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These notes are largely based on the book “Markov Chains” by J. R. Norris [1]. These
Cambridge University notes are also based on the same book.

1. Discrete-time Markov chains

Think about the following problem.

Example 1 (Gambler’s ruin). Imagine a gambler who has $1 initially.
At each discrete moment of time t = 0, 1, . . ., the gambler can play $1 if he
has it and win one more $1 with probability p or lose it with probability
q = 1− p. If the gambler runs out of money, he is ruined and cannot play
anymore. What is the probability that the gambler will be ruined?

1

http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf
http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf
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The gambling process described in this problem exemplifies a discrete-time Markov chain.
In general, a discrete-time Markov chain is defined as a sequence of random variables
(Xn)n≥0 taking a finite or countable set of values and characterized by the Markov property:
the probability distribution of Xn+1 depends only of the probability distribution of Xn and
does not depend on Xk for all k ≤ n− 1. We will denote the this discrete set of values by
S and call it the set of states.

Definition 1. We say that a sequence of random variables (Xn)n≥0, where

Xn : Ω→ S ⊂ Z,
is a Markov chain with initial distribution λ and transition matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P(Xn+1 = in+1 | Xn = in) = pinin+1 .

We will denote the Markov chain by Markov(P, λ). Note that the ith row of P is the
probability distribution for Xn+1 conditioned on the fact that Xn = i. Therefore, all entries
of the matrix P are nonnegative, and the row sums are equal to one:

pij ≥ 0,
∑
j∈S

P(Xn+1 = j | Xn = i) =
∑
j∈S

pij = 1.

A matrix P satisfying these conditions in called stochastic.
Some natural questions about a Markov chain are:

• What is the equilibrium probability distribution, i.e., the one that is preserved from
step to step?
• Does the probability distribution of Xn tend to the equilibrium distribution?
• How one can find the probability to reach some particular subset of states A ⊂ S?

What is the expected time to reach this subset of states?
• Suppose we have selected two disjoint subsets of states A and B. What is the

probability to reach first B rather than A starting from a given state? What is the
expected time to reach B starting from A?

Prior to addressing these question, we will go over some basic concepts.

1.1. Time evolution of the probability distribution. If the set of states S is finite,
i.e., if |S| = N , then Pn is merely the nth power of P . If S is infinite, we define Pn by

(Pn)ij ≡ p(n)ij =
∑
i1∈S

. . .
∑

in−1∈S
pii1pi1i2 . . . pin−1j .

Notation Pi(Xn = j) denotes the probability that the Markov process starting at i at
time 0 will reach state j at time n:

Pi(Xn = j) := P(Xn = j | X0 = i).

Theorem 1. Let (Xn)n≥0 be a Markov chain with initial distribution λ and transition
matrix P . Then for all n,m ≥ 0
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(1) P(Xn = j) = (λPn)j;

(2) Pi(Xn = j) = P(Xn+m = j | Xm = i) = p
(n)
ij .

Proof. (1)

P(Xn = j) =
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1)P(Xn−1 = in−1 | Xn−2 = in−1) . . .P(X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
λi0pi0i1 . . . pin−1j = (λPn)j .

(2) The second statement is proven similarly.
�

1.2. Communicating classes and irreducibility. We say that state i leads to state j
(denote it by i −→ j) if

Pi(Xn = j for some n ≥ 0) > 0.

If i leads to j and j leads to i we say that i and j communicate and write i ←→ j. Note
that i leads to j if and only if one can find a finite sequence i1, . . . , in−1 such that

pii1 > 0, pi1i2 > 0, . . . , pin−1j > 0.

This, in turn, is equivalent to the condition that p
(n)
ij > 0 for some n.

The relation ←→ is an equivalence relation as it is

(1) symmetric as if i←→ j then j ←→ i;
(2) reflective, i.e., i←→ i;
(3) transitive, as i←→ j and j ←→ k imply i←→ k.

Therefore, the set of states is divided into equivalence classes with respect to the relation
←→ called communicating classes.

Definition 2. We say that a communicating class C is closed if

i ∈ C, i −→ j imply j ∈ C.

Once the chain jumps into a closed class, it stays there forever.
A state i is called absorbing if {i} is a closed class. In the corresponding network, the

vertex i has either only incoming edges, or no incident edges at all.

Example 2 Let us identify the states in the Gambler’s ruin Markov
chain 1 with the number of dollars at each of them. It is easy to see that
states {1, 2, . . .} =: C1 constitute a communication class. The class C1 is
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not closed because state 1 ∈ C1 leads to state 0 /∈ C1. State 0 is a closed
communicating class {0} =: C0 and an absorbing state.

Definition 3. A Markov chain whose set of states S is a single communicating class is
called irreducible.

Example 3 Let us consider a set of 7 identical particles shaped like
balls interacting according to a sticky potential. I.e., the particles do not
interact, when they do not touch each other, and they stick together as
they touch forming a bond. Some amount of energy needs to be spent in
order to break a bond. One example of such a system is a toy constructor
consisting of magnetic sticks and steel balls. Another example is micron-
size styrofoam balls immersed in water. M. Brenner’s and V. Manoharan’s
group (Harvard University) conducted a number of physical experiments
with such balls. M. Holmes-Cerfon and collaborators developed an efficient
numerical algorithm for enumeration all possible configurations of particles
and calculating transition rates between the configurations. A complete
enumeration has been done for up to 14 particles, an a partial one for
up to 19 [8]. One can model the dynamics of such a particle system as a
continuous-time Markov chain which, in turn, can be converted into a jump
chain, i.e., a discrete-time Markov chain. Such a jump chain for 7 particles
is displayed in Fig. 1. The numbers next to the arrows are the transition
probabilities. This chain was obtained from Fig. 6 in [7]. This Markov
chain is irreducible because the process starting at any configuration, can
reach any other configuration. While there are no direct jumps between
states 2 and 4, the transitions between them can happen in two jumps. So
is true for states 1 and 5. The transition matrix for this chain is given by:

(1) P =


0.7395 0.0299 0.0838 0.1467 0
0.1600 0.1520 0.4880 0 0.2000
0.1713 0.1865 0.4893 0 0.1529
0.8596 0 0 0 0.1404

0 0.2427 0.4854 0.1553 0.1165


1.3. Hitting times and absorption probabilities.

Definition 4. Let (Xn)n≥0 be a Markov chain with transition matrix P . The hitting time
of a subset A ⊂ S is the random variable τA : Ω→ {0, 1, 2, . . .} ∪ {∞} given by

τA = inf{n ≥ 0 | Xn ∈ A},
where we agree that inf ∅ =∞.

Definition 5. • The probability that (Xn)n≥0 ever hits A starting from state i is

(2) hAi = Pi(τ
A <∞).

https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
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Figure 1. A jump chain for 7 particles interacting according to a sticky
potential obtained from Fig. 6 in [7].

• If A is a closed class, hAi is called the absorption probability.
• The mean time taken for (Xn)n≥0 to reach A starting from i is

(3) kAi = Ei[τ
A] ≡ E[τA|X0 = i] =

∑
n<∞

nPi(τ
A = n) +∞Pi(τ

A =∞).

Example 4 In the Gambler’s ruin example 1, a good question to ask is
what is the probability that the gambler will eventually run out of money if
initially he has i dollars. If p ≤ 1/2, this probability is 1. The next question
is what is the expected time for the gambler to run out of money. Using

the just introduced notations, one needs to find h
{0}
i and, if h

{0}
i = 1, what

is k
{0}
i .

The quantities hAi and kAi can be calculated by solving certain linear equations.

Theorem 2. The vector of hitting probabilities hA = {hAi | i ∈ S} is the minimal non-
negative solution to the system of linear equations

(4)

{
hAi = 1, i ∈ A
hAi =

∑
j∈S pijh

A
j , i /∈ A.
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(Minimality means that if x = {xi | i ∈ S} is another solution with xi ≥ 0 for all i, then
hAi ≤ xi for all i.)

Proof. First we show that the hitting probabilities satisfy Eq. (4). Indeed, if i ∈ A then
τA = 0 and hence Pi(τ

A <∞) = 1. If i /∈ A, then

Pi(τ
A <∞) =

∑
j∈S

Pi(τ
A <∞ | X1 = j)Pi(X1 = j)

=
∑
j∈S

Pj(τ
A <∞)pij =

∑
j∈S

hAj pij .

Now we show that if x = {xi | i ∈ S} is another nonnegative solution of Eq. (4) then
xi ≥ hAi for all i ∈ S. If i ∈ A then hAi = xi = 1. If i /∈ A, we have

xi =
∑
j∈S

pijxj =
∑
j∈A

pij +
∑
j /∈A

pijxj =
∑
j∈A

pij +
∑
j /∈A

pij
∑
k∈S

pjkxk

=
∑
j∈A

pij +
∑
j /∈A

pij

(∑
k∈A

pjk +
∑
k/∈A

pjkxk

)
=Pi(τ

A = 1) + Pi(τ
A = 2) +

∑
j /∈A

∑
k/∈A

pijpjkxk.

Continuing in this manner we obtain

xi =

n∑
k=1

Pi(τ
A = k) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn

=Pi(τ
A ≤ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn .

Since xj ≥ 0 for all j ∈ S, the last term in the last sum is nonnegative. Therefore,

xi ≥ Pi(τ
A ≤ n) for all n.

Hence
xi ≥ lim

n→∞
Pi(τ

A ≤ n) = Pi(τ
A <∞) = hi.

�

Theorem 3. Assume that hAi > 0 for all i ∈ (S\A). The vector of mean hitting times
kA = {kAi | i ∈ S} is the minimal non-negative solution to the system of linear equations

(5)

{
kAi = 0, i ∈ A
kAi = 1 +

∑
j∈S pijk

A
j , i /∈ A.

Proof. First we show that the mean hitting times satisfy Eq. (5). Indeed, if i ∈ A the
kAi = 0 as τA = 0. Let us consider two cases.
Case 1: there is i∗ ∈ S\A such that hAi∗ < 1.
Case 2: for all i ∈ S\A such that hAi = 1.
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In Case 1, Eq. (4) implies that all hAi < 1 for i /∈ A such that i −→ i∗. In this case, all
kAi = ∞ such that i −→ i∗ by Eq. (3). Hence Eq. (5) holds. Let us consider Case 2. If
i /∈ A then

kAi =Ei[τ
A] =

∞∑
n=1

nP(τA = n | X0 = i)

=

∞∑
n=1

n
∑
j∈S

P(τA = n | X1 = j, X0 = i)Pi(X1 = j)

We can switch order of summation because all terms are positive (this follows from the
monotone convergence theorem). Also the Markov property implies that

P(τA = n | X1 = j, X0 = i) = P(τA = n | X1 = j).

We continue:

kAi =
∑
j∈S

∞∑
n=1

nP(τA = n | X1 = j)Pi(X1 = j)

=
∑
j∈S

( ∞∑
m=0

(m+ 1)P(τA = m | X0 = j)pij

)

=
∑
j∈S

( ∞∑
m=0

mP(τA = m | X0 = j)pij +
∞∑

m=0

P(τA = m | X0 = j)pij

)

=
∑
j∈S

pijk
A
j +

∑
j∈S

pij

∞∑
m=0

P(τA = m | X0 = j).

Now we use the observe that

∞∑
m=0

P(τA = m | X0 = j) = hAj = 1

since we are considering Case 2. Finally,∑
j∈S

pij = 1

as this is a row sum of the transition matrix. As a result, we obtain what the desired
equation:

kAi = 1 +
∑
j∈S

pijk
A
j .
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Now we show that if {yi | i ∈ S} with yi ≥ 0 for every i ∈ S is another solution of Eq.
(5) then kAi ≤ yi for all i ∈ S. If i ∈ A, then kAi = yi = 0. For i /∈ A we have:

yi =1 +
∑
j∈S

pijyj = 1 +
∑
j /∈A

pijyj = 1 +
∑
j /∈A

pij

(
1 +

∑
k/∈A

pjkyk

)
=Pi(τ

A ≥ 1) + Pi(τ
A ≥ 2) +

∑
j /∈A

∑
k/∈A

pijpjkyk.

Continuing in this manner we obtain:

yi =Pi(τ
A ≥ 1) + Pi(τ

A ≥ 2) + . . .Pi(τ
A ≥ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn

=Pi(τ
A = 1) + 2Pi(τ

A = 2) + . . .+ nPi(τ
A ≥ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn .

Since yi ≥ 0, so is the last term. Hence

yi ≥ Pi(τ
A = 1) + 2Pi(τ

A = 2) + . . .+ nPi(τ
A ≥ n) for all n.

Therefore,

yi ≥
∞∑
n=1

nPi(τi = n) = Ei[τ
A] = kAi .

�

Example 5 Consider a particle wandering along the edges of a cube Fig.
2(a). If the particle reaches vertices (0, 0, 0) and (1, 1, 1), it disappears.
From each of the other vertices (colored with a shade of grey in Fig. 2(a)),
it moves to any vertex connected to it via an edge with equal probabilities.
Suppose that the particle is initially located at the vertex (0, 0, 1). Find the
probability that it will disappear at vertex (0, 0, 0).
Hint: consider four subsets of vertices:
0 ≡ {(0, 0, 0)},
1 ≡ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
2 ≡ {(0, 1, 1), (1, 0, 1), (0, 1, 1)}, and
3 ≡ {(1, 1, 1)}
as shown in the Fig. 2(b). Find the probabilities to jump along each arrow
in Fig. 2(b). Denote by Pi the probability for the particle to disappear at
vertex (0, 0, 0) starting from subset i, i = 0, 1, 2, 3. Write an appropriate
system of equations for Pi and solve it.
Solution 1: Transition probabilities between the subsets 0, 1, 2 and 3 are

shown in Fig. 2(b). Let Pi be the probability for the particle to disappear
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(a)

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

(1,1,1)

(b)

0 1 2 3

1/3 2/3

2/3

1/3

Figure 2. Illustration for Example 5

at (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
have:

P0 = 1;

P1 =
1

3
P0 +

2

3
P2;

P2 =
2

3
P1 +

1

3
P3;

P3 = 0.

The solution of this system is P0 = 1, P1 = 3
5 , P2 = 2

5 , P3 = 0.
Solution 2: Transition probabilities between the subsets 0, 1, 2 and 3 are
shown in Fig. 2(b). The probability to get to 0 starting from 1 is the sum
of probabilities to get to 0 from nth visit of 1:

P1 =

∞∑
n=1

1

3

(
2

3

)2(n−1)
=

1

3

1

1− 4
9

=
3

5
.

Answer: 3
5 .

Example 6 Consider a particle wandering along the edges of a cube like
in Example 5 except for now the only absorbing state is the vertex (0, 0, 0).
If particle is at any other vertex, it goes to one of the vertices connected to
it by an edge with equal probability. Find the expected time for a process
starting at each vertex to be absorbed at (0, 0, 0).

Solution: Taking symmetry into account, we define a reduced Markov
chain shown in Fig. 3. Let ki = Ei[τ

0] be the expected first passage time
to (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
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1/3 2/3

2/3 1/3

1

Figure 3. Illustration for Example 6

have:

k0 = 0;

k1 = 1 +
1

3
k0 +

2

3
k2;

k2 = 1 +
2

3
k1 +

1

3
k3;

k3 = 1 + k2.

The solution of this system is k0 = 0, k1 = 7, k2 = 9, k3 = 10.

1.4. Solving recurrence relationships. In the case where the Markov chain has an infinite set of states, Z or {0, 1, 2, . . .},
and only transitions between nearest neighbors are possible, Eqs. (4) and (5) become linear 2nd order recurrence relation-
ships, homogeneous and nonhomogeneous respectively. A recipe for solving linear recurrence relationships with constant
coefficients, homogeneous and nonhomogeneous, can be found e.g. here (a presentation by Niloufar Shafiei).

Second order recurrence relationships can be solved uniquely if one has two initial (boundary) conditions. However, if
the set of states S = {0, 1, 2, . . .} and A = {0} (as in the Markov chain Gambler’s ruin 1), Eqs. (4) and (5) have only one

boundary condition. The solutions hA and kA are determined by the additional requirements that they must be minimal
and nonnegative.

Now we consider the “birth-and-death” Markov chain where the coefficients are of the transition matrix P are

P00 = 1, Pi,i+1 = pi, Pi,i−1 = qi, pi + qi = 1, i ≥ 1.

In this chain, 0 is an absorbing state, and we wish to calculate the absorption probability starting from an arbitrary state
i. Eq. (4) gives:

h0 = 1, hi = qihi−1 + pihi+1, i ≥ 1.

This recurrence relationship cannot be solved by the tools for the case of constant coefficients. However, another technique
works in this case. Consider

ui := hi−1 − hi.

Subtracting hi from both parts of hi = qihi−1 + pihi+1 and taking into account that qi + pi = 1 we get:

piui+1 = qiui.

Therefore,

ui+1 =

(
qi

pi

)
ui =

(
qiqi−1 . . . q1

pipi−1 . . . p1

)
u1 =: γiu1.

Then

u1 + u2 + . . .+ ui = h0 − h1 + h1 − h2 + . . .+ hi−1 − hi = h0 − hi.

Hence

hi = h0 − u1(1 + γ1 + . . .+ γi−1) = 1− u1

i−1∑
j=0

γj ,

as h0 = 1. Here we have defined γ0 = 1. Note that u1 cannot be determined from the boundary condition h0 = 1. It has
to be determined from the condition that h is the minimal nonnegative solution. Therefore, we need to consider two cases.∑∞

j=0 γj =∞: In this case, u1 must be 0. Hence hi = 1 for all i ≥ 0. Hence the absorption probability is 1 for

every i.

http://www.eecs.yorku.ca/course_archive/2008-09/S/1019/Website_files/21-linear-recurrences.pdf
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∑∞
j=0 γj <∞: In this case, the minimal nonnegative solution will be the one where

hi → 0 as i→∞.

This will take place if we set

u1 =

 ∞∑
j=0

γj

−1

.

Then

hi = 1−
∑i−1

j=0 γj∑∞
j=0 γj

=

∑∞
j=i γj∑∞
j=0 γj

.

Therefore, the absorption probabilities hi < 1 for i ≥ 1.

Example 7 A gambler has $1 initially. At each round, he either wins $1 with probability p or loses
$1 with probability q = 1− p playing agains an infinitely rich casino. Find the probability that he gets
broke, i.e., his capital is down to $0.
Solution: Let Pi be the probability to get to the situation of having $0 provided that the initial
amount is $i. We have:

P0 = 1;

Pi = pPi+1 + qPi−1, 1 ≤ i <∞.

Observe that the probability to get to $0 starting from $1 is the same as the one to get to $1 starting
from $2. Therefore, the probability to get to $0 starting from $2 is the product of the probabilities
to get to $1 from $2 and to get to $0 from $1, i.e., P2 = P 2

1 . Hence, we get the following quadratic
equation for P1, taking into account that P0 = 1 and q = 1− p:

P1 = pP
2
1 + 1− p.

Solving it, we get two roots: 1 and 1−p
p . If p ≤ 1/2, then 1−p

p ≥ 1, hence the only suitable solution

is P1 = 1. If p > 1/2, then 1−p
p < 1, and we should pick the root P1 = 1−p

p . One can see it as

follows. Suppose that there is a maximal amount of money $N that the gambler can get from the
casino. Performing a calculation similar to the one in the previous problem and letting N → ∞, one
can get that P1 → q/p = (1− p)/p as N →∞.

Answer: P1 = 1 if p ≤ 1/2, and P1 = 1−p
p if p > 1/2.

1.5. Recurrence and transience.

Definition 6. Let (Xn)n≥0 be a Markov chain with transition matrix P . We say that a state i is recurrent if

(6) Pi(Xn = i for infinitely many n) = 1.

We say that a state i is transient if

(7) Pi(Xn = i for infinitely many n) = 0.

Surprisingly at the first glance, one can show that every state is either recurrent or transient. This is the consequence
of the Markov property. To prove this, we will need the following definitions.

Definition 7. • The first passage time to state i is the random variable Ti defined by

Ti(ω) = inf{n ≥ 1 | Xn(ω) = i}, where inf ∅ =∞.

• The rth passage time to state i is the random variable T
(r)
i defined inductively by

T
(0)
i = 0, T

(r+1)
i = inf{n ≥ T (r)

i + 1 | Xn(ω) = i}, r = 0, 1, 2, . . . .

• The length of rth excursion to i is

S
(r)
i =

{
T

(r)
i − T (r−1)

i if T
(r−1)
i <∞

0 otherwise.

• The return probability is defined by

fi = Pi(Ti <∞).

• The number of visits Vi of state i is the random variable that can be written as the sum of indicator functions

Vi =

∞∑
n=0

1{Xn=i}.
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Note that

Ei[Vi] =Ei

[ ∞∑
n=0

1{Xn=i}

]
=
∞∑

n=0

E
[
1{Xn=i}|X0 = i

]
=
∞∑

n=0

Pi(Xn = i) =
∞∑

n=0

p
(n)
ii .(8)

Also note that the conditions for a state to be recurrent or transient can be written as

• state i is recurrent if Pi(Vi =∞) = 1;
• state i is transient if Pi(Vi =∞) = 0.

Theorem 4. The following dichotomy holds:

(1) if Pi(Ti <∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii =∞;

(2) if Pi(Ti <∞) < 1, then i is transient and
∑∞

n=0 p
(n)
ii <∞.

In particular, every state is either transient or recurrent.

Proof. (1) Let us denote Pi(Ti <∞) by fi. First show that

Pi(Vi > r) = f
r
i .

Pi(Vi > r) =Pi(T
(r)
i <∞) = Pi(S

(r)
i <∞ | T (r−1)

i <∞)Pi(T
(r−1)
i <∞)

=Pi(S
(r)
i <∞ | T (r−1)

i <∞)Pi(S
(r−1)
i <∞ | T (r−2)

i <∞) . . . Pi(Ti <∞)

=f
r
i .

(2) If fi = Pi(Ti <∞) = 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f
r
i = lim

r→∞
1 = 1.

Hence i is recurrent and
∑∞

n=0 p
(n)
ii = Ei[Vi] =∞.

(3) If fi = Pi(Ti <∞) < 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f
r
i = 0.

Hence i is transient and

∞∑
n=0

p
(n)
ii = Ei[Vi] =

∞∑
r=0

Pi(Vi > r) =

∞∑
r=0

f
r
i =

1

1− fi
<∞.

�

Now I will list some facts about recurrence and transience. I will not prove them. Proofs can be found e.g. in [1].

• In a communicating class, states are either all transient or all recurrent.
• Every recurrent class is closed.
• Every finite closed class is recurrent.
• For a simple random walk on Z, where the entries of the transition matrix are all zeros except for pi,i+1 = q,
pi,i−1 = 1− q, all states are transient if q 6= 1/2, and all states are recurrent if q = 1/2.

• For a simple symmetric random walk on Z2, all states are recurrent.
• For a simple symmetric random walk on Zn, n ≥ 3, all states are transient.

1.6. Invariant distributions and measures.

Definition 8. A measure on a Markov chain is any vector λ = {λi ≥ 0 | i ∈ S}. A
measure is invariant (a. k. a stationary or equilibrium) if

λ = λP.

A measure is a distribution if, in addition,
∑

i∈S λi = 1.

Theorem 5. Let the set of states S of a Markov chain (Xn)n≥0 be finite. Suppose that for
some i ∈ S

Pi(Xn = j) = p
(n)
ij → πj as n→∞ for all j ∈ S.

Then π = {πj | j ∈ S} is an invariant distribution.
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Proof. Since p
(n)
ij ≥ 0 we have πj ≥ 0. Show that

∑
j∈S πj = 1. Since S is finite, we can

swap the order of taking limit and summation:∑
j∈S

πj =
∑
i∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
i∈S

p
(n)
ij = 1.

Show that π = πP :

πj = lim
n→∞

p
(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

lim
n→∞

p
(n−1)
ik pkj =

∑
k∈S

πkpkj .

�

Remark If the set of states is not finite, then the one cannot exchange summation and

taking limit. For example, limn→∞ p
(n)
ij = 0 for all i, j for a simple symmetric random walk

on Z. {πi = 0 | i ∈ Z} is certainly an invariant measure, but it is not a distribution.

The existence of an invariant distribution does not guarantee convergence to it. For
example, consider the two-state Markov chain with transition matrix

P =

(
0 1
1 0

)
.

The distribution π = (1/2, 1/2) is invariant as

(1/2, 1/2)

(
0 1
1 0

)
= (1/2, 1/2).

However, for any initial distribution λ = (q, 1− q) where q ∈ [0, 1/2) ∪ (1/2, 1], the limit

lim
n→∞

Pn

does not exist as

P 2k = I, P 2k+1 = P.

In order to eliminate such cases, we introduce the concept of aperiodic states.

Definition 9. Let us call a state i aperiodic, if p
(n)
ii > 0 for all sufficiently large n.

Theorem 6. Suppose P is irreducible and has an aperiodic state i. Then for all states j

and k, p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. Since the chain is irreducible, there exist such r and s that p
(r)
ji > 0 and p

(s)
ik > 0.

Then for sufficiently large n we have

p
(r+n+s)
jk =

∑
i1,...,in∈S

p
(r)
ji1
pi1i2 . . . pin−1inp

(s)
ink
≥ p(r)ji p

(n)
ii p

(s)
ik > 0.

�

Definition 10. We will call a Markov chain aperiodic if all its states are aperiodic.
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Theorem 7. Suppose that (Xn)n≥0 is a Markov chain with transition matrix P and initial
distribution λ. Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

A proof of this theorem is found in [1]. In the case where the set of states is finite,
this result can be proven by means of linear algebra. A building block of this proof is the
Perron-Frobenius theorem.

Theorem 8. Let A be an N ×N matrix with nonnegative entries such that all entries of
Am are strictly positive for all m > M . Then

(1) A has a positive eigenvalue λ0 > 0 with corresponding left eigenvector x0 where all
entries are positive;

(2) if λ 6= λ0 is any other eigenvalue, then |λ| < λ0.
(3) λ0 has geometric and algebraic multiplicity one.

Let P be the stochastic matrix for a Markov chain with N states. For sufficiently large
n, all entries of Pn for stochastic irreducible aperiodic matrices P become positive. The
proof of this fact is similar to the one of Theorem 6. Furthermore, the largest eigenvalue
of a stochastic matrix is equal to 1. Indeed, since the row sums of P are ones, λ0 = 1 is an
eigenvalue with the right eigenvector e = [1, . . . , 1]>.

Now let us show that the other eigenvalues do not exceed λ0 = 1 in absolute value. Let
(λ, v) be an eigenvalue and a corresponding right eigenvector of a stochastic matrix P . We
normalize v so that

vi = max
k∈S
|vk| = 1.

Since

λvi =
∑
k∈S

pikvk,

we have

|λ| =

∣∣∣∣∣ 1

vi

∑
k∈S

pikvk

∣∣∣∣∣ ≤ 1

vi

∑
k∈S

pik|vk| ≤
∑
k∈S

pik = 1.

Remark The fact that the eigenvalues of a stochastic matrix do not exceed 1 in absolute
value is an instance of the Gershgorin Circle Theorem.

Theorem 9. Every irreducible aperiodic Markov chain with a finite number of states N
has a unique invariant distribution π. Moreover,

(9) lim
n→∞

qPn = π

for any initial distribution q.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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Proof. The Perron-Frobenius theorem applied to a finite stochastic irreducible aperiodic
matrix P implies that the largest eigenvalue of P is λ0 = 1 and all other eigenvalues are
strictly less than 1 in absolute value. The left eigenvector π, corresponding to λ0 has
positive entries and can be normalized so that they sum up to 1. Hence,

π = πP,

N∑
i=1

πi = 1.

Now let us establish convergence. First we consider the case when P is diagonalizable:

P = V ΛU,

where Λ is the matrix with ordered eigenvalues along its diagonal:

Λ =


1

λ1
. . .

λN−1

 , 1 > |λ1| ≥ . . . ≥ |λN−1|,

V is the matrix of right eigenvectors of P : PV = V Λ, such that its first column is
e = [1, . . . , 1]>. U = V −1 is the matrix of left eigenvectors of P : UP = ΛU . The
first row of U is π = [π1, . . . , πN ]. One can check that if UV = IN , these choices of the
first column of V and the first row of U are consistent. Therefore, taking into account that∑N

i=1 qi = 1, we calculate:

lim
n→∞

qPn

= lim
n→∞

[q1 q2 . . . qN ]


1 ∗ ∗ ∗
1 ∗ ∗ ∗

. . .
1 ∗ ∗ ∗




1
λn2

. . .

λnN



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗



= [1 0 . . . 0]


1

0
. . .

0



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗


= [π1 π2 . . . πN ].

In the case when P is not diagonalizable, the argument is almost identical, just a bit
more tedious. We consider the Jordan decomposition of P

P = V JU
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where U = V −1 and J is the Jordan form of of P , i.e., a block-diagonal matrix of the form:

J =


1

J1
. . .

Jr

 ,
with the first block being 1×1 matrix J0 ≡ 1, and respectively, the first column of V being
[1, . . . , 1]>, and the first row of U being π – the right and left eigenvectors corresponding
to the eigenvalue 1, and the other blocks Ji of sizes mi ×mi, where 1 ≤ mi ≤ N − 1 and
m1 + . . .+mr = N − 1, of the form

(10) Ji =


λi 1

λi 1
. . .

. . .

λi

 =: λiImi×mi + E.

Exercise (1) Check that the matrix E in Eq. (10) with ones right above the diagonal
and all other entries zero is nilpotent. More precisely, Emi = 0mi×mi .

(2) Check that the matrices λiImi×mi and E commute.
(3) Check that

Jn
i =

mi−1∑
k=0

(
n
k

)
λn−ki Ek.

(4) Argue that
lim
n→∞

Jn
i = 0mi×mi

provided that |λi| < 1.
(5) Now prove Eq. (9) for the case when P is not diagonalizable.

�

2. Time reversal and detailed balance

For Markov chains, the past and the future are independent given the present. This
property is symmetric in time and suggests looking at Markov chains with time running
backward. On the other hand, convergence to equilibrium shows that the behavior is
asymmetric in time. Hence, to complete the symmetry in time, we need to start with the
equilibrium distribution.

Theorem 10. Let (Xn)0≤n≤N be Markov(π,P), where P is irreducible and π is invariant.

Define Yn = XN−n. Then (Yn)0≤n≤N is Markov(π, P̂) where the transition matrix P̂ = (p̂ij)
defined by

πjpji = πip̂ij for all i, j ∈ S.

Proof. Note that, since P is irreducible, all components of π are positive. We need to check
the following three facts.
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(1) Check that P̂ is a stochastic matrix (i.e., all its entries are nonnegative and its row
sums are equal to 1):

p̂ij =
πj
πi
pji ≥ 0.∑

j∈S
p̂ij =

1

πi

∑
j∈S

πjpji =
πi
πi

= 1.

In the last equation, we used the fact that π is invariant for P .
(2) Check that π is invariant for P̂ , i.e., that πP̂ = π:∑

j∈S
πj p̂ji =

∑
j∈S

πipij = πi
∑
j∈S

pij = πi for all i ∈ S.

(3) Check that (Yn)0≤n≤N satisfies Markov property.

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(X0 = iN , X1 = iN−1, . . . , XN = i0)

=πiNpiN iN−1 . . . pi1i0 = p̂iN iN−1πiN−1piN−1iN−2 . . . pi1i0
= . . . = p̂iN−1iN . . . p̂i0i1πi0 .

Therefore, (Yn)0≤n≤N satisfies Markov property.

�

Definition 11. The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .

Definition 12. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji.

Suppose the set of states S is finite, the matrix P is irreducible, and the system is
distributed according to the invariant distribution π. The condition of detailed balance
means the following. Let Ni→j(n) be the number of transitions from i to j observed by
time n. Then for all i, j ∈ S,

lim
n→∞

Ni→j(n)

Nj→i(n)
= 1,

if P is in detailed balance with π. In words, over large intervals of times, on average, one
observes equal numbers of transitions from i to j and from j to i for all i, j ∈ S given the
detailed balance.

The detailed balance condition gives us another way to check whether a given measure
λ is invariant.

Theorem 11. Let P and λ be in detailed balance. Then λ is invariant for P .

Proof.

(λP )i =
∑
j∈S

λjpji = λi
∑
j∈S

pij = λi.

Hence λP = λ. �

Definition 13. Let (Xn)n≥0 be Markov(λ,P) where P is irreducible. We say that (Xn)n≥0
is reversible if for all N ≥ 1, (XN−n)0≤n≤N is Markov(λ,P).
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Theorem 12. Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose
that (Xn)n≥0 is Markov(λ,P). Then the following are equivalent:

(1) (Xn)n≥0 is reversible;
(2) P and λ are in detailed balance.

Proof. Both (1) and (2) imply that λ is invariant for P . Then both (1) and (2) are

equivalent to the statement that P̂ = P . �

3. Transition Path Theory

The Transition Path Theory (TPT) was introduced by W. E and E. Vanden-Eijnden
in 2006 [5, 6] in the context of stochastic differential equations. They contraposed it
to the Transition State Theory (TST) developed by Eyring and Polanyi in 1930s. In a
nutshell, TPT is a mathematical framework for describing transitions between two subsets
of interest often denoted by A and B. The key concept of the TPT, the committor function,
is a solution of a boundary value problem of a certain elliptic PDE. It cannot be solved
in practice in dimensions higher than 3 by means of finite difference or finite element
methods. However, recent successes in solving PDEs by means of neural networks did
open new horizons.

Metzner, Schuette, and Vanden-Eijnden (2009) [9] extended TPT to continuous-time
Markov chains (a.k.a Markov jump processes (MJP)). Since the application of the TPT to
MJP is hinged to finding the committor that, in this case, is the solution to a system of
linear algebraic equations which, in practice, can be either readily done or done after some
additional work, the TPT has become a powerful practical tool for analysis of transition
processes in complex networks. For example, one of the benchmark problems in chemical
physics, the rearrangement of the Lennard-Jones cluster of 38 atoms was analyzed using
the TPT and resulted in a detailed description of the transition mechanism between the
two lowest potential energy minima [4].

The key difference in the works by A. Bovier on metastability [2] and the TPT is that
the TPT does not assume that the MJP in-hand is time-reversible, while Bovier considers
only reversible Markov chains [2].

In these lecture notes, we adapt TPT for discrete-time Markov chains. Let us recall that
the generator L for diffusion processes evolving according to SDEs was defined by the limit

Lf := lim
t→0

Ptf − f
t

,

where P is the transfer operator. The analog of the transfer operator in the context of
discrete-time Markov chains is the stochastic matrix P . The time is discrete, hence the
minimal time advancement is 1. Therefore, the generator for discrete-time Markov chains
is the matrix L defined by

(11) L := P − I,
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where I is the identity matrix. Note that the off-diagonal entries of L and P match.
Therefore, the condition for the detailed balance can be rewritten in terms of L as

πiLij = πjLji, or, in matrix form ΠL = (ΠL)>,

where Π := diag{π1, π2, . . . , π|S|}. Furthermore, the generator of the time-reversal of a
chain with generator L is found from

πiLij = πjL̂ji, or, in matrix form L̂ = ΠLΠ−1.

3.1. Settings. We will consider a continuous-time Markov chain with a finite set of states
S, |S| = N , and irreducible generator matrix L. This Markov chain can be represented as
a network, where states correspond to the vertices of the graph, two vertices i and j are
connected by a directed edge if and only if Lij > 0. If both Lij > 0 and Lji > 0, we will
draw an undirected edge between i and j.

Let A and B be selected nonintersecting subsets of S. For simplicity, we assume that
there exists no edge (i, j) such that i ∈ A and j ∈ B, i.e., one cannot get from A to B
without spending some time in S\(A∪B) ≡ (A∪B)c. The sets A and B can be interpreted
as the reactant set and the product set respectively. For example, if you are modeling a
protein folding, A can be a collection of unfolded states, while B – a collection of folded
states.

There exists a unique invariant distribution π = (πi)i∈S , i.e., πL = 0. We do not
assume that π and L are in detailed balance. We will also need to consider a family
of time-reversed chains (X̂t)t∈Z+ , X̂t = XN−t where N is some moment of time. The

generator matrix for the time reversed process is L̂ = (L̂ij)i,j∈S defined by

L̂ij =
πj
πi
Lji.

3.2. Reactive trajectories. The subject of TPT is reactive trajectories that are defined
as follows. Consider a very long trajectory starting from an arbitrary state i, i.e., (Xt)t∈Z+

such that X0 = i. Since the Markov chain is irreducible and finite, every state is recurrent.
Hence this trajectory will visit all of the states infinitely many times with probability 1.
Let us prune those pieces of it that go from A to B, i.e., we will detect the collections of
moments of time {tAn }n∈N and {tBn }n∈N such that

tAn < tBn < tAn+1 n ∈ N,

X(tAn ) = xAn ∈ A, X(tBn ) = xBn ∈ B,
for any tAn < t < tBn X(t) ∈ (A ∪B)c.

In words, tAn is the moment of time when the trajectory leaves A nth time so that it does
not return to A prior reaching B, and tBn is the nth time when the trajectory enters B.
The intervals {tAn + 1, . . . , tBn −1} are called reactive times. The union of the reactive times
is denoted by R:

R :=
⋃
n∈Z
{tAn + 1, . . . , tBn − 1}.
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Definition 14. The ordered sequence

φn = [xAn , x
1
n, . . . , x

kn
n ≡ xBn ]

consisting of successive states of the Markov chain (Xk)k∈Z visited during the nth transition
from A to B is called the nth reactive trajectory. The set of all such sequences is called the
set of reactive trajectories.

The concept of reactive trajectory is illustrated in Fig. 4.
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B
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Figure 4. Two examples of reactive trajectories are shown in red. Re-
active trajectory 1: [19, 2, 3, 7, 6, 2, 4, 6, 12, 23]. Reactive trajectory 2:
[22, 17, 16, 14, 9, 5, 8, 13, 15, 25].

3.3. The forward and backward committors.

Definition 15. The forward committor q+ = (q+i )i∈S is the probability that the process
starting at state i will first reach B rather than A, i.e.,

q+i = Pi(τ
+
B < τ+A ),

where
τ+A = inf{t > 0 | X(t) ∈ A}, τ+B = inf{t > 0 | X(t) ∈ B}

are the first entrance times to A and B respectively.



Summer 2022 REU tutorials

The backward committor q− = (q−i )i∈S is the probability that the process arriving at state

i last came from A rather than B. Equivalently, the backward committor q− = (q−i )i∈S is
the probability that the time-reversed process starting at state i will first reach B rather
than A, i.e.,

q−i = Pi(τ
−
A < τ−B ),

where
τ−A = inf{t > 0 | X̂(t) ∈ A}, τ−B = inf{t > 0 | X̂(t) ∈ B},

are the last exit times from A and B respectively. Here (X̂t)t∈Z is the time-reversed process

for (Xt)t∈Z, i.e., X̂t = X−t, t ∈ Z.

The forward and backward committors satisfy the following equations:

(12)


∑

j∈S Lijq
+
j = 0, i ∈ (A ∪B)c,

q+i = 0, i ∈ A,
q+i = 1, i ∈ B,

and

(13)


∑

j∈S L̂ijq
−
j = 0, i ∈ (A ∪B)c,

q−i = 1, i ∈ A,
q−i = 0, i ∈ B,

where L̂ is the generator matrix for the time-reversed process.
Eq. (12) is justified as follows. Let us modify out network and make all states in A

absorbing, i.e., Lij = 0 for all i ∈ A. The other Lij ’s are unchanged. Then Eq. (12)
becomes the equation for the hitting probabilities for the set B for the modified network.
I. e., q+i is the probability that the process starting at i will hit B prior being absorbed by
one of the states in A. This is exactly what the forward committor is. A similar argument
applied to the reversed process shows that the backward committor satisfies Eq. (13).

3.4. Probability distribution of reactive trajectories. What is the probability to find
a reactive trajectory at state i at any time t? To answer this question, consider an infinitely
long trajectory (Xt)t∈R where X0 is distributed according to the invariant distribution π.
For any fixed time t, the probability to find Xt at state i is πi. If Xt = i where i ∈ A or
i ∈ B, time t is not reactive, hence this probability is 0. If Xt = i where i ∈ (A ∪ B)c, we
need to take the probability πi to find Xt at i and multiply it by the probability that Xt

came to i from A and will go next to B, i.e., by q−i q
+
i . Therefore, the probability to find a

reactive trajectory at state i at any time t is given by

(14) mR
i = πiq

−
i q

+
i .

In [9], mR
i is called the probability distribution of reactive trajectories. Note that mR is

not a distribution, as it is not normalized. It is a measure. The normalization constant for
mR

i ,

ZR =
∑
i∈S

mR
i =

∑
i∈S

πiq
−
i q

+
i ,
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is the probability that any given t belongs to the set of reactive times, i.e.,

ZR = P(t ∈ reacive time).

3.5. Probability current of reactive trajectories. The probability current of reactive
trajectories along edge (i → j) is defined as the average number of transitions for i to j
per unit time performed by reactive trajectories. This probability current denoted by fij
is given by

(15) fij =

{
πiq
−
i Lijq

+
j , i 6= j,

0, i = j.

Indeed, the product πiq
−
i gives the probability that the trajectory arrived at i from A rather

than from B. Lij is the transition rate from i to j, and the factor q+j is the probability
that the trajectory from j will go next to B rather than to A.

It follows from Eq. (15) that the probability current of reactive trajectories along every
edge (i, j) is nonnegative. Note that for an edge (i, j) where i, j ∈ (A ∪ B)c both fij and
fji can be positive. This reflects the fact that reactive trajectories can go many times back
and forth across the edge (i, j) on their way from A to B. The next theorem says that the
probability current in neither produced nor absorbed at any state j ∈ (A ∪B)c.

Theorem 13. For all i ∈ (A ∪ B)c, the probability current is conserved, i.e., the amount
of current coming to state i equals to the amount of current going out of state i:

(16)
∑
j∈S

(fij − fji) = 0 for all i ∈ (A ∪B)c.

Proof. Let i ∈ (A ∪B)c. Plugging in Eq. (15) to Eq. (16) we obtain∑
j∈S

(fij − fji) =
∑
j 6=i

(πiq
−
i Lijq

+
j − πjq

−
j Ljiq

+
i )

= πiq
−
i

∑
j 6=i

Lijq
+
j − q

+
i

∑
j 6=i

πjLjiq
−
j .

It follows from Eqs. (12) and (13) that∑
j 6=i

Lijq
+
j = Liq

+
i

and ∑
j 6=i

πjLjiq
−
j =

∑
j 6=i

πi
πj
πjL̂ijq

−
j = πiL̂iq

−
i = πiLiq

−
i .

Therefore, ∑
j∈S

(fij − fji) = πiq
−
i Liq

+
i − q

+
i πiLiq

−
i = 0.

�
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3.6. Effective current. As we have mentioned, the reactive trajectories can go back in
forth along an edge (i, j) where i, j ∈ (A ∪B)c on their way from A to B making both fij
and fji positive. The difference fij − fji is the net current from i to j carried by reactive
trajectories from i to j. The nonnegative part of fij − fji, denoted by f+ij , is called the
effective current :

(17) f+ij := max{fij − fji, 0}.

Note that the effective current for time-irreversible Markov chains can be cyclic. Indeed,
the probability current of reactive trajectories contains all kinds of cycles, and going to
effective current removes only all cycles of of length 2, but not of length 3, 4, etc. In
contrast, effective current for reversible Markov chains is acyclic. We will discuss this in
more details below.

3.7. Transition rate. The transition rate from A to B (the reaction rate) is the average
number of transitions per unit time performed by an infinite trajectory (Xt)t∈R. It is equal
to the total reactive current coming out of A which is the same as the total reactive current
going into B, i.e.,

νR =
∑

i∈A, j∈S
fij =

∑
i∈A, j∈S

f+ij

=
∑

i∈S, j∈B
fij =

∑
i∈S, j∈B

f+ij .(18)

One can obtain another expression for the reaction rate νR as the total reactive current
through an arbitrary cut. A cut in a network G(S,E) is a partition of the nodes in S
into two disjoints subsets that are joint by at least one edge in E. The set of edges whose
endpoints are in different subsets of the partition is referred to as the cut-set. Here we will
focus on A-B-cuts that are such that A and B are on different sides of the cut-set. Any
A-B-cut leads to the decomposition S = SA ∪ SB such that SA ⊇ A and SB ⊇ B (see Fig.
5).

Theorem 14. The transition rate νR is given by

(19) νR =
∑
i∈SA

∑
j∈SB

Fi,j ,

where Fi,j := fij − fji and SA ∪ SB is an arbitrary AB-cut.

Proof. We will use the fact that for any subset S′ ⊂ S,

(20)
∑

i∈S′,j∈S′
Fi,j = 0
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A B

CL CRSA
SB

Figure 5. Illustration for the concept of an A-B-cut. The edges of the
cut-set are shown with dashed lines.

because for every term Fi,j = fij − fji in this sum there is a term −Fi,j = fji − fij . We
have: ∑

i∈SA,j∈SB

Fi,j =
∑

i∈A∪(SA\A)
j∈(S\SA)

Fi,j

=
∑
i∈A
j∈S

Fi,j +
∑

i∈SA\A
j∈S

Fi,j −
∑
i∈SA
j∈SA

Fi,j(21)

= νAB + 0− 0 = νAB.(22)

The second sum in (21) is zero by current conservation, while the third sum is zero by
(20). �

3.8. Reaction pathways. The effective current f+ = (f+ij )i,j∈S defined by Eq. (17)
induces a directed graph with the set of states S. In other words, we connect states i and
j by a directed edge (i→ j) if and only if f+ij > 0. We denote this graph by G{f+}.

Definition 16. A reaction pathway w = (i0, i1, . . . , in) is a simple (containing no loops)
directed path in the graph G{f+} such that

i0 ∈ A, in ∈ B, ik ∈ (A ∪B)c, 1 ≤ k ≤ n− 1.

3.9. Simplifications for time-reversible Markov chains. The case where the Markov
chain is time reversible, i.e., L̂ = L which is equivalent to the statement that L and π are
in detailed balance, i.e.,

πiLij = πjLji
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is worth of special consideration. Many interesting systems possess this property, and the
formulas for the backward committor, the reactive current and for the transition rate can
be given in terms of the forward committtor.

Exercise (1) Show that the forward and backward committor are related via

q−i = 1− q+i , i ∈ S.

Hence we can simplify the notations: denote the forward commuter by q = (qi)i∈S .
Then the backward commuter is merely 1− q.

(2) Show that the reactive current Fij := fij − fji is given by

Fij = πiLij(qj − qi).

(3) Starting from the expression for the transition rate from A to B (the reaction rate)
νR =

∑
i∈A,j∈S Fij , show that it can be rewritten as

(23) νR =
1

2

∑
i,j∈S

πiLij(qj − qi)2.

Besides the transition rate νR, one can consider the rates kA,B and kB,A defined as the
inverse of the average times the last set hit by the trajectory was A or B, respectively.
These rates are given by

(24) kA,B = νR/ρA, kB,A = νR/ρB,

where

(25) ρA =
∑
i∈S

πi(1− qi), ρB =
∑
i∈S

πiqi (ρA + ρB = 1)

are the proportions of time such that the trajectory last hit A or B, respectively.
The directed graph G{f+} induced by the effective current contains no directed cycles in

the case of detailed balance because every its directed edge connects a state with a smaller
value of the committor q with a state with a large value of the committor. As a result, the
committor is strictly increasing along every directed path in the graph G{f+} (see Fig. 6).

We can use cuts to characterize the width of the transition tube carrying the current
of reactive trajectories. A specific set of cuts is convenient for this purpose, namely the
family of isocommittor cuts which are such that their cut-set C is given by

(26) C(q∗) = {(i, j) | qi ≤ q∗, qj > q∗}, q∗ ∈ [0, 1).

Isocommittor cuts [4] are special because if i ∈ CL and j ∈ CR, the reactive current
between these nodes is nonnegative, Fij ≥ 0, which also mean that every reaction pathway
(no-detour reactive trajectory) contains exactly one edge belonging to an isocommittor cut
since the committor increases monotonically along these transition paths. Therefore, we
can sort the edges in the isocommittor cut C(q) according to the reactive current they
carry, in descending order, and find the minimal number of edges N(q) carrying at least
p% of this current. By doing so for each value of the committor 0 ≤ q ≤ 1 and for different
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A

B

Figure 6. Examples of reaction pathways in the case of detailed balance
are shown by blue arrows. The values of the committor are coded by color:
green: q = 0, blue: q = 1. Note that the sequences of values of the commuter
strictly increase along reaction pathways.

values of the percentage p ∈ (0, 100), one can then analyze the geometry of the transition
channel - how broad is it, how many sub-channels are they, etc.

Remark In the case of time-reversible Markov chains, the forward committor strictly
increases along the edges of the graph G({f+}) (check this!). Therefore, the committor
strictly increases along the reaction pathways. The reaction pathways were dubbed no-
detour reactive trajectories in [4].
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