0.050 -0.025 O	0.042	10 on first layer, 20 on second layer	Two hidden layers	5e-3	1000

0.100 5	MAE	Neurons	Layers	Learning Rate	Epochs
0.075 0.050 0.025 0.025 0.000	0.066	10 on first layer, 20 on second layer	Two hidden layers	Started at 5e-3, reduced by 0.2 every 500 epochs	2000

The unexpected errors produced by the metadynamics training set could be a result of inaccurate code for the training set. It also could mean that metadynamics is less reliable than temperature acceleration, although this contradicts the findings by Li, Lin, Ren (2016) [1]. Further research should be conducted.

Further experimentation with the metadynamics training set Experiment with different kinds of neural networks, such as residual neural networks Further explore sources of error and ways to reduce them