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1. Definitions

A probability space is a triple consisting of the set of outcomes, the set of subsets of the
set of outcomes that we want to be able to assign probabilities to called the σ-algebra, and
the probability measure, i.e. a function that assigns probabilities.

• A sample space Ω is the set of all possible outcomes.
• An event A is a subset of Ω.
• A σ-algebra B is a subset of the set of all subsets of Ω that is closed with

respect to set operations. The minimal requirements guaranteeing that the σ-
algebra possesses these properties constitute the set of axioms that defines it:
(1) ∅ ∈ B and Ω ∈ B;
(2) If B ∈ B then Bc ∈ B (Bc is the complement of B in Ω, i.e., Bc ≡ Ω\B).
(3) If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋃

i

Ai ∈ B.

Corollary: If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋂
i

Ai ∈ B.

Indeed, ⋂
i

Ai =

(⋃
i

Aci

)c
.

Example 1 Suppose you are tossing a die. For a single throw, the
sample space is Ω = {1, 2, 3, 4, 5, 6}. If you are interested in particular
number on the top, the natural choice of the σ-algebra is the set of all
subsets of Ω. Then |B| = 26 = 64. If you are interested only in whether
the outcome is odd or even, then a reasonable choice of σ-algebra is

B = {∅, {1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}}.
If you are interested only whether there is an outcome or not, you can
choose the coarsest σ-algebra

B = {∅, {1, 2, 3, 4, 5, 6}}.
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Example 2 Suppose you are doing a measurement whose outcome can
be any real number. For example, you are living in a one-dimensional
world, you are throwing a point object, and measuring its position with
respect to a fixed point, i.e. the origin of a coordinate system in your 1D-
world. The set of outcomes is R. The most commonly chosen σ-algebra
is the so-called Borel σ-algebra which is generated by all open sets in
R. Thanks to the properties of σ-algebra, the Borel σ-algebra can be
generated by all intervals of the form (−∞, a], where a ∈ R.

• A probability measure P is a function P : B → [0, 1] such that
(1) P (Ω) = 1;
(2) 0 ≤ P (A) ≤ 1 for all A ∈ B.
(3) Countable additivity: If A = {A1, . . . , An, . . .} is a finite or countable col-

lection in B such that Ai ∩Aj = ∅ for any i, j, then

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

Corollary: P (∅) = 0. Indeed,

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) = 1 + P (∅).

Hence, P (∅) = 0.
• A probability space is the triple (Ω,B, P ).
• A random variable η is a B-measurable function η : Ω→ R.

A function is called B-measurable if the preimage of any measurable subset of R is in B. It is proven in analysis

that it is suffices to check that {ω ∈ Ω | η(ω) ≤ x} ∈ B for any x ∈ R.

• A probability distribution function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

Theorem 1. If F is a probability distribution function then
(1) F is nondecreasing, i.e. x < y implies F (x) ≤ F (y).
(2) limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
(3) F (x) is continuous from the right for every x ∈ R, i.e.,

lim
y→x+0

F (y) = F (x).

Example 3 Suppose you are tossing a die. Consider the probability
space

(1) (Ω = {1, 2, 3, 4, 5, 6},B = 2Ω, P (ω) = 1
6),

where 2Ω is the set of all subsets of Ω, and ω ∈ Ω = {1, 2, 3, 4, 5, 6}.
Consider the random variable η(ω) = ω. The probability distribution
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function is given by

Fη(x) =


0, x < 1,

j/6, j ≤ x < j + 1, j = 1, 2, 3, 4, 5

1, x ≥ 6.

• Suppose F ′η(x) exists. Then fη(x) ≡ F ′η(x) is called the probability density
function (pdf) of the random variable η, and

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x)dx+ o(dx).

Example 4 The Gaussian density

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,

where m and σ are constants. m is the mean, while σ is the standard
deviation.
Example 5 The density of an exponential random variable with pa-
rameter a > 0 is given by:

f(x) =

{
ae−ax, x ≥ 0,

0, x < 0.
.

Example 6 The density of a uniform random variable on an interval
[a, b] is

f(x) =
1

b− a
I[a,b](x) =

{
1
b−a , x ∈ [a, b],

0, otherwise.
.

Here I[a,b](x) is the indicator function of the interval [a, b].
• If the set of outcomes Ω is discrete (finite or countable) and the σ-algebra is the

set of all subsets Ω, then the function P (ω) is often called the probability mass
function.

2. Expected values and moments

Definition 1. Let (Ω,B, P ) be a probability space, and η be a random variable. Then the
expected value, or mean, of the random variable η is defined as

(2) E[η] =

∫
Ω
η(ω)dP.

If Ω is a discrete set,

E[η] =
∑
i

η(ωi)P (ωi).
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Example 7 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The expected
value of η is

E[η] =

6∑
j=1

j 1
6 = 3.5

Suppose that the random variable η is fixed. Then we will omit the subscript in the
notation of its probability distribution function: Fη(x) ≡ F (x).

The integral in Eq. (2) can be rewritten using F (x):

E[η] =

∫
R
xP (x < η ≤ x+ dx) =

∫ ∞
−∞

xdF (x).

If a derivative f(x) of the probability distribution function F exists, then

E[η] =

∫ ∞
−∞

xf(x)dx.

If g is a function defined on the range of the random variable η (on η(Ω)), then the
expected value of this function is

E[g(η)] =

∫ ∞
−∞

g(x)dF (x).

Moments: Let us take g(x) = xn.

E[ηn] =

∫ ∞
−∞

xndF (x).

Central moments: Let us take g(x) = (x− E[η])n.

E[(η − E[η])n] =

∫ ∞
−∞

(x− E[η])ndF (x).

Variance = 2nd central moment:

Var(η) = E[(η − E[η])2) =

∫ ∞
−∞

(x− E[η])2dF (x).

Example 8 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The variance of η
is

Var(η) =
1

6

6∑
j=1

(j − 3.5)2 =
35

12
= 2.91(6).

The standard deviation:

σ(η) =
√

Var(η).
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3. Independence, joint distributions, covariance

• Two events A,B ∈ B are independent if

P (A ∩B) = P (A)P (B).

• Two random variables η1 and η2 are independent if the events

(3) {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y}

are independent for all x, y ∈ R.

Example 9 Suppose you are tossing a die twice. Consider the proba-
bility space

(4)
(

Ω = {1, 2, 3, 4, 5, 6}2,B = 2Ω2
, P ({ω1, ω2}) = 1/36

)
, 1 ≤ ω1, ω2 ≤ 6.

Let η1 and η2 be random variables equal to the outcomes of the first and

Table 1. Two throws of a die. Values of the random variables ξ(ω1, ω2) =
ω1 + ω2 (left) and β(ω1, ω2) = ω1 − ω2 (right).

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

1 2 3 4 5 6

1 0 1 2 3 4 5
2 -1 0 1 2 3 4
3 -2 -1 0 1 2 3
4 -3 -2 -1 0 1 2
5 -4 -3 -2 -1 0 1
6 -5 -4 -3 -2 -1 0

the second throws respectively. These random variables are independent.
Now consider the random variables η(ω1, ω2) = ω1 and ξ(ω1, ω2) = ω1+ω2

(see Table 1, left). We can show that η and ξ are dependent by taking
e.g., x = 1 and y = 2 in Eq. (3):

P (η ≤ 1 & ξ ≤ 2) = 1
36 6= P (η ≤ 1)P (ξ ≤ 2) = 1

6 ·
1
36 = 1

216 .

Finally, we consider the random variables ξ(ω1, ω2) = ω1+ω2 and β(ω1, ω2) =
ω1 − ω2 (see Table 1, right). We can show that they are dependent by
taking e.g., x = 2 and y = −1 in Eq. (3):

P (ξ ≤ 2 & β ≤ −1) = 0 6= P (ξ ≤ 2)P (β ≤ −1) = 1
36 ·

15
36 = 5

432 .

• The joint distribution function of two random variables η1 and η2 is given by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1(ω) ≤ x, η2(ω) ≤ y) .
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• If the second mixed derivative of Fη1η2 exists, it is called the joint probability
density of η1 and η2 and denoted by

fη1η2(x, y) :=
∂Fη1η2(x, y)

∂x∂y
.

In this case,

Fη1,η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(x, y)dxdy.

Exercise Show that two random variables are independent if and only if

Fη1η2(x, y) = Fη1(x)Fη2(y).

Furthermore, if the joint pdf fη1η2(x, y) exists, then η1 and η2 are independent iff

fη1η2(x, y) = fη1(x)fη2(y).

• Given the joint pdf fη1η2 , one can obtain fη1(x) by

fη1(x) =

∫ ∞
−∞

fη1η2(x, y)dy.

In this equation, fη1 is called a marginal of fη1η2 , and the variable η2 is integrated
out.
• Properties of expected value and variance It follows from the definition, that

the expected value is a linear functional:

(5) E[aη1 + bη2] = aE[η1] + bE[η2].

•
(6) Var(aη) = a2Var(η).

• If η1 and η2 are independent, then

(7) Var(η1 + η2) = Var(η1) + Var(η2).

If η1 and η2 are dependent, (7) is not true: take η1 = η2. In general,

(8) Var(η1 + η2) = Var(η1) + Var(η2) + 2Cov(η1, η2),

where Cov(η1, η2) is the covariance of η1 and η2 – see below. You will see below that
(7) does not imply that η1 and η2 are independent, only that they are uncorrelated.

Example 10 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 9. Then

E[ξ] = E[η1 + η2] = E[η1] + E[η2] = 7.

E[β] = E[η1 − η2] = E[η1] + E[−η2] = 0.

Var[ξ] = Var[η1 + η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).

Var[β] = Var[η1 − η2] = Var[η1] + Var[−η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).
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Example 11 Consider the Bernoulli random variable

(9) η =

{
1, P (1) = p,

0, P (0) = 1− p.

Its expected value and variance are

E[η] = 1 · p+ 0 · (1− p) = p,

Var(η) = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

Now consider the sum of n independent copies of η:

ξ :=
n∑
i=1

ηi.

Using Eq. (5) we calculate E[ξ]:

E[ξ] =

n∑
ı=1

E[ηi] = np.

Since ηi, 1 ≤ i ≤ n, are independent, we can calculate Var(ξ) using Eq.
(7):

Var(ξ) =
n∑
i=1

Var(ηi) = np(1− p).

Finally, consider the average of n independent copies of η:

ζ :=
1

n

n∑
i=1

ηi ≡
ξ

n
.

Using Eqs. (5) and (6), we find

E[ζ] = p,

Var(ζ) = Var

(
ξ

n

)
=

1

n2
Var(ξ) =

p(1− p)
n

.

• The covariance of two random variables η1 and η2 is defined by

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].

Remark If η1 and η2 are independent, then Cov(η1, η2) = 0. If Cov(η1, η2) = 0
then η1 and η2 are uncorrelated. Note that uncorrelated random variables are not
necessarily independent.
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Example 12 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 9. As we have
established in Example 9, ξ and β are dependent. However, they are
uncorrelated. Indeed,

Cov(ξ, β) =
∑

1≤ω1≤6, 1≤ω2≤6

(ω1 + ω2 − 7)(ω1 − ω2)P ({ω1, ω2})

=
1

36

( ∑
ω1<ω2

(ω1 + ω2 − 7)(ω1 − ω2) +
∑
ω1>ω2

(ω1 + ω2 − 7)(ω1 − ω2)

)
= 0.

Example 13 A vector-valued random variable η = [η1, . . . , ηn] is jointly
Gaussian if

P (x1 < η1 ≤ x1 + dx1, . . . , xn < ηn ≤ xn + dxn) =
1

Z
e−

1
2

(x−m)>A−1(x−m)dx+ o(dx),

where x = [x1, . . . , xn]>, m = [m1, . . . ,mn]>, dx = dx1 . . . dxn, and A is
a symmetric positive definite matrix. The normalization constant Z is
given by

Z = (2π)n/2|A|1/2, where |A| = detA.

In the case of jointly Gaussian random variables, the covariance matrix
C whose entries are

Cij = E[(ηi − E[ηi])(ηj − E[ηj ])]

is equal to A. Two jointly Gaussian random variables are independent if
and only if they are uncorrelated.

4. Chebyshev’s inequality

Chebyshev’s inequality holds for any random variable. It is a very useful theoretical tool for proving various estimates.
In practice, it often gives too rough estimates which is a consequence of its universality. Chebyshev’s inequality is not
improvable, as we can construct a random variable for which it turns into an equality.

Theorem 2. Let η be a random variable. Suppose g(x) is a nonnegative, nondecreasing function (i.e., g(x) ≥ 0,
g(a) ≤ g(b) whenever a < b). Then for any a ∈ R

(10) P (η ≥ a) ≤
E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞
−∞

g(x)dF (x)

≥
∫ ∞
a

g(x)dF (x) ≥ g(a)

∫ ∞
a

dF (x) = g(a)P (η ≥ a).

�

Given a random variable η we define a random variable

ξ := |η − E[η]|.

Define

g(x) =

{
x2, x ≥ 0,

0, x < 0.
.
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Plugging this into Eq. (10) we obtain

P (|η − E[η]| ≥ a) ≤
Var(η)

a2
.

Example 14 Suppose you are tossing a die twice. Consider the probability space and random
variables introduced in Example 9. We will compare the exact probabilities with their Chebyshev
estimates.

P (|ξ − 7| ≥ 1) = P (ξ 6= 7) = 1− 6
36 = 5

6 = 0.8(3),
Var(ξ)

1
= 35

6 = 5.8(3);

P (|ξ − 7| ≥ 2) = P (ξ ≤ 5 or ξ ≥ 9) = 20
36 = 5

9 = 0.(5),
Var(ξ)

4
= 35

24 = 1.458(3);

P (|ξ − 7| ≥ 3) = P (ξ ≤ 4 or ξ ≥ 10) = 12
36 = 1

3 = 0.(3),
Var(ξ)

9
= 35

54 = 0.6(481);

P (|ξ − 7| ≥ 4) = P (ξ ∈ {2, 3, 11, 12}) = 6
36 = 1

6 = 0.1(6),
Var(ξ)

16
= 35

96 = 0.36458(3);

P (|ξ − 7| ≥ 5) = P (ξ ∈ {2, 12}) = 2
36 = 1

18 = 0.0(5),
Var(ξ)

25
= 35

150 = 0.2(3);

Choosing a = kσ we get

P (|η − E[η]| ≥ kσ) ≤
1

k2
.

This means that for any random variable η defined on any probability space we have that the probability that η deviates
from its expected value by at least k standard deviations does not exceed 1/k2.

The bounds given Chebyshev’s inequality cannot be improved in principle, because they are exact for the random variable

η =


1, P = 1

2k2
,

0, P = 1− 1
k2
,

−1, P = 1
2k2

.

.

It is easy to check that E[η] = 0, Var(η) = 1
k2

. Hence

P (|η| ≥ 1) = 1
k2

=
Var(η)

12
,

i.e. Chebyshev’s inequality turns into equality.

5. Types of convergence of random variables

Suppose we have a sequence of random variables {η1, η2, . . .}. In probability theory, there
exist several different notions of convergence of a sequence of random variables {η1, η2, . . .}
to some limit random variable η.

• {η1, η2, . . .} converges in distribution or converges weakly, or converges in
law to η if

(11) lim
n→∞

Fn(x) = F (x) for every x where F (x) is continuous,

where Fn and F are the probability distribution functions of ηn and η respectively.

Remark Convergence of pdfs fn(x) implies convergence of Fn(x). The converse is
not true in general. For example, consider Fn(x) = x − 1

2πn sin(2πnx), x ∈ (0, 1).
The corresponding pdf is fn(x) = 1 − cos(2πnx), x ∈ (0, 1). {Fn(x)} converges to
F (x) = x, i.e., to the uniform distribution, while {fn(x)} does not converge at all.

Remark In the discrete case, the convergence of probability mass functions f(k) :=
P (η = k) implies the convergence of the probability distribution functions.
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Example 15 Consider the sum of n independent copies of the Bernoulli
random variable as in Example 11:

(12) ξ =
n∑
i=1

ηi, where ηi =

{
1, P (1) = p,

0, P (0) = 1− p.

Its probability distribution is the binomial distribution given by

(13) f(k;n, p) ≡ P (ξ = k) =

(
n
k

)
pk(1− p)n−k,

where

(
n
k

)
is the number of k-combinations of the set of n elements:(

n
k

)
=

n!

k!(n− k)!
.

Now we let n→∞ and p→ 0 in such a manner that the product np (i.e.,
the expected value of ξ) remains constant. We introduce the parameter

λ := np.

Consider the sequence of random variables ξn where ξn is the sum of n
independent copies of Bernoulli random variable with p = λ/n, i.e,

(14) ξn =
n∑
i=1

η
(n)
i , where η

(n)
i =

{
1, P (1) = λ/n,

0, P (0) = 1− λ/n.

Plugging in p = λ/n in the results of Example 11 we find the expected
value and the variance:

E[ξn] = n
λ

n
= λ.

Var(ξn) = n
λ

n

(
1− λ

n

)
= λ

(
1− λ

n

)
.

We will show that the sequence ξn converges to the Poisson random vari-
able with parameter λ in distribution. Consider the limit

lim
n→∞

f

(
k;n,

λ

n

)
= lim

n→∞

n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k
=

λk

k!
lim
n→∞

n(n− 1) . . . (n− k + 1)

nk
lim
n→∞

(
1− λ

n

)n
lim
n→∞

(
1− λ

n

)−k
The first limit in the equation above is 1 as n(n − 1) . . . (n − k + 1) =
nk + O(nk−1). The second limit can be calculated using the well-known
fact that

lim
n→∞

(
1 +

1

n

)n
= e.
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Hence

lim
n→∞

(
1− λ

n

)n
= e−λ.

The third limit is 1. Therefore,

lim
n→∞

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!
e−λ,

which is the Poisson distribution with parameter λ.
• {η1, η2, . . .} converges in probability to η if for any ε > 0

(15) lim
n→∞

P (|ηn − η| ≥ ε) = 0

Remark Convergence in probability implies convergence in distribution.

Proof. We will prove this fact for the case of scalar random variables. We have limn→∞ P (|ηn − η| ≥ ε) = 0, we
need to prove limn→∞ P (ηn ≤ x) = P (η ≤ x) for every x where Fη is continuous. First we show an auxiliary
fact that for any two random variables ξ and ζ, x ∈ R and ε > 0

(16) P (ξ ≤ a) ≤ P (ζ ≤ a+ ε) + P (|ξ − ζ| > ε).

Indeed,

P (ξ ≤ a) = P (ξ ≤ a & ζ ≤ a+ ε) + P (ξ ≤ a & ζ > a+ ε)

≤ P (ζ ≤ a+ ε) + P (ξ − ζ ≤ a− ζ & a− ζ < −ε)

≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε)

≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε) + P (ζ − ξ > ε)

= P (ζ ≤ a+ ε) + P (|ζ − ξ| > ε).

Applying Eq. (77) to ξ = ηn and ζ = η with a = x and a = x− ε, we get

P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε)

P (η ≤ x− ε) ≤ P (ηn ≤ x) + P (|ηn − η| > ε).

P (η ≤ x− ε)− P (|ηn − η| > ε) ≤ P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε).

Taking the limit n→∞ and taking into account that limi→∞ P (|ηn − η| ≥ ε) = 0, we get

Fη(x− ε) ≤ lim
n→∞

Fηn (x) ≤ Fη(x+ ε).

If x is a point of continuity of Fη,

lim
ε→0

Fη(x− ε) = lim
ε→0

Fη(x+ ε) = Fη(x).

Therefore, taking the limit ε→ 0 we obtain the weak convergence:

lim
n→∞

Fηn (x) = Fη(x)

for any x where Fη(x) is continuous. �

Remark The converse is, generally, not true. However, convergence in distribution
to a constant random variable implies convergence in probability.

• {η1, η2, . . .} converges almost surely or almost everywhere or with proba-
bility 1 or strongly to η if

(17) P
(

lim
n→∞

ηn = η
)

= 1.

Remark Convergence almost surely implies convergence in probability (by Fatou’s
lemma) and in distribution.
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• To summarize,

(18) ηi → η almost surely ⇒ ηi → η in probability ⇒ ηi → η in distribution

6. Laws of Large Numbers and the Central Limit Theorem

• Let {η1, η2, . . .} be a sequence of random variables with finite expected values {m1 =
E[η1],m2 = E[η2], . . .}. Define

ξn =
1

n

n∑
i=1

ηi, ξ̄n =
1

n

n∑
i=1

mi.

Definition 2. (1) The sequence of random variables ηn satisfies the Law of Large
Numbers if ξn − ξ̄n converges to zero in probability, i.e., for any ε > 0

lim
n→∞

P (|ξn − ξ̄n| > ε) = 0.

(2) The sequence of random variables ηn satisfies the Strong Law of Large Numbers
if ξn − ξ̄n converges to zero almost surely, i.e., for almost all ω ∈ Ω

lim
n→∞

ξn − ξ̄n = 0.

• If the random variables ηn are independent and if Var(ηi) ≤ V <∞, then the Law
of Large Numbers holds by the Chebyshev Inequality (10):

P (|ξn − ξ̄n| > ε) = P

(∣∣∣∣∣
n∑
i=1

ηi −
n∑
i=1

mi

∣∣∣∣∣ > nε

)

≤ Var(η1 + . . .+ ηn)

ε2n2
≤ V

ε2n
→ 0 as n→∞.

•

Theorem 3. (Khinchin) A sequence of independent identically distributed random
variables {ηi} with E[ηi] = m and E[|ηi|] <∞ satisfies the Law of Large Numbers.
•

Theorem 4. (Kolmogorov) A sequence of independent identically distributed ran-
dom variables with finite expected value and variance satisfies the Strong Law of
Large Numbers.
•

Theorem 5. (The central limit theorem) Let {η1, η2, . . .} be a sequence of
independent identically distributed (i.i.d.) random variables with m = E[ηi] and
0 < σ2 = Var(ηi) <∞, then

(19)
(
∑n

i=1 ηi)− nm
σ
√
n

−→ N(0, 1) in distribution,
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i.e., converges weakly to the standard normal distribution N(0, 1) (i.e., the Gaussian
distribution with mean 0 and variance 1) as n→∞.

A proof via Fourier transform can be found in [1]. Another proof making use of
characteristic functions can be found in [2].

Remark Eq. (19) can be recasted as

(20)
1

n

n∑
i=1

ηi −→ N

(
m,

σ2

n

)
in distribution,

i.e., the average of the first n i.i.d. random variables ηi converges in distribution to
the Gaussian random variable with mean m = E[ηi] and variance σ2/n.

7. Conditional probability and conditional expectation

• The conditional probability of an event B given that the event A has happened is
given by

P (B|A) =
P (A ∩B)

P (A)
.

Note that if A and B are independent, then P (A ∩B) = P (A)P (B) and hence

P (B|A) =
P (A)P (B)

P (A)
= P (B).

Example 16 Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw
is even, and B be the event that the sum of the outcomes is ≥ 10. Then
(see Table 1)

P (B|A) =
P (A ∩B)

P (A)
=

4/36

1/2
=

2

9
.

Note that P (B) = 1/6 < P (B|A). Hence the events A and B are depen-
dent.

If the event A is fixed, then P (B|A) defines a probability measure on (Ω,B).
• If η is a random variable on Ω, then conditional expectation of η given the event
A is

E[η|A] =

∫
Ω
η(ω)P (dω|A) =

∫
Ω
η(ω)

P (dω ∩A)

P (A)
=

∫
A η(ω)P (dw)

P (A)
.

Example 17 . Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw is
even, and η be the random variable whose value is the sum of outcomes,
i.e., η({ω1, ω2}) = ω1 + ω2. Then

E[η|A] =
6∑

ω1=1

6∑
ω2=1

(ω1 + ω2)P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).
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Let us calculate P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).

P ({ω1, ω2} | ω1 ∈ {2, 4, 6}) =
P ({ω1, ω2} ∩ (ω1 ∈ {2, 4, 6}))

P (ω1 ∈ {2, 4, 6})

=

{
0, ω1 ∈ {1, 3, 5},
P ({ω1,ω2})

P (ω1∈{2,4,6}) = 1/36
1/2 = 1

18 , ω1 ∈ {2, 4, 6}.

Now we continue our calculation:

E[ω1 + ω2 | ω1 ∈ {2, 4, 6}] =
∑

ω1∈{2,4,6}

6∑
ω2=1

(ω1 + ω2)
1

18
=

135

18
= 7.5.

Note that E[η] = 7 6= E[η|A] = 7.5.
• Now we show how one can construct new random variables using conditional prob-

ability. For simplicity, we start with partitioning the set of outcomes Ω into a finite
or countable number of disjoint measurable subsets:

Ω =
⋃
i

Ai, where Ai ∈ B, Ai ∩Aj = ∅.

Definition 3. Let η be a random variable on the probability space (Ω,B, P ). Let
A = {Ai} be a partition of Ω as above. Define a new random variable E[η|A] as
follows:

(21) E[η|A] =
∑
i

E[η|Ai]χ(Ai),

where χ(Ai) is the indicator function of Ai:

χ(Ai;ω) =

{
1, ω ∈ Ai,
0, ω /∈ Ai.

Remark Note that E[η|A] is a random variable as it is a function of the outcome
ω. Indeed,

E[η|A](ω) = E[η|Ai] where Ai 3 ω.

Example 18 Suppose you are tossing a die twice. Let us partition the
set of outcomes as follows:

Ω =
6⋃
i=1

{(ω1, ω2) | ω1 = i}.

The corresponding partition A is

A = {{(ω1, ω2) | ω1 = i}}6i=1 .
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Take the random variable ξ = ω1 + ω2 (see Table 1, left), the sum of
numbers on the top. Construct a new random variable

E[ξ|A] =
6∑
i=1

E[ξ|ω1 = i]χ(ω1 = i) =
6∑
i=1

(i+ 3.5)χ(ω1 = i)

= 4.5χ(ω1 = 1) + 5.5χ(ω1 = 2) + 6.5χ(ω1 = 3)

+ 7.5χ(ω1 = 4) + 8.5χ(ω1 = 5) + 9.5χ(ω1 = 6).

• Now we define the conditional expectation of one random variable η given the other
random variable θ. First we assume that θ assumes a finite or countable number
of values {θ1, θ2, . . .}. Define the partition A where

Ai = {ω ∈ Ω | θ = θi}.

Definition 4. We define a new random variable E[η|θ] as a the following function
of the random variable θ:

E[η|θ] := E[η|A], i.e., E[η|θ] = E[η|Ai] if θ = θi.

Example 19 Suppose you are tossing a die twice. Let (ω1, ω2) be the
numbers on the top. Define random variables ξ = ω1 + ω2 and θ = ω1.
Then it follows from our calculation from the previous example that

E[ξ|θ] = 3.5 + θ.

8. Brownian Motion

Various processes in nature are often modeled by stochastic differential equations of the
form

dx = b(x, t)dt+ σ(x, t)dw,

where the function b(x, t) is called the drift field, the matrix function σ(x, t) is called the
diffusion matrix, and the factor dw is the increment of the stochastic process called the
Brownian motion. The goal of this section is to understand what the Brownian motion is.

8.1. Definition of Brownian Motion.

Definition 5. A stochastic process (in the strict sense) is a function v(ω, t) of two argu-
ments, where ω ∈ Ω, (Ω,B, P ) is a probability space, and t ∈ R, such that

• for each ω, v(ω, t) is a function of t, and
• for each t, v(ω, t) is a random variable.

Definition 6. Brownian motion (in mathematical terminology) is a stochastic process
w(ω, t), ω ∈ Ω, 0 ≤ t <∞, that satisfies the following four axioms:

(1) w(ω, 0) = 0 for all ω.
(2) For almost all ω, w(ω, t) is a continuous function of t.
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(3) For each 0 ≤ s ≤ t, w(ω, t) − w(ω, s) is a Gaussian random variable with mean 0
and variance t− s.

(4) w(ω, t) has independent increments, i.e., if

0 ≤ t1 < t2 < . . . < tn

then

w(ω, ti)− w(ω, ti−1) for i = 2, . . . , n are independent.

Remark What is called the Brownian motion in mathematics is called the Wiener process
in physics. What is called the Brownian motion in physics is called the Ornstein-Uhlenbeck
process in mathematics.

Here is an equivalent definition of Brownian motion.

Definition 7. A process w(ω, t) on a probability space (Ω,B, P ) is called a Brownian
motion if

(1) Sample paths w(ω, t) are continuous functions of t for almost all ω ∈ Ω.
(2) For any k > 1 and 0 ≤ t1 ≤ . . . ≤ tk, the random vector (w(ω, t1), . . . , w(ω, tk)) is

Gaussian with mean 0 and covariance matrix

B(ti, tj) = E[w(ti), w(tj)] = min{ti, tj} ≡ ti ∧ tj , 1 ≤ i, j ≤ k.

Definition 8. A d-dimensional Brownian motion is defined as the vector process

w(t) = (w1(t), . . . wd(t)),

where wk(t), 1 ≤ k ≤ d are independent Brownian motions.

8.2. Existence of Brownian motion. The question about the existence of the Brownian
motion is not trivial. For example, if we upgrade axiom 2 in Definition 6 to require
differentiability, such a process simply would not exist.

The original construction of Brownian motion (the Wiener process) was done by Norbert
Wiener (1894 - 1964). He has shown that Fourier series

(22) w(t) =
a0√
π
t+

√
2

π

∞∑
k=1

ak
k

sin(kt),

where ak, k = 0, 1, 2, . . ., are independent Gaussian random variables with mean 0 and
variance 1, converges, and its sum satisfies Definition 6 for 0 ≤ t ≤ 1.

In [2], the existence of Brownian motion follows from Kolmogorov’s theorem about the
existence of stochastic processes with covariance satisfying certain conditions.

8.3. Construction of the Brownian motion via a refinement procedure. The
Brownian motion on 0 ≤ t ≤ 1 can be constructed by a recursive refinement procedure
[3, 2]. Consider the following collection of sets

Dn =

{
k

2n
| 0 ≤ k ≤ 2n

}
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Figure 1. First six steps of construction a Brownian motion from Brown-
ian random walks by a refinement procedure. Here z1, . . . , z8 are indepen-
dent Gaussian random variables such that z1 ∈ N(0, 1), z2 ∈ N(0, 1/4),
z3, z4 ∈ N(0, 1

8), z5, z6, z7, z8 ∈ N(0, 1
16).

of dyadic points. At each refinement step, we will define a Gaussian random walk satisfying
the axioms of the Brownian Motion at the dyadic points (see Fig. 1).

Let {z0, zn,j} where n = 1, 2, 3, . . ., j = 1, 2, . . . , 2n−1, be a collection of independent
Gaussian random variables with mean 0 and variance 1. Recall that

if z ∈ N(0, 1) then
z

2α
∈ N(0, 2−2α).

We start by constructing a Gaussian random walk on D0 by setting

B0(0) = 0 and B0(1) = z0.
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Then we refine it to a Gaussian random walk B1 on D1 by setting

B1(D0) = B0(D0), B1 (1/2) =
B0(1) +B0(0)

2
+
z1,1

2
.

Note that

B1 (1/2) =
z0

2
+
z1,1

2
.

Hence

Var (B1 (1/2)) =
1

4
+

1

4
=

1

2
as desired. Let us show that the increments of B1 restricted to the dyadic set D1 =
{0, 1/2, 1} are independent, i.e., that B1(1/2) − B1(0) and B(1) − B(1/2) are independent.
Indeed, a linear combination of independent Gaussian random variables x1 ∼ N (m1, σ

2
1)

and x2 ∼ N (m2, σ
2
2) is Gaussian: ax1 +bx2 ∼ N (am1 +bm2, a

2σ2
1 +b2σ2

2) (check it!). Then
we calculate:

B1 (1/2)−B1(0) =
z0

2
+
z1,1

2
∼ N (0, 1/2) ,

B1(1)−B1 (1/2) = z0 −
z0

2
− z1,1

2
=
z0

2
− z1,1

2
∼ N (0, 1/2) ,

E
[(z0

2
+
z1,1

2

)(z0

2
− z1,1

2

)]
= E

[(z0

2

)2
−
(z1,1

2

)2
]

=
1

2
− 1

2
= 0.

Since uncorrelated Gaussian random variables are independent, we conclude that B1(1/2)−
B1(0) and B(1)−B(1/2) are independent.

Next, we refine B1 to a Gaussian random walk B2 on D2 by setting B2(D1) = B1(D1)
and

B2 (1/4) =
1

2
[B1 (1/2) +B1(0)] +

z2,1

2
√

2
,

B2 (3/4) =
1

2
[B1(1) +B1 (1/2)] +

z2,2

2
√

2
.

Then,

Var (B2 (1/4)) = Var

(
1/2 [B1 (1/2) +B1(0)] +

z2,1

2
√

2

)
=

1

4
· 1

2
+

1

8
=

1

4
,

Var (B2 (3/4)) = Var

(
1

2
[B1(1) +B1 (1/2)] +

z2,2

2
√

2

)
= Var

(
1

2
[B1(1)−B1 (1/2) + 2B1 (1/2)] +

z2,2

2
√

2

)
=

1

4

[
1

2
+ 4

1

2

]
+

1

8
=

3

4
.

as desired. Show that the increments ofB2 restricted to the dyadic setD2 = {0, 1/4, 1/2, 3/4, 1}
are independent. First show that B2(2−2(k+1))−B2(2−2k) and B2(2−2(l+1))−B2(2−2l)
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for 0 ≤ k < l ≤ 3 are independent. If k is even, i.e., k = 2p, we have:

B2

(
p

2
+

1

4

)
−B2

(p
2

)
=

1

2

[
B1

(p
2

)
+B1

(
p+ 1

2

)]
+
z2,p+1

2
√

2
−B2

(p
2

)
=

1

2

[
B1

(
p+ 1

2

)
−B1

(p
2

)]
+
z2,p+1

2
√

2
∼ N

(
0,

1

4
· 1

2
+

1

8

)
= N

(
0,

1

4

)
.

If k is odd, i.e., k = 2p+ 1, we have:

B2

(
p+ 1

2

)
−B2

(
p

2
+

1

4

)
= B2

(
p+ 1

2

)
− 1

2

[
B1

(p
2

)
+B1

(
p+ 1

2

)]
− z2,p+1

2
√

2
=

1

2

[
B1

(
p+ 1

2

)
−B1

(p
2

)]
− z2,p+1

2
√

2
∼ N

(
0,

1

4
· 1

2
+

1

8

)
= N

(
0,

1

4

)
.

Note that both 1
2

[
B1

(
p+1

2

)
−B1

(p
2

)]
and

z2,p+1

2
√

2
are independent Gaussian random vari-

ables with mean 0 and variance 1/8. If k = 2p and l = 2p+ 1, using an argument similar
to the one used for showing that that B1(1/2)−B1(0) and B(1)−B(1/2) are independent,
we show that

B2

(
p

2
+

1

4

)
−B2

(p
2

)
and B2

(
p+ 1

2

)
−B2

(
p

2
+

1

4

)
are independent. If k and l are such that floor(k/2) < floor(l/2), then the argument above
implies that B2(2−2(k+ 1))−B2(2−2k) = x1 +x2 and B2(2−2(l+ 1))−B2(2−2l) = y1 + y2,
where x1, x2, y1, y2 are independent Gaussian random variables with mean 0 and variance
1/8. Therefore, B2(2−2(k + 1)) − B2(2−2k) and B2(2−2(l + 1)) − B2(2−2l) for 0 ≤ k <
l ≤ 3 are independent. Finally, the increments over non-overlapping (no common interior
points) of B2 restricted to D2 are independent as they are sums of mutually independent
increments.

Continuing inductively, we define (i) : Bn(Dn−1) = Bn−1(Dn−1); (ii) for Dn\Dn−1

Bn

(
k

2n−1
+

1

2n

)
=

1

2

(
Bn−1

(
k

2n−1

)
+Bn−1

(
k + 1

2n−1

))
+

zn,k+1

2(n+1)/2
,

where zn,k+1 ∼ N (0, 1). It is shown in [3] that if one continues this refinement procedure
up to infinity, the resulting process satisfies the definition of Brownian motion. The first
six steps on this procedure are illustrated in Fig. 1.

8.4. Construction of the Brownian motion by a random walk. This construction
is left as an exercise.

Exercise Consider the mesh

{tj | tj = jh, h = 1
N , 0 ≤ j ≤ N}.
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Let {zj}Nj=1 be independent Gaussian random variables with mean 0 and variance 1. Con-

sider the Gaussian random walk Bh(t) defined by

Bh(0) = 0,

Bh(tj) = Bh(tj−1) + zj
√
h, j = 1, . . . , N,

Bh(t) =
1

h
[Bh(tj−1)(tj − t) +Bh(tj)(t− tj−1)] , tj−1 < t < tj , j = 1, . . . , N.

Prove that this random walk satisfies axioms (1)-(4) of Brownian motion at the points tj ,
j = 0, 1, . . . , N .

Exercise An even simpler construction the Brownian motion can be done as follows.
Consider a random walk on a mesh in the (x, t)-space, t ≥ 0, x ∈ R in which the time-step
k and the space step h are related to the time step k via k = h2. Start at the origin at time
0. At any discrete moment of time t = k, 2k, 3k, . . ., take a step to left or to the right with
probability 1/2. Let k and h tend to zero in such a manner that the relationship k = h2 is
maintained. Apply the Central Limit Theorem and obtain the Brownian motion.

The last exercise will be solved in Section 9 ahead.

8.5. Elementary properties of Brownian motion.

• The covariance function of the Brownian motion is

(23) E[w(t1)w(t2)] = min{t1, t2} ≡ t1 ∧ t2.
Indeed, suppose t2 > t1. Then

E[w(t1)w(t2)] = E[w(t1)w(t1) + w(t1)(w(t2)− w(t1)]

= E[w(t1)w(t1)] + E[w(t1)(w(t2)− w(t1))] = t1.

• Nowhere differentiability with probability 1 Consider the random

w(ω, t+ ∆t)− w(ω, t)

∆t
.

It is Gaussian with mean 0 and variance (∆t)−1, which tends to infinity as ∆t→ 0.
Hence w(ω, t) is differentiable nowhere with probability 1.
• White noise Despite the regular derivative of a Brownian motion does not exist,

one can consider its derivative in the sense of distributions. This derivative η(ω, t)
is called white noise and is defined by the property∫ t2

t1

η(ω, t)dt = w(ω, t2)− w(ω, t1).

• Scaling and Symmetry If w(t) is a Brownian motion then so are the processes
defined by

x(t) :=
1√
c
w(ct) for any positive constant c,

y(t) = −w(t).



Summer 2022 REU tutorials

• Time inversion Let w(t) be a Brownian motion. Then so is the process defined
by

(24) x(t) =

{
tw (1/t) , 0 < t <∞,
0, t = 0.

• Invariance under rotations and reflections (orthogonal transformations)
Let w(t) be a d-dimensional Brownian motion, and T be a d× d orthogonal matrix
(i.e., T> = T−1). Then the process

x(t) = Tw(t)

is also a d-dimensional Brownian motion.

9. Brownian motion and heat equation

In this section, we will establish a relationship between Brownian motion and the heat
equation as it is done in [1]. Consider the initial-value problem for the heat equation

(25) ut = 1
2uxx, x ∈ R, t > 0, u(x, 0) = φ(x).

We assume that the function φ(x) decays fast enough as |x| → ∞ so that the total amount
of heat is finite, i.e., ∫ ∞

−∞
|φ(x)|dx <∞.

The fastest way to solve it is the one via the use of the Fourier Transform. The Fourier
transform is a linear operator mapping a function f(x) x ∈ R, to a function f̂(k), k ∈ R,
called the Fourier Transform (FT) of f defined by

(26) F [f ](k) = f̂(k) :=
1√
2π

∫ ∞
−∞

e−ikxf(x)dx.

The Inverse Fourier Transform (IFT) maps f̂(k) back to f(x):

(27) F−1[f̂ ](x) :=
1√
2π

∫ ∞
−∞

eikxf̂(k)dx = f(x).

The proof of this fact relies on Fubini’s theorem and the Dominated Convergence Theorem
studied in graduate analysis courses. Let us apply the Fourier Transform to u(x, t) with
respect to the space variable x. Then we have

(28) u(x, t) =
1√
2π

∫ ∞
−∞

eikxû(k, t)dx.
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It is easy to verify by differentiating both parts of Eq. (28) with respect to x and t that

ux(x, t) =
1√
2π

∫ ∞
∞

ikeikxû(k, t)dx = F−1[ikû]

uxx(x, t) =
1√
2π

∫ ∞
∞

(ik)2eikxû(k, t)dx = F−1[−k2û]

ut(x, t) =
1√
2π

∫ ∞
∞

eikx
∂

∂t
û(k, t)dx = F−1[ût]

Plugging these identities into Eq. (25) we obtain the following initial value problem for
û(k, t):

(29) ût(k, t) = −k
2

2
û(k, t), k ∈ R, t > 0, û(k, 0) = φ̂(k).

Therefore, we have placed a PDE with a collection of ODEs indexed by k ∈ R! The solution
of Eq. (25) is

û(k, t) = e−
1
2k

2tφ̂(k).

To return to u(x, t) we apply the inverse Fourier Transform:

u(x, t) =
1√
2π

∫ ∞
−∞

eikxe−
1
2k

2tφ̂(k)dk

=
1√
2π

∫ ∞
−∞

eikxe−
1
2k

2tdk
1√
2π

∫ ∞
−∞

e−ikyφ(y)dy

=

∫ ∞
−∞

dy
φ(y)√

2πt
exp

[
−(x− y)2

2t

] √
t√

2π

∫ ∞
−∞

dk exp

[
−1

2

(
k
√
t− ix− y√

t

)2
]

︸ ︷︷ ︸
=
√

2π/t

Thus, the solution of Eq, (25) is

(30) u(x, t) =

∫ ∞
−∞

dy
φ(y)√

2πt
exp

[
−(x− y)2

2t

]
.

To make its probabilistic interpretation more apparent, we define introduce z = y− x and
recast it as

(31) u(x, t) =

∫ ∞
−∞

e−
z2

2t

√
2πt

φ(x+ z)dz.

The function

f(z) =
e−

z2

2t

√
2πt
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is the probability density of Gaussian random variable with mean 0 and variance t. There-
fore, the solution of the heat equation at point x at time t is the expected value of the
function φ(x+ η(ω)) where η ∈ N(0, t):

(32) u(x, t) = E[φ(x+ η(ω))] where η ∈ N(0, t).

Recall that a Brownian motion w(ω, t) is a Gaussian random variable for any fixed time t.
Therefore, Eq. (32) can be written as

(33) u(x, t) = E[φ(x+ w(ω, t))].

Eq. (33) suggests the following way to find the solution u(x, t) at a given point (x, t). Start
Brownian motions going backward in time from the point (x, t) and run them for time t.
Recall that the time-reversal of a Brownian motion is also a Brownian motion. At time t,
they intersect the x-axis at the points x+w(ω, t). Find the values of φ at these points and
average them over all Brownian motions.

10. Numerical solution of the heat equation and its solution by random
walk

In this section, we show that an approximate numerical solution u(xi, tn) to the heat
equation can be interpreted as the expected value of φ(xi +

∑n
l=1 ηl) where ηl are indepen-

dent Bernoulli random variables and the mesh steps in x and t are in a certain ratio [1].
This is analogous to the fact the exact analytical solution u(x, t) of the heat equation (25)
can be interpreted as the expected value of φ(x+w(ω, t)) as we have shown in the previous
section.

Consider a rectangular mesh with step h in space and step k in time:

{(xi, tn) | xi = ih, tn = nk}.

We will denote by uni the value of the exact solution u at the point (xi, tn), i.e.,

uni := u(xi, tn).

The derivatives ut and uxx can be approximated by finite differences below. Using Taylor
expansions at (xi, tn) we get

ut(xi, tn) =
un+1
i − uni

k
+
k

2
utt(xi, t

n + αk), α ∈ (0, 1),(34)

uxx(xi, tn) =
uni+1 − 2uni + uni−1

h2
+
h2

12
uxxxx(xi + γh, tn), γ ∈ (−1, 1).(35)

Using these finite differences, we obtain a discrete approximation to initial value problem
for the heat equation:

(36)
vn+1
i − vni

k
=

1

2

vni+1 − 2vni + vni−1

h2
, v0

i = φ(ih).

We distinguish the exact solution u of Eq. (25) and the solution v to its discretized version,
Eq. (36). Starting from n = 0, we can solve it by the recurrence formula obtained from
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Eq. (36):

vn+1
i = vni +

k

2h2
(vni+1 − 2vni + vni−1).

Denote the quantity k
2h2

by λ and rewrite the recurrence relationship as

(37) vn+1
i = (1− 2λ)vni + λvni+1 + λvni−1.

Now we will find out how large is the approximation error when we replace u with v. First,
we define the local truncation error τni , i.e., the error committed in one step starting from
the exact values. In numerical PDEs, it is defined by

τni :=
un+1
i − uni

k
−
uni+1 − 2uni + uni−1

h2
.

It follows from Eqs. (34) and (35) that

τni =
k

2
utt(xi, t

n + αk)− h2

12
uxxxx(xi + γh, tn) = O(k) +O(h2).

As you can see, τni → 0 and h, t → 0. This fact is called consistency. However, it might
seem surprising at first, that the numerical solution produced by a consistent difference
scheme does not necessarily converge to the exact solution at the mesh points as the mesh
is refined. There is one more necessary ingredient to guarantee the convergence of the
numerical solution to the exact one called stability. Stability means that the numerical
solution is a Lipschitz function with respect to perturbations of the initial data and the
difference equation. Note that the perturbations are ubiquitously present due to the local
truncation error, approximations for real numbers with floating-point numbers, and the
round-off error of computer arithmetics.

We will show that the numerical solution of the heat equation converges to the exact
solution if λ ≤ 1/2. We assume that the arithmetics is exact. We have:

un+1
i = (1− 2λ)uni + λuni+1 + λuni−1 + kτni ,(38)

vn+1
i = (1− 2λ)vni + λvni+1 + λvni−1.(39)

Subtract Eq. (39) from Eq. (38) and obtain the recurrence equation for the error eni :=
uni − vni :

(40) en+1
i = (1− 2λ)eni + λeni+1 + λeni−1 + kτni .

Taking absolute values of both sides and assuming that λ ≤ 1/2, i.e., 1− 2λ ≥ 0, we get

(41) |en+1
i | ≤ (1− 2λ)|eni |+ λ|eni+1|+ λ|eni−1|+ k|τni |.

Define
En := max

i
|eni |

and
τn := max

i
|τni |, τ := max

nk≤t
|τn|.

Then
En+1 ≤ En + kτn ≤ En + kτ.
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Therefore,

En ≤ En−1 + kτ ≤ En−2 + 2kτ ≤ . . . ≤ E0 + nkτ.

Assuming that we are starting with the exact initial condition, i.e., E0 = 0. Then

En ≤ nkτ ≡ tτ.

Since τ → 0 as h, k → 0, we conclude that the solution to the discretized heat equation
(36) converges to the solution of the heat equation (25) as we refine the mesh.

Note that we can pick any λ ∈ (0, 1/2] in order to guarantee this convergence. Let us
pick λ = 1/2 to make the recurrence equation Eq. (37) as simple as possible:

(42) vn+1
i =

1

2
vni+1 +

1

2
vni−1.

Hence

vni =
1

2
vn−1
i+1 +

1

2
vn−1
i−1

=
1

4
vn−2
i+2 +

1

2
vn−2
i +

1

4
vn−2
i−2

=
1

8
vn−3
i+3 +

3

8
vn−3
i+1 +

3

8
vn−3
i−1 +

1

8
vn−3
i−3 = . . .

=
n∑
j=0

1

2n

(
n
j

)
φ((i− n+ 2j)h).

Thus, the solution of the discretized heat equation Eq. (36) is

(43) vni =
n∑
j=0

1

2n

(
n
j

)
φ((i− n+ 2j)h).

This solution can be interpreted as follows. Consider the random walks on the mesh with
step h in space and step k = h2 in time starting at (xi = ih, tn = nk) and shifting one
mesh step down in time together with one mesh step left or right with probability 1/2 each
iteration. Record the values of the initial function φ at the points where these walks reach
the x-axis (the level 0). Average these values over all walks to obtain the solution vni .

The horizontal displacements of these random walks can be interpreted as sums of n
independent Bernoulli random variables

ηl =

{
h, P = 1/2

−h, P = 1/2
.

These variables have mean 0 and variance h2. Hence

E

[
n∑
l=1

ηl

]
= 0, Var

(
n∑
l=1

ηl

)
= nh2.
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Let us fix t. As k → 0, n→∞. Hence, by the Central Limit Theorem,
n∑
l=1

ηl → N(0, nh2) in distribution.

Recall that k = h2 and hence nh2 = nk = t. Set y := 2j − n. Then

P

(
n∑
l=1

ηl = (−n+ 2j)h

)
≈ e−y

2/2t

√
2πt

h.

Therefore,

vni =
n∑
j=0

1

2n

(
n
j

)
φ((i− n+ 2j)h)→

∫ ∞
−∞

e−y
2/2t

√
2πt

φ(x+ y)dy

as n→∞, h→ 0, k = h2, t = nk is fixed.

10.1. A brief introduction into the Wiener measure. Here we follow the discussion found in [1, 4]. Recall that we
have derived that the solution of the heat equation Eq. (25) is given by

u(x, t) = E[φ(x+ w(ω, t))],

where w(ω, t) is a Brownian motion. This formula says that we attach a number φ(x + w(ω, t)) to each Brownian motion
and find an expectation for these numbers. Whenever we speak about an expectation, we imply some probability measure
with respect to which this expectation is taken.

When we need to average some function of Brownian motion, the measure to be taken is the Wiener measure. Therefore,
we need to specify the measurable space where the Wiener measure will be defined, i.e., the set of outcomes Ω and the
σ-algebra on Ω.

The set of outcomes will be the set of continuous functions y(t) satisfying y(0) = 0. The σ-algebra will contain all
cylinder sets of the form

(44) C = {f(t) is continuous | a ≤ f(s) < b},

where a, b, and s are parameters defining C.
The Wiener measure of each cylinder set (44) is defined so that it is equal to the probability that a Brownian motion

w(ω, t) passes through the window [a, b) at time s:

P (C) =

∫ b

a

e−x
2/2s

√
2πs

dx.

The Wiener measure of the intersection of two cylinders

C1 = {f(t) is continuous | a1 ≤ f(s1) < b1} and C2 = {f(t) is continuous | a2 ≤ f(s2) < b2}

is defined so that it is equal to the probability that a Brownian motion w(ω, t) passes through both windows:

a1 ≤ w(ω, s1) < b1, and a2 ≤ w(ω, s2) < b2.

Assume s1 < s2. Taking into account that the increments of a Brownian motion are independent Gaussian random variables,
we calculate

P (C1 ∩ C2) =

∫ b1

a1

e−x
2/2s1

√
2πs1

dx

∫ b2

a2

e−(y−x)2/2(s2−s1)√
2π(s2 − s1)

dy.

The notation for the Wiener measure is dW . Thus, the solution of the heat equation (25) can be written as

u(x, t) =

∫
φ(x+ w(ω, t))dW.

Example 20 Compute
∫
FdW where F (w) =

∫ 1
0
w4(ω, s)ds.∫

FdW =

∫
dW

∫ 1

0

w
4
(ω, s)ds =

∫ 1

0

ds

∫
dWw

4
(ω, s)

=

∫ 1

0

ds

∫ ∞
−∞

x
4 e
−x2/2s
√

2πs
dx =

∫ 1

0

3s
2
ds = 1.
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10.2. Markov property of Brownian motion.

Definition 9. A stochastic process ζ(t) on [0, T ] is called a Markov process if for any sequences 0 ≤ t0 < . . . < tn ≤ T
and x0, x1, ..., xn, its transition probability distribution function has the property

P(ζ(tn) < xn | ζ(tn−1) < xn−1, . . . , ζ(t0) < x0) = P(ζ(tn) < xn | ζ(tn−1) < xn−1).

The transition probability density function, defined by

p(xn, tn | xn−1, tn−1; . . . ; x0, t0) :=
∂

∂xn
P(ζ(tn) < xn | ζ(tn−1) < xn−1, . . . , ζ(t0) < x0)

then satisfies

(45) p(xn, tn | xn−1, tn−1; . . . ; x0, t0) = p(xn, tn | xn−1, tn−1).

For any three times t > τ > s and any three points x, y, z we can write the identities

p(y, t; z, τ | x, s) = p(y, t | z, τ ; x, s)p(z, τ | x, s) = p(y, t | z, τ)p(z, τ | x, s).

The last equality is a consequence of the Markov property. This identity implies the Chapman-Kolmogorov equation:

(46) p(y, t | x, s) =

∫
p(y, t; z, τ | x, s)dz =

∫
p(y, t | z, τ)p(z, τ | x, s)dz.

Theorem 6. The Brownian motion is a Markov process.

Proof. Take any sequences 0 = t0 < . . . < tn ≤ T and x0 = 0, x1, ..., xn and consider the joint pdf of the vector

w = (w(t1), w(t2), . . . , w(tn)).

It is given by

(47) p(x1, t1; x2, t2; . . . ; xn, tn) =

n∏
k=1

 exp

{
−

(xk−xk−1)2

2(tk−tk−1)

}
√

2π(tk − tk−1)

 .
Recall that

p(xn, tn | xn−1, tn−1; . . . ; x1, t1) =
p(x1, t1; x2, t2; . . . ; xn, tn)

p(x1, t1; x2, t2; . . . ; xn−1, tn−1)
.

Using Eq. (47) we get

p(xn, tn | xn−1, tn−1; . . . ; x1, t1) =

∏n
k=1

 exp

{
−

(xk−xk−1)2

2(tk−tk−1)

}
√

2π(tk−tk−1)


∏n−1
k=1

 exp

{
−

(xk−xk−1)2

2(tk−tk−1)

}
√

2π(tk−tk−1)


=

exp

{
− (xn−xn−1)2

2(tn−tn−1)

}
√

2π(tn − tn−1)

= p(xn, tn | xn−1, tn−1).

Hence, the Brownian motion is a Markov process. �

11. An Introduction to SDEs.

Here we follow the discussion found in [1, 4]. Consider a stochastic process x(ω, t) ≡ x(t)
obeying the following evolution law:

(48) dx(t) = b(x(t), t)dt+ σ(x(t), t)dw,

where w is the standard Brownian motion and the functions b and σ are smooth.
This evolution law is called a stochastic differential equation (SDE). If σ(x(t), t) = 0,

Eq. (48) becomes an ordinary differential equation (ODE)

(49)
dx

dt
= b(x, t).
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Suppose x(0) = x0. Eq. (49) is equivalent to the following integral equation

(50) x(t) = x0 +

∫ t

0
b(x(s), s)ds.

A solution of an ODE is a function satisfying the ODE. If the ODE is complemented
with an initial condition, then the solution to the corresponding initial-value problem is a
function satisfying the given initial condition.

Now we will discuss the meaning of SDE (48). Similarly to Eq. (51) we can write

(51) x(t) = x0 +

∫ t

0
b(x(s), s)ds+

∫ t

0
σ(x(s), s)dw(s)

First assume that the function σ is independent of x, i.e., σ(x, t) ≡ σ(t). We partition the
interval [0, t] into t0 = 0 < t1 < t2 < . . . < tn = t and denote the fineness of the partition
by ∆:

∆ := max
1≤i≤n

|ti − ti−1|.

Then we define ∫ t

0
σ(s)dw(s) = lim

n→∞
∆→0

n−1∑
i=0

σi(w(ti+1)− w(ti))

where σi is chosen so that it approximates σ(t) on the subinterval [ti, ti+1].
The case where σ depends on x is much more difficult. We can proceed as before and

write ∫ t

0
σ(x(s), s)dw(s) = lim

n→∞
τ→0

n∑
i=1

σi(w(ti+1)− w(ti)),

however, the value of this limit will depend on how we choose σi approximating σ(x(t), t) on
the interval [ti, ti+1]. There are two common choices. We will give their general definition.
Let f(w(t), t) be a smooth function depending on time and a Brownian Motion w(t). In
particular, f(w(t), t) can be chosen to coincide with σ(x(t), t) where x(t) is a solution of
SDE (48), i.e., a stochastic process depending on w(t).

• The Ito stochastic integral is defined by the choice fi = f(ti), i.e., f is evaluated
at the left end of each subinterval:∫ t

0
f(w(s), s)dw = lim

n→∞
∆→0

n−1∑
i=0

f(w(ti), ti)(w(ti+1)− w(ti)).

• The Stratonovich stochastic integral is defined by the choice fi = f(t1+1/2),

where ti+1/2 ≡ 1
2(ti + ti+1). i.e., f is evaluated at the midpoint of each subinterval.

The Stratonovich stochastic integral is marked by ◦:∫ t

0
f(w(s), s) ◦ dw = lim

n→∞
∆→0

n−1∑
i=0

f(w(ti+1/2), ti+1/2)(w(ti+1)− w(ti)).
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The example below demonstrates that Ito and Stratonovich stochastic integrals are differ-
ent.

Example 21 Calculate
∫ b
a wdw (the Ito stochastic integral) and

∫ b
a w◦dw

(the Stratonovich stochastic integral). Let the partition be uniform, i.e.,

∆t =
b− a
n

.

We start with the Ito stochastic integral.∫ b

a
wdw = lim

∆→0

∑
i

w(ti) [w(ti+1)− w(ti)]

=
1

2
lim
∆→0

∑
i

[
w2(ti+1)− w2(ti)− (w(ti+1)− w(ti))

2
]

Note that∑
i

(w2(ti+1)− w2(ti)) = w2(tn)− w2(tn−1) + w2(tn−1)− . . .+ w2(t1)− w2(t0)

= w2(b)− w2(a).

We also compute

E

[∑
i

(w(ti+1)− w(ti))
2

]
=
∑
i

(ti+1 − ti) = b− a.

Var

(∑
i

(w(ti+1)− w(ti))
2

)
=
∑
i

[
E[(w(ti+1)− w(ti))

4
]
−
(
E[(w(ti+1)− w(ti))

2]
)2

≤
∑
i

E
[
(w(ti+1)− w(ti))

4
]

=
n√

2π∆t

∫ ∞
−∞

x4e−x
2/2∆tdx

= 3n(∆t)2 =
3n(b− a)2

n2
=

3(b− a)2

n
→ 0 as n→∞.

Here we have used the fact that the fourth central moment of N (µ, σ2) is
3σ4. Hence ∫ b

a
wdw =

w2(b)− w2(a)

2
− b− a

2
.

The expected value of this integral is zero. Indeed, w(ti) [w(ti+1)− w(ti)]
is a product of two independent Gaussian random variables with mean 0,
hence E [w(ti) [w(ti+1)− w(ti)]] = 0 for all i. Therefore,

E

[∫ b

a
wdw

]
= E

[
lim
∆→0

∑
i

w(ti) [w(ti+1)− w(ti)]

]
= 0.
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Now we will calculate the Stratonovich stochastic integral:∫ b

a
w ◦ dw = lim

∆→0

∑
i

w(ti+1/2)(w(ti+1)− w(ti))

= lim
∆→0

∑
i

[w(ti+1/2)− w(ti) + w(ti)][w(ti+1)− w(ti+1/2) + w(ti+1/2)− w(ti)]

= lim
∆→0

∑
i

(w(ti+1/2)− w(ti))
2

+ lim
∆→0

∑
i

(w(ti+1/2)− w(ti))(w(ti+1)− w(ti+1/2))

+ lim
∆→0

∑
i

w(ti) [w(ti+1)− w(ti)] .

The first limit can be evaluated by finding its mean (b− a)/2 and showing
that its variance tends to zero as n → ∞. The second limit is zero as
it is the sum of products of independent Gaussian random variables with
mean zero and vanishing variance as as n → ∞. The third limit is the Ito
stochastic integral that we have just evaluated. Hence,∫ b

a
w ◦ dw =

b− a
2

+
w2(b)− w2(a)

2
− b− a

2
=
w2(b)− w2(a)

2
.

As you see, ∫ b

a
w ◦ dw 6=

∫ b

a
wdw.

11.1. Elementary properties of stochastic integral. Here we follow the discussions in [4, 5]. We will use a shorter
notation denoting f(w(t), t) by f(t, ω) where ω is the stochastic argument of the Brownian Motion.

We will a consider stochastic process f(t, ω) on 0 ≤ t ≤ T satisfying the following conditions:

Condition (1): f(t, ω) is independent of the increments of the Brownian motion w(t, ω) in the future, i.e., f(t, ω)
is independent of w(t+ s, ω)−w(t, ω) for all s > 0. Such processes are called adapted to the Brownian filtration
Ft.

Condition (2): ∫ T

0

E[f
2
(s, ω)]ds <∞.

Now we list some useful elementary properties. The first two properties are similar to those of the Riemann integral.
The other ones are specific for the Ito integral. Let f(t, ω) and g(t, ω) be any functions satisfying conditions (1) and (2)
above.

(1) Linearity: ∫ t

0

(af(s, ω) + bg(s, ω))dw(s, ω) = a

∫ t

0

f(s, ω)dw(s, ω) + b

∫ t

0

g(s, ω)dw(s, ω).

(2) Additivity. Let 0 < T1 < T . Then∫ T

0

f(s, ω)dw(s, ω) =

∫ T1

0

f(s, ω)dw(s, ω) +

∫ T

T1

f(s, ω)dw(s, ω).

(3) If f is a deterministic function, i.e., f(s, ω) ≡ f(s), then∫ t

0

f(s)dw(s, ω) ∼ N
(

0,

∫ t

0

f
2
(s)ds

)
.
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(4) For any 0 ≤ τ ≤ t ≤ T ,

E

[∫ t

0

f(s, ω)dw(s, ω)

]
= 0;

E

[∫ t

0

f(s, ω)dw(s, ω)

∫ τ

0

f(s, ω)dw(s, ω) = x

]
= x;

E

[(∫ T

0

f(s, ω)dw(s, ω)

)2
]

=

∫ T

0

E[f
2
(s, ω)]ds.

(5)

E

[∫ T

0

f(s, ω)dw(s, ω)

∫ T

0

g(s, ω)dw(s, ω)

]
=

∫ T

0

E[f(s, ω)g(s, ω)]ds.

11.2. Construction of the Ito integral. First note that for any constant random function f(ω)∫ b

a

f(ω)dw(s) = f(ω)(w(b)− w(a)).

Therefore, it is easy to construct the Ito integral for any simple random function h(t, ω) that assumes a finite number of
values. The integrals for simple functions can be extended to integrals for any functions satisfying conditions 1 and 2.

Theorem 7. For every function f(t, ω) satisfying Conditions 1 and 2, there is a sequence of step functions fn(t, ω)
satisfying Conditions 1 and 2 such that

(52) lim
n→∞

∫ T

0

|f(t, ω)− fn(t, ω)|2dt = 0

for almost all ω ∈ Ω, and the limit

(53) I(t, ω) := lim
n→∞

∫ t

0

fn(s, ω)dw(s, ω)

is uniform in T for almost all ω ∈ Ω and is independent of the sequence fn(t, ω) satisfying conditions 1 and 2.

11.3. Existence and uniqueness of solutions of the Ito SDEs. Consider the SDE

(54) dx(t) = b(x(t), t)dt+ σ(x(t), t)dw, x(0) = x0 ∈ Rd, t ∈ [0, T ],

where w is the standard Brownian motion. We assume that the functions b and σ satisfy the following conditions. There
exists a constant C such that

(55) ‖b(x, t)‖+ ‖σ(x, t)‖F ≤ C(1 + ‖x‖), for all x ∈ Rd, t ∈ [0, T ],

where ‖ · ‖F denotes the Frobenius matrix norm:

‖A‖F :=
√

tr(A>A),

and

(56) ‖b(x, t)− b(y, t)‖+ ‖σ(x, t)− σ(y, t)‖F ≤ C‖x− y‖, for all x, y ∈ Rd, t ∈ [0, T ].

The first condition says that b and σ do not grow faster than linearly in x, and the second condition is an analogue of the
Lipschitz condition. In this case, Eq. (54) with E[‖x0‖2] <∞ has a unique solution such that

E

[∫ t

0

‖x(s)‖2ds
]
<∞ for all t ∈ [0, T ].

From now on, we will autonomize SDEs to save some writing. If b and/or σ explicitly depend on t, we introduce a

new independent variable s, declare that t is a new dependent variable, and add the equation dt = ds. This is called

“autonomization”. Therefore, the assumption that the SDE is autonomous does not lead to the loss of generality.
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11.4. Notation common in probability books. It is common in the probability com-
munity to denote stochastic processes by capital letters with subscripts specifying their
time arguments:

(57) dXt = b(Xt)dt+ σ(Xt)dw, X0 = x, t ∈ [0, T ], x ∈ Rd.

Terminology:

• Xt satisfying Eq. (57) is called a diffusion process;
• b(x) is called a drift ;
• the matrix Σ(x) = σ(x)σ>(x) is called a diffusion matrix.

Exercise Show that b and Σ satisfy:

lim
t→s

E

[
Xt −Xs

t− s
| Xs = x

]
= b(x, s)(58)

lim
t→s

E

[
[Xt −Xs][Xt −Xs]

>

t− s
| Xs = x

]
= Σ(x, s).(59)

11.5. The Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process models the
velocity of a heavy particle pushed around by light particles. The variable Xt is the velocity
of the particle. For simplicity, we consider it in 1D:

(60) dXt = −γXtdt+
√

2Ddw, X0 = x ∈ R

where x is a fixed number, γ is the friction coefficient, and D is the diffusion coefficient.
The exact solution of Eq. (60) can be written in the closed form involving a stochastic

integral. We proceed as we do when we solve a linear non-homogeneous first order ODE.
Switch the term −γXt to the left-hand side and multiply the equation by the integrating
factor exp(γt). Then we get

d
(
eγtXt

)
=
√

2Deγtdw.

Suppose X0 = x. Integrating from 0 to t we obtain:

eγtXt − x =
√

2D

∫ t

0
eγsdws.

Hence the solution of Eq. (60) is

Xt = xe−γt +
√

2D

∫ t

0
e−γ(t−s)dws.

The solution Xt is a Gaussian random variable with mean xe−γt and variance D
γ (1−e−2γt).

The variance is found as follows. We partition the interval [0, t] into n equal subintervals
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of length h = t/n and let n→∞:

Var

(√
2D

∫ t

0
e−γ(t−s)dws

)
= 2De−2γtE

[
(

∫ t

0
eγsdws)

2

]

= 2De−2γt lim
n→∞

E

n−1∑
j=0

eγ2jh[w((j + 1)h)− w(jh)]2


= 2De−2γt

∫ t

0
e2γsds = 2De−2γt 1

2γ

(
e2γt − 1

)
=
D

γ

(
1− e−2γt

)
.

As t→∞, the velocity Xt of the particle becomes a Gaussian random variable with mean
0 and variance D

γ .

Now let us calculate the covariance function of the Ornstein-Uhlenbeck process. Suppose
t ≥ s.

Cov(Xs, Xt) = E

[(√
2D

∫ s

0
e−γ(s−τ)dwτ

)(√
2D

∫ t

0
e−γ(t−τ)dwτ

)]
= 2De−γ(t+s)E

[(∫ s

0
eγτdwτ

)(∫ s

0
eγτdwτ +

∫ t

s
eγτdwτ

)]
=
D

γ
e−γ(t+s)

(
e2γs − 1

)
=

[
−D
γ

]
e−γ(t+s) +

D

γ
e−γ(t−s).

Note that as t and s tend to infinity, the first term decays to zero. Then the covariance
function depends only on the difference t− s and is given by

R(t− s) =
D

γ
e−γ|t−s|.

The Ornstein-Uhlenbeck process (60) with the initial condition x ∼ N(0, Dγ ) can serve

as a model for a colored noise.

12. The Ito calculus

SDEs can be solved analytically only in special cases. Even if so, we often need not the
formula for the solution but the expected value of some function defined on the random
trajectories. This function can be the first passage time to a given region of the phase
space or the probability to reach first one given region rather than the other given region.
To answer such kind of questions, it is handy to be able to calculate the time evolution of
functions defined on trajectories. The Ito formula provides us with a tool to do it.

12.1. A derivation of the Ito formula. The most important result in the Ito calculus
is the Ito formula.
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12.1.1. 1D case. For simplicity, we will start with the 1D case. Let x(t) be trajectory
obeying the ODE

dx

dt
= b(x).

Then any function f(x(t), t) evolves in time according to

(61)
df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
=
∂f

∂t
+ b(x)

∂f

∂x
.

Now let x(t, ω) be a trajectory of the SDE

dXt = b(Xt)dt+ σ(Xt)dw.

One could naively write

df =
∂f

∂t
dt+

∂f

∂x
dXt =

∂f

∂t
dt+

∂f

∂x
(b(Xt)dt+ σ(Xt)dw)

but this would be WRONG. This is because dw = O(
√
dt) and (dw)2 = O(dt). The

correct differential of f is given by Eq. (62) below.
Let us derive it. We want to find the differential, i.e., the part of the increment of the

order of dt or larger for a function f(Xt, t), where dXt = b(Xt)dt+σ(Xt)dw. We will write
a formal Taylor expansion of f(Xt, t) and keep all terms of the order of dt or larger. To
save some space, the arguments (Xt, t) in all derivatives will be omitted.

f(Xt+dXt, t+dt) = f(Xt, t)+
∂f

∂t
dt+

∂f

∂x
dXt+

1

2

∂2f

∂t2
(dt)2+

∂2f

∂x∂t
dXtdt+

1

2

∂2f

∂x2
(dXt)

2+. . . .

The term dw is O(
√
dt). The term dXtdt is O((dt)3/2). The term (dw)2 contained in

(dXt)
2 is O(dt). Hence we need to keep only the term 1

2
∂2f
∂x2

(dXt)
2 out of the second order

terms. Therefore,

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2.

Writing dXt explicitly we get:

(dXt)
2 = (b(Xt)dt+ σ(Xt)dw)(b(Xt)dt+ σ(Xt)dw)

= b2(Xt)(dt)
2 + 2b(Xt)σ(Xt)dtdw + σ2(dw)2 = σ2(Xt)dt+ o(dt).

Hence,

(62) df(Xt, t) =

[
∂f

∂t
+ b(Xt)

∂f

∂x
+

1

2
σ2(Xt)

∂2f

∂x2

]
dt+ σ(Xt)

∂f

∂x
dw.

Note that Eq. (62) can be rewritten as

(63) df(Xt, t) =

[
∂f

∂t
+ Lf

]
dt+ σ(x)

∂f

∂x
dw, where L = b(Xt)

∂

∂x
+

1

2
σ2(Xt)

∂2

∂x2
.

L is called the infinitesimal generator of the process.
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12.1.2. Multidimensional case. Now we turn to the multidimensional case is stated below.
We define the generator by

(64) L = b(Xt) · ∇+
1

2
Σ(Xt) : ∇∇,

where the symbol “:” means

A : B :=
n∑
i=1

n∑
j=1

AijBij ≡ tr
(
A>B

)
and

(∇∇)ij =
∂2

∂xi∂xj
.

In the coordinate form, L can be rewritten as

(65) L =
d∑
j=1

bj(Xt)
∂

∂xj
+

1

2

d∑
i,j=1

Σij(Xt)
∂2

∂xi∂xj
.

Theorem 8. (Ito’s formula) Assume that b and σ satisfy Eqs. (55) and (56) and
E[‖X0‖2] < ∞. Let f(x, t) be twice continuously differentiable in x in Rd and continu-
ously differentiable in t on [0, T ]. Then the process f(Xt, t) satisfies:
(66)

f(Xt, t) = f(X0, 0) +

∫ t

0

∂f(Xs, s)

∂s
ds+

∫ t

0
Lf(Xs, s)ds+

∫ t

0
∇f(Xs, s)

>σ(Xs)dws.

Eq. (66) is equivalent to

(67)
df

dt
=
∂f

∂t
+∇f · dXt

dt
+

1

2

dXt

dt
· ∇∇f dXt

dt
,

or

(68) df(Xt, t) =
∂f

∂t
dt+

d∑
i=1

∂f

∂xi
dXi +

1

2

d∑
i,j=1

∂2f

∂xi∂xj
dXidXj ,

Ito’s formula is proven e.g. in [4].

12.2. The geometric Brownian motion. The geometric Brownian motion is a stochas-
tic process satisfying the following SDE

(69) dXt = µXtdt+ σXtdw,

where w is the standard Brownian motion, µ (the percentage drift) and σ (the percentage
volatility) are constants. The SDE (69) is used in mathematical finance to model the stock
prices in the Black-Scholes model.
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Eq. (69) has an analytic solution that can be found as follows. Introduce the new
dependent variable Yt = logXt. Using Ito’s formula (62) and taking into account that
dY
dX = 1

X and d2Y
dX2 = − 1

X2 we write the differential of Yt:

dYt =

(
µXt

dY

dX
+

1

2
σ2X2

t

d2Y

dX2

)
dt+ σXt

dY

dX
dw =

(
µ− σ2

2

)
dt+ σdw.

The right-hand side of the SDE for Yt is independent of Yt and hence Yt is found just by
integration of the right-hand side:

Yt = Y0 +

(
µ− σ2

2

)
t+ σwt.

Returning to Xt = exp(Yt) we get the exact solution of Eq. (69):

(70) Xt = X0e

(
µ−σ

2

2

)
t+σwt .

We say that a random variable X is lognormal if its logarithm is Gaussian, i.e. if
logX ∼ N(m, s2).

Exercise Check that if Y ∼ N(m, s2) then

E[eY ] = em+ s2

2 , Var(eY ) = e2m+s2(es
2 − 1),

and the pdf of X = eY is given by

feY (x) =
1

x
√

2πs2
e−

(log x−m)2

2σ2 .

Note that

Yt = logXt ∼ N
(
Y0 +

(
µ− σ2

2

)
t, σ2t

)
,

hence the geometric Brownian motion Xt has a log-normal distribution. The mean and
the variance of Xt are

E[Xt] = X0e
µt, Var(Xt) = X2

0e
2µt
(
eσ

2t − 1
)
.

12.3. Backward Kolmogorov equation. Imagine that we are interested in some quan-
tity f that depends on Xt evolving according to the SDE

dXt = b(Xt)dt+ σ(Xt)dw.

Suppose that we want to find the expected value of f at a future time T given that at
the present time t, Xt = x. For example, you can think of f being an option price that
depends on the stock price X. We denote the expected value of f at time T conditioned
on Xt = x by u(x, t). Let us find the time evolution of

u(x, t) := E[f(XT ) | Xt = x] =

∫
Rd
f(y)p(y, T |x, t)dy,

In words, imagine that we start a stochastic process Xs at time t at the point x. We stop
it at a fixed time T . We want to find the expected value of f(XT ). This expected value
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u(x, t) depends on the initial time t and the initial point x. Obviously, for the terminal
time t = T we have: u(x, T ) = f(x). Using Ito’s formula (66) we calculate

u(XT , T )− u(Xt, t) =

∫ T

t

∂

∂s
u(Xs, s)ds+

∫ T

t
Lu(Xs, s)ds+

∫ T

t
∇u(Xs, s)

>σ(Xs)dws.

Now we will take expected values of both parts of this equation conditioned on Xt = x.
Note that

E[u(XT , T ) | Xt = x] = E [f(XT ) | Xt = x] = u(x, t)

and

E[u(Xt, t) | Xt = x] = u(x, t).

Hence the conditional expectation of the left-hand side is 0. Also note that by property
(4) in Section 11.1,

E

[∫ T

t
∇u(Xs, s)

>σ(Xs)dws

]
= 0.

Therefore, for all x, t and T we have∫ T

t

[
∂

∂s
u(x, s) + Lu(x, s)

]
ds = 0.

Hence for all t ≤ T , u(x, t) satisfies the PDE with the final condition:

∂

∂t
u(x, t) + Lu(x, t) = 0 u(x, T ) = f(x).

Re-defining u as

u(x, t) = E[f(Xt) | X0 = x], i.e., u(x, t) = uold(x, T − t),

we obtain that for 0 ≤ t ≤ T

(71)
∂

∂t
u(x, t) = Lu(x, t), u(x, 0) = f(x).

Eq. (71) is called the Backward Kolmogorov Equation. It describes the time evolution
of expected values. Note that in the re-definition of u we used the fact that Xt evolves
according to an autonomous SDE which is invariant with respect to a time shift.

12.4. The expected first passage time. Let A ⊂ Rd be some region. The first passage
time to A is defined as

τA = inf{t ≥ 0 | Xt ∈ A}.
Let u(x, t) be the expected first passage time to A for the process Xt starting at x, i.e.,

u(x, t) = E [τA | Xt = x] .

We calculate:

u(XτA , τA)−u(Xt, t) =

∫ τA

t

∂

∂s
u(Xs, s)ds+

∫ τA

t
Lu(Xs, s)ds+

∫ τA

t
∇u(Xs, s)

>σ(Xs)dws.
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Next, we take the expected values of the left- and right-hand side of this equation condi-
tioned on Xt = x. Taking into account that

E[u(XτA , τA) | Xt = x] = E [τA | Xt = x] = u(x, t) and E[u(Xt, t) | Xt = x] = u(x, t)

we get for all t and x ∫ τA

t

∂

∂s
u(x, s)ds+

∫ τA

t
Lu(x, s)ds = 0.

We also note that
∂

∂t
u(x, t) = 1.

Finally, if x ∈ A we have τA = 0. Hence the mean first passage time u(x) satisfies the
following boundary value problem

(72) Lu = −1, x /∈ A, x(∂A) = 0.

Example 22 Let dXt =
√

2β−1dw, X0 = x, i.e., a scaled one-dimensional
Brownian motion starting at the point x. Let us find the expected exit time
from the interval [−1, 1]. As we have shown, the expected exit time u(x)
satisfies Eq. (72), which in our case becomes

β−1u′′ = −1, −1 ≤ x ≤ 1, u(1) = u(−1) = 0.

Solving this equation we obtain

u(x) =
β

2
(1− x2).

12.5. The committor equation. Let A ⊂ Rd and B ⊂ Rd be some regions. The com-
mittor function q(x) is defined as the probability that the process starting at the point
x first reaches B rather than A [6, 7]. Let us derive a boundary-value problem for the
commitor. It is clear that q(∂A) = 0 and q(∂B) = 1. For x ∈ (A ∪ B)c let us define the
first passage time to A ∪B, i.e.,

τAB = inf{t ≥ 0 | Xt ∈ A ∪B}.
We calculate:

q(XτAB )− q(X0) =

∫ τAB

0
Lq(Xs)ds+

∫ τAB

0
∇q(Xs)

>σ(Xs)dws.

Take the expected values of the left- and right-hand side of this equation conditioned on
X0 = x. We get that for all x

q(x)− q(x) =

∫ τAB

0
Lq(x)ds = 0

Therefore, the solution of the boundary-value problem

Lq = 0, x ∈ (A ∪B)c, q(∂A) = 0, q(∂B) = 1

is the committor function.
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Example 23 Let dXt = −V ′(x)dt +
√

2β−1dw, X0 = x, i.e., a particle
moving according to the overdamped Langevin dynamics in the potential
force field V (x). In the 1D case, the committor equation can be solved
exactly. We have:

−V ′(x)q′(x) + β−1q′′(x) = 0, a ≤ x ≤ b, q(a) = 0, q(b) = 1.

Multiply this equation by βe−βV (x). Then its left-hand side becomes a
complete differential: (

e−βV (x)q′(x)
)′

= 0.

Integrating this equation and taking the boundary conditions into account
we get

q(x) =

∫ x
a e

βV (y)dy∫ b
a e

βV (y)dy
.

12.6. The generator of a Markov process. In Section 12.3, we fixed a function f and
we considered the expectation of f at time t as a function of the initial point x and time t:

u(x, t) := E[f(Xt) | X0 = x].

Now we fix the time t and consider the same expectation as a map applied to the set
of continuous and bounded functions f(x), x ∈ Rd. Therefore, we define the family of
operators indexed by t:

(Ptf)(x) := E[f(Xt) | X0 = x] =

∫
Rd
f(y)p(y, t | x, 0)dy.

We will call the operator Pt the transfer operator. It is analogous to the stochastic matrix
P in the discrete-time Markov chains.

The operator Pt possesses the semigroup properties:

P0 = I, Pt+s = Pt ◦ Ps for all t, s ≥ 0.

Indeed,

(P0f)(x) := E[f(X0) | X0 = x] = f(x),

Hence P0 is the identity. Recall the Chapman-Kolmogorov equation (Eq. (46)) expressing the Markov property. Using it,
we write:

(Pt+sf)(x) =

∫
Rd
f(y)p(y, t+ s | x, 0)dy =

∫
Rd
f(y)dy

∫
Rd
p(y, t+ s | z, t)p(z, t | x, 0)dz

=

∫
Rd
dzp(z, t | x, 0)

∫
Rd
p(y, t+ s | z, t)f(y)dy = (PtPsf)(x).

Due to this, the operator Pt is often referred to as the Markov semigroup.

Now consider the limit as t ↓ 0:

(73) (Lf)(x) := lim
t→0+

(Ptf)(x)− f(x)

t
.

Assume that this limit exists. This limit is called the infinitesimal generator of the transfer
operator Pt or the generator of the Markov process Xt.
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Recall that (Ptf)(x) = u(x, t). Eq. (73) implies that

∂u

∂t
= lim

s→0

Pt+sf − Ptf
s

= LPtf = Lu, u(x, 0) = f(x).

This is the Backward Kolmogorov equation that we have obtained in Section 12.3. Match-
ing it with Eq. (71) we see that the operator L must be given by Eq. (64).

12.7. The adjoint semigroup and the forward Kolmogorov equation. In Section
12.6 we considered the expected value of f(Xt) conditioned on X0 = x. Now we assume
that X0 does not start at x with probability 1 but the starting point is distributed according
to a pdf µ0(x). Then the expected value of f(Xt) is

E[f(Xt)] =

∫
Rd
Ptf(x)µ0(x)dx.

Writing Ptf explicitly and switching the order of integration we obtain

E[f(Xt)] =

∫
Rd
Ptf(x)µ0(x)dx =

∫
Rd
µ0(x)dx

∫
Rd
dyf(y)p(y, t | x, 0)

=

∫
Rd
dyf(y)

∫
Rd
µ0(x)p(y, t | x, 0)dx

=:

∫
Rd
dyf(y)P ∗t µ0.(74)

In the original order of integration, we froze the pdf µ0(x) while evolved f(Xt) in time.
After switching the order of integration, we froze f and evolved the pdf µ in time. Finally,
we have defined the evolution operator for the pdf:

(75) µt(x) := (P ∗t µ0)(x) :=

∫
Rd
µ0(x)p(y, t | x, 0)dx.

The operator P ∗t is adjoint to the transfer operator Pt. Indeed, consider the inner product

(f, g) :=

∫
Rd
f(x)g(x)dx.

Then Eq. (74) shows that

E[f(Xt)] = (Ptf, µ0) = (f, P ∗t µ0).

The infinitesimal generator for the adjoint semigroup P ∗t is defined by

(76) (L∗µ0)(x) := lim
t→0

(P ∗t µ0)(x)− µ0(x)

t
.

It is easy to check that L and L∗ are adjoint, i.e., for all admissible f and g,

(77) (Lf, g) = (f, L∗g).

Eqs. (75) and (76) show that the time evolution of the probability density function is
given by

(78)
∂µ(x, t)

∂t
= L∗µ(x, t), µ(x, 0) = µ0(x).
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Eq. (78) is called the forward Kolmogorov equation or the Fokker-Planck equation.
Eq. (64) allows us to find the adjoint generator L∗ explicitly. Consider the process

governed by the SDE

dXt = b(Xt)dt+ σ(Xt)dw, X(0) = x, t ≥ 0, x ∈ Rd.

For it, the generator is the differential operator given by

L = b(x) · ∇+
1

2
Σ(x) : ∇∇.

To find the adjoint generator L∗, we consider the identity Eq. (77):

(Lf, g) =

∫
Rd

(b · ∇f +
1

2
Σ : ∇∇f)gdx

=

∫
Rd
f

(
−∇ · (gb) +

1

2
∇∇ : (Σg)

)
dx = (f, L∗g).

Here we have integrated by parts the first term once and the second term twice. Hence,

(79) L∗g = −∇ · (gb) +
1

2
∇∇ : (Σg)

Example 24 We will elaborate the procedure of obtaining L∗ in 2D. The
extension to higher dimensions in straightforward. Consider a 2D stochastic
process of the form

dXt = b1(Xt, Yt)dt+ σ11(Xt, Yt)dw1 + σ12(Xt, Yt)dw2

dYt = b2(Xt, Yt)dt+ σ21(Xt, Yt)dw1 + σ22(Xt, Yt)dw2

In the vector notations it looks as

d

(
Xt

Yt

)
=

(
b1
b2

)
dt+

(
σ11 σ12

σ21 σ22

)(
dw1

dw2

)
.

The matrix Σ = σσ> is

Σ ≡
(

Σ11 Σ12

Σ12 Σ22

)
≡
(

σ2
11 + σ2

12 σ11σ21 + σ12σ22

σ11σ21 + σ12σ22 σ2
21 + σ2

22

)
.

The generator L applied to a function f is:

Lf = b1∂xf + b2∂yf +
1

2
[Σ11∂xxf + 2Σ12∂xyf + Σ22∂yyf ] .

The adjoint generator L∗ is found from the identity (Lf, g) = (f, L∗g):

(Lf, g) =

∫
R2

[
gb1∂xf + gb2∂yf +

1

2
g [Σ11∂xxf + 2Σ12∂xyf + Σ22∂yyf ]

]
dxdy

=

∫
R2

f

[
−∂x(b1g)− ∂y(b2g) +

1

2
[∂xx(Σ11g) + 2∂xy(Σ12g) + ∂yy(Σ22g)]

]
dxdy

= (f, L∗g).
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Hence

L∗g = −∂x(b1g)− ∂y(b2g) +
1

2
[∂xx(Σ11g) + 2∂xy(Σ12g) + ∂yy(Σ22g)] .

12.8. The invariant pdf. Recall irreducible continuous-time Markov chains. The invari-
ant measure is the solution of πL = 0 or, equivalently, L>π> = 0. π and π>are row and
column vectors respectively. If the invariant measure is normalizable, we normalize it so
that

∑
i πi = 1 and call it the invariant distribution. For irreducible Markov chains with

a finite number of states, any probability distribution converges over time to the unique
invariant distribution π, i.e., for any initial distribution p0, the solution of

dp

dt
= pL, p(0) = p0

converges to π. Such Markov chains are called ergodic. The Markov Chain Monte Carlo
methods employ this property. Also recall that irreducibility of a continuous-time Markov
chain with a finite number of states implies that the eigenvalue 0 of L has multiplicity one.

Suppose that the equation L∗f = 0 for a Markov process Xt has a unique positive solu-
tion µ up to a multiplicative constant, and this solution is normalizable so that

∫
µ(x)dx =

1, then µ is the unique invariant pdf. In this case, for any initial pdf µ0, the pdf µt
converges to µ as t→∞:

lim
t→∞

P ∗t µ0 = µ.

Such Markov processes are also called ergodic.
The unique invariant pdf µ(x) satisfies the stationary forward Kolmogorov equation

(stationary Fokker-Planck equation):

(80) L∗µ = 0,

∫
Rd
µ(x)dx = 1.

Exercise (1) Show that the generator of the 1D Ornstein-Uhlenbeck process (60) is
given by

L = −γx d
dx

+D
d2

dx2
.

(2) Integrating by parts, derive the expression for the adjoint generator

L∗g =
d

dx
(γxg) +D

d2g

dx2
.

(3) Solve the equation

L∗µ = 0,

∫ ∞
−∞

µdx = 1

and find that the invariant pdf for the 1D Ornstein-Uhlenbeck process is

(81) µ(x) =

√
γ

2πD
e−

γx2

2D .
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13. The Langevin Dynamics

13.1. The full Langevin dynamics. The Langevin equation models the dynamics of
heavy particles in the potential force field pushed around by light particles:

dq =
p

m
dt

dp = (−∇V (q)− γp)dt+
√

2γmβ−1dw,(82)

where (q, p) ∈ R2d are the positions and momenta of the heavy particles, γ is the friction
coefficient, m is the mass of the heavy particles, and −∇V (q) is the potential force acting
on the heavy particles. Eq. (82) can be written in the form (57) by introducing

Xt =

[
q
p

]
, b(Xt) =

[
p/m

−∇V (q)− γp

]
, σ =

√
2γmβ−1

[
0 0
0 I

]
,

where I is the d× d identity matrix.

Exercise (1) Show that the infinitesimal generator for Eq. (82) is given by

L =
p

m
· ∇q −∇qV · ∇p + γ

(
−p∇p +mβ−1∆p

)
.

(2) Derive the expression for the adjoint generator

L∗g = − p

m
· ∇qg +∇qV · ∇pg + γ

(
∇p · (pg) +mβ−1∆pg

)
.

(3) Solve the stationary Fokker-Planck equation and show that the invariant pdf is
given by

µ(q, p) =
1

Z
e−βH(q,p), where H(q, p) =

|p|2

2m
+ V (q).

13.2. The overdamped Langevin dynamics. Suppose the friction coefficient γ in Eq.
(82) is large and/or the mass m is small, i.e., mγ−1 is small. We divide the equation for p
by γ:

γ−1dp = γ−1mdv = (−γ−1∇V (q)− p)dt+ γ−1
√

2mγβ−1dw.

We use that assumption that mγ−1 is small and set the left-hand side of the SDE above
to 0. Then we replace p with mdq

dt in the right-hand side and multiply both sides by γ:

mγ
dq

dt
= −∇V (q) +

√
2mγβ−1

dw

dt
or

mγdq = −∇V (q)dt+mγ

√
2β−1

mγ
dw(t)

Now we want to cancel out mγ. To do so, we rescale the time by introducing τ = (mγ)−1t.

Then dt = mγdτ . Recall that if w(t) is a Brownian motion, then for any c > 0, c−1/2w(ct)

is also a brownian motion, i.e., c1/2w(t) = w(ct). Hence

dw(t) = dw(mγτ) = (mγ)1/2dw(τ).
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Therefore, choosing the new time τ and canceling mγ we get

dq = −∇V (q)dτ +
√

2β−1dw(τ).

For the overdamped Langevin dynamics, the generator L is given by

L = −∇V · ∇+ β−1∆.

The adjoint generator L∗ is

L∗g = −∇ · (g∇V ) + β−1∆g.

The invariant pdf is

µ =
1

Z
e−βV (x).

14. Numerical integration of SDEs

Analytical solutions to SDEs can be obtained only in special cases. Therefore, it is
important to develop methods for numerical integration of SDEs. Here we will present
the Euler-Maruyama method (1955), a higher order Milstein’s method (1974), and MALA
(1996) (Metropolis Adjusted Langevin Method), and discuss some basic concepts of nu-
merical analysis of SDE solvers. An introductory text on numerical integrators for SDEs
that includes Matlab codes is the paper by D. Higham [8].

14.1. The Euler-Maruyama and Milstein’s methods. Consider the initial-value prob-
lem

(83) dXt = b(Xt)dt+ σ(Xt)dw, 0 ≤ t ≤ T, X0 = x.

We discretize the time interval [0, T ] into n equal subintervals of length h = T
n and generate

a vector w = [w1, . . . , wn] of n independent Gaussian random variables with mean 0 and
variance h to simulate the Brownian motion. In Matlab, it is convenient to do it using
the command randn. In C, I use the Box-Muller algorithm. We will denote the exact
and numerical solutions to Eq. (83) at the mesh points by Xj and Yj respectively, j =
0, 1, . . . , n. Then one can compute the numerical solution using the recurrence:

(84) Yj+1 = Yj + b(Yj)h+ σ(Yj)wj+1, Y0 = x.

This method is called the Euler-Maruyama method. It was proposed by G. Maruyama in
1955 [?].

A more accurate is Milstein’s method (1974) [?]:

(85) Yj+1 = Yj + b(Yj)h+ σ(Yj)wj+1 +
1

2
σ(Yj)σ

′(Yj)
[
w2
j+1 − h

]
, Y0 = x.

As one can see, Milstein’s method coincides with the Euler-Maruyama if σ is constant.
Milstein’s method is derived using the Ito formula [?]. The exact expression for Xj+1 is

(86) Xj+1 = Xj +

∫ tj+1

tj

b(Xs)ds+

∫ tj+1

tj

σ(Xs)dws.
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By the Ito formula (62) we have the following expressions for b(Xs) and σ(Xs) for s ∈
[tj , tj+1]:

b(Xs) = b(Xj) +

∫ s

tj

[
b(Xu)

db(Xu)

dX
+

1

2
σ2(Xu)

db2(Xu)

dX2

]
du+

∫ s

tj

σ(Xu)
db(Xu)

dX
dwu

= b(Xj) +

∫ s

tj

Lb(Xu)du+

∫ s

tj

L1b(Xu)dwu,

σ(Xs) = σ(Xj) +

∫ s

tj

Lσ(Xu)du+

∫ s

tj

L1σ(Xu)dwu,

where L1 := σ(Xu)
d

dX
.

We plug these expressions into Eq. (86) and get:

Xj+1 = Xj +

∫ tj+1

tj

[
b(Xj) +

∫ s

tj

Lb(Xu)du+

∫ s

tj

L1b(Xu)dwu

]
ds

+

∫ tj+1

tj

[
σ(Xj) +

∫ s

tj

Lσ(Xu)du+

∫ s

tj

L1σ(Xu)dwu

]
dws

= Xj + b(Xj)h+ σ(Xj)(wj+1 − wj) + L1σ(Xj)

∫ tj+1

tj

wsdws +O(h3/2)

Recall that ∫ b

a
wdw =

1

2

(
(wb − wa)2 − (b− a)

)
.

Using the fact that

L1σ(X) = σ(X)σ′(X),

and neglecting terms of order h3/2 or smaller we obtain Milstein’s method.

14.2. Strong and weak orders of convergence.

Definition 10. We say that a method for solving the initial value problem for SDEs on
the time interval [0, T ] has a strong order of convergence γ if there is a constant C such
that

(87) E

[
sup

0≤tj≤T
|Xj − Yj |

]
≤ Chγ

if h = T/n is sufficiently small.

In other words, a method has a strong order of convergence γ, it the mean of errors over
realizations of Brownian motions decays as O(hγ).
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Definition 11. We say that a method for solving the initial value problem for SDEs on
the time interval [0, T ] has a weak order of convergence γ if there is a constant C such that

(88) sup
0≤tj≤T

|E[Xj ]− E[Yj ]| ≤ Chγ

if h = T/n is sufficiently small.

In other words, a method has a week order of convergence γ, if the error of the mean
over realizations of Brownian motions decays as O(hγ).

One can show that if the functions b and σ in SDE (83) are nice enough (in particular,
globally Lipschitz) then the Euler-Maruyama method has a strong order 1/2 and a weak
order 1, while Milstein’s method has both weak and strong orders 1. One can check these
orders by applying the given method to an SDE with an analytical solution, e.g., the
geometric Brownian motion, plotting weak and strong errors versus h in the log-log scale,
and estimating the slopes of the lines (see Fig. 4 in [8]) using least squares fits.

The proof of the strong orders of convergence of the Euler-Maruyama and Milstein’s
methods is not short and simple unlike basic methods for ODEs. Exact formulations and
exact proofs of the strong convergence results for Euler-Maruyama and Milstein’s methods
can be found e.g. in [?].
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