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1. Settings

We consider a system evolving according to the overdamped Langevin dynamics

(1) dx = −∇V (x)dx+
√

2β−1dw, x ∈ Rd,

where V (x) is a smooth function, β−1 is the temperature times Boltzmann’s constant, and
w is the standard d-dimensional Brownian motion.

We assume that V (x) is such that the invariant probability density exists and is given
by the Gibbs density

(2) µ(x) =
1

Z
e−βV (x), where Z =

∫
Rd

e−βV (x)dx.

Suppose the invariant density is mostly split between two distinct regions that we denote
by A and B. We are interested in studying the transitions of the system evolving according
to SDE (1) from A to B. Therefore, we are interested in the so-called reactive trajectories,
i.e., the trajectories starting at the boundary of A, ∂A, and going next to the boundary of
B, ∂B, without returning to A in-between. If we consider a very long trajectory of (1), we
can cut out reactive trajectories out of it. A few samples of reactive trajectories for SDE
(1) with V being Mueller’s potential are shown in Fig. 1.
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Figure 1. A few samples of reactive trajectories of a system evolving ac-
cording to SDE (1) with V being Mueller’s potential.

2. The committor

The transition path theory (TPT) [1, 2] offers a mathematical framework for describing
the statistical properties of reactive trajectories and allows us to identify reactive channels
and compute the transition rate from A to B. The most important function of TPT is the
committor function q(x) which is the probability that a process starting at x and evolving
according to SDE (1) will hit first B rather than A. The committor function satisfies the
following boundary-value problem (BVP):

(3)


−∇V · ∇q + β−1∆q = 0, x ∈ ΩAB := (A ∪B)c,

q = 0, x ∈ ∂A,
q = 1, x ∈ ∂B,

The notation ΩAB is the space Rd (or the manifold) where the system is living with removed
sets A and B. The left-hand side of the PDE in (3) is the backward Kolmogorov operator,
or the generator of SDE (1). Note that it can be rewritten in a self-adjoint form which will
be helpful for us further:

(4) Lq := −∇V · ∇q + β−1∆q = β−1eβV∇ ·
(
e−βV∇q

)
.

3. Time-reversibility

It is important to note that the overdamped Langevin dynamics (1) are time-reversible.
Let us check it.
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For a general SDE of the form

(5) dx = b(x)dt+ σ(x)dw,

the generator for the forward process is given by

(6) Lf = b · ∇+
1

2
tr
(

Σ>∇∇f
)
, where Σ = σσ>.

Let µ(x) be the invariant probability density. Then the generator for the time-reversed
process is given by

(7) L̂f = −b · ∇f +
1

µ
div (Σµ) · ∇f +

1

2
tr
(

Σ>∇∇f
)
.

The term div (Σµ) in the coordinate form is:

(8) [div (Σµ)]i =

d∑
j=1

∂

∂xj
(Σijµ) = µ

d∑
j=1

∂Σij

∂xj
+

d∑
j=1

Σij
∂µ

∂xj
.

In the case of SDE (1), b = −∇V , µ = Z−1e−βV , and Σ = 2β−1I. Hence, the generator
for the time-reversed process is

L̂f = ∇V · ∇f − ZeβV 2β−1Z−1β∇V e−βV + β−1∆f

= −∇V · ∇f + β−1∆f = Lf.

We see that L̂ = L, i.e., the overdamped Langevin dynamics are time-reversible. In
particular, this means that the backward committor is 1− q(x) where q(x) is the forward
committor, i.e., the solution to BVP (3).

4. The committor BVP and a minimization problem

Let us show that the committor, i.e., the solution to the BVP (3) is also the solution to
the following minimization problem:

(9) q(x) = arg min

{∫
ΩAB

‖∇f‖2e−βV dx f ∈ C1(ΩAB), f(∂A) = 0, f(∂B) = 1

}
.

In word, we need to find a continuously differentiable function f(x), x ∈ ΩAB, that mini-
mizes the integral in (9) and satisfies the boundary conditions f(∂A) = 0 and f(∂B) = 1.
The integral in (9) is called a Dirichlet form.

Let f∗ be a minimizer of

D(f) :=

∫
ΩAB

‖∇f‖2e−βV dx

among all twice continuously differentiable functions f satisfying f(∂A) = 0 and f(∂B) =
1. Hence, if we add a small perturbation δf(x) ∈ C1(ΩAB) to f(x) such that δf(∂A) = 0
and δf(∂B) = 0, the perturbed function f∗ + ∆f will satisfy the boundary conditions in
(9), and the value of the integral should increase:

(10) D(f∗ + ∆f) ≥ D(f∗).
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Let us play with D(f∗ + δf):

D(f∗ + δf) =

∫
ΩAB

‖∇f∗ + δf‖2e−βV dx

=

∫
ΩAB

e−βV ‖∇f∗‖2 + 2e−βV∇f∗ · ∇δf + e−βV ‖δf‖2dx

= D(f∗) + 2

∫
ΩAB

e−βV∇f∗ · ∇δfdx+

∫
ΩAB

e−βV ‖δf‖2dx

=: D(f∗) + 2I2 + I3.

Integral I3 in the last expression is nonnegative as it has a nonnegative integrand. Integral
I2 can be of either sign, in principle. Our goal is to prove that, if f∗ is a minimizer of D(f)
satisfying

(11) f ∈ C2(ΩAB), f(∂A) = 0, f(∂B) = 1,

then I2 = 0 for any feasible δf , i.e. satisfying δf(x) ∈ C1(ΩAB), δf(∂A) = 0, and
δf(∂B) = 0. Indeed, if I2 6= 0 for some feasible δf , we can multiply δf by an arbitrary
positive real number α. Then I3 will be proportional to α2 while I2 will be proportional to
α. Therefore, if I2 6= 0, picking α small enough we will be always able to make 2|αI2| > I3.
Furthermore, if I2 > 0, we replace δf with −δf and hence make I2 negative. Thus, unless
I2 is zero for all feasible δf , we always take δf for which I2 is nonzero and pick a real
number α such that D(f∗+αδf) will be less than D(f∗) which contradicts to the fact that
f∗ is the minimizer.

Let us show that I2 = 0. We would like to switch the gradient operator from δf to
e−βV∇f∗. This can be accomplished using the divergence theorem:

(12)

∫
U

(ψ∇ · Γ +∇ψ · Γ) dx =

∮
∂U
ψ (Γ · n̂) dS,

where Γ ∈ C1(U), ψ ∈ C1(U), n̂ is the unit outward normal vector for the surface ∂U , and
dS is the surface element. We set Γ := e−βV∇f , ψ := δf , U := ΩAB, and apply (12):

I2 =

∫
ΩAB

∇δf · e−βV∇f∗dx

= −
∫

ΩAB

δf∇ ·
(
e−βV∇f∗

)
dx+

∫
∂A∪∂B

δf
(
e−βV∇f∗ · n̂

)
dS.(13)

The integral over ∂A ∪ ∂B is equal to zero because δf is zero on ∂A and ∂B. Therefore,
in order to make I2 be equal to zero for any δf , we must have Now, let us scrutinize the
integrand of the remaining integral:

∇ ·
(
e−βV∇f∗

)
= βe−βV Lf∗ ≡ 0.

Since βe−βV is never zero, we must have Lf∗ ≡ 0. Since f∗ satisfies the boundary conditions
(11) we conclude that f∗ is a solution to the BVP (3).

https://en.wikipedia.org/wiki/Green%27s_identities
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5. The probability density of reactive trajectories

The probability density of reactive trajectories is given by

(14) mR(x) := µ(q)q−(x)q+(x)

The integral of mR over any region gives the probability to find a reactive trajectory in this
region at an arbitrary moment of time. Since q− = 0 in B and q+ = 0 in A, the integral
of mR over the whole space

(15)

∫
Rd

mR(x)dx =

∫
ΩAB

mR(x)dx = P(t ∈ TR),

is equal to the probability that a trajectory is reactive at an arbitrary time t, i.e., is on its
way from A to B.

In the case of the overdamped Langevin dynamics (1), the probability density of reactive
trajectories becomes:

(16) mR(x) := Z−1e−βV q(x)(1− q(x)).

6. The probability current

In general, the probability current is such a vector field J that its flux through any small
surface segment dS with a unit outer normal n̂ is the difference of the probability to cross
dS from inside to outside per unit time and the probability to cross dS from outside to
inside per unit time.

The probability current can be found from the forward Kolmogorov equation which
governs the time evolution of the probability density. Recall that the forward Kolmogorov
operator is the adjoint generator that can be found by considering the inner product

(17) (Lf, g) = (f,L∗g) , where (f, g) =

∫
Rd

f(x)g(x)dx.

Let us find the adjoint generator for SDE (1):

(Lf, g) =

∫
Rd

[
−∇V · ∇f + β−1∆f

]
gdx

=

∫
Rd

[
f∇ · [g∇V ]− β−1∇g · ∇f

]
dx

=

∫
Rd

[
∇ · [g∇V ] + β−1∆g

]
fdx = (f,L∗g) .

Therefore, the adjoint generator for the overdamped Langevin dynamics is given by

(18) L∗g = ∇ · [g∇V ] + β−1∆g.

The time evolution of a pdf ρ(x) for SDE (1) is governed by

∂ρ

∂t
= L∗g = ∇ · [ρ∇V ] + β−1∆ρ

≡ −∇ ·
[
−ρ∇V − β−1∇ρ

]
=: −∇ · J.(19)
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The vector field J defined in (19) is the probability current. Indeed, according to the
divergence theorem, the integral over a region U of divergence of a vector field Γ is equal
to the flux of that vector field through the boundary of that region:

(20)

∫
U
∇ · Γdx =

∮
∂U

(Γ · n̂) dS,

where n̂ is the outer unit normal to ∂U . Returning to (19), we observe that the time
derivative of the probability to find a system in a region U is negative of the total outflux
of the probability current from U which matches its physical sense declared at the beginning
of this subsection:

(21)
∂

∂t

∫
U
ρ(x)dx = −

∫
U
∇ · Jdx = −

∮
∂U

(J · n̂) dS.

It is easy to check that the Gibbs density µ(x) = Z−1e−βV is the invariant pdf for (1).
Indeed,

L∗µ = ∇ ·
[
Z−1e−βV∇V + β−1∇Z−1∇e−βV

]
= Z−1∇ ·

[
e−βV∇V − e−βV∇V

]
= ∇ · 0 = 0.

This calculation shows that not only the divergence of the probability current associated
with the Gibbs density is zero, but also the stationary probability current is zero. The last
fact is a manifestation of time-reversibility.

7. The reactive current

The reactive current is the probability current in which only the crossings of a surface
segment dS by those trajectories that last visited A rather than B are counted. We do
not need to demand that these trajectories go to B next because if they return to A, they
will cross any dividing surface separating A and B in both directions an equal number of
times and hence will not contribute to the transition rate from A to B.

Let us consider the following process. The system evolves according to SDE (1) in
ΩAB. As soon as its trajectory hits ∂B, it disappears and reappears at the boundary
of ∂A according to the invariant pdf Z−1e−βV restricted to ∂A. The dynamics of these
trajectories are still governed by the original SDE (1). Therefore, the time evolution of the
pdf for this process satisfies the following PDE with boundary conditions:

(22)


∂µ̂
∂t = ∇ ·

[
µ̂∇V + β−1∇µ̂

]
, x ∈ ΩAB

µ̂ = µ, x ∈ ∂A,
µ̂ = 0, x ∈ ∂B.

Let us show that µ̂ := µ(x)q−(x) ≡ Z−1e−βV (1 − q), where (1 − q) is the backward
committor, is the invariant pdf for this process. Indeed, µ̂ satisfies the boundary conditions

https://en.wikipedia.org/wiki/Divergence_theorem
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in (22). Plugging it into the right-hand side of the PDE in (22) we get:

L∗µ̂ =∇ ·
[
µ̂∇V + β−1∇µ̂

]
=∇ ·

[
q−µ∇V + β−1µ∇q− − q−µ∇V

]
= −∇ ·

[
−β−1µ∇q−

]
(23)

The last expression gives us the probability current associated with the transition path
process:

(24) JAB := −β−1µ∇q−

Let us show that its divergence is indeed zero:

L∗µ̂ = −∇ ·
[
−β−1µ∇q−

]
= µ∇V · ∇q− + β−1µ∆q−(25)

= µ
[
−∇V · ∇q + β−1∆q

]
= µLq = 0.(26)

Here we have used the facts that q− = 1− q and Lq = 0 in ΩAB.
Therefore, the reactive current for SDE (1) is given by

(27) JAB := β−1Z−1e−βV∇q.

8. The transition rate

The transition rate νAB from A to B is the average number of transitions from A to B
per unit time:

(28) νAB = lim
t→∞

1

t
NAB(t),

where NAB is the number of transitions from A to B accomplished within the time interval
[0, t]. It follows from the definition of the reactive current that the transition rate νAB is
the total flux of the probability current through any surface S that separates the sets A
and B:

(29) νAB =

∫
S
JAB · n̂dS,

where n̂ is the unit normal to the surface S pointing to the side that contains set B. The
surface S can be arbitrary as the divergence of the reactive current is zero. Indeed, let us
consider a union of two different dividing surfaces S1 and S2. Assume S1 ∩ S2 = ∅. We
pick the unit normals n̂1 and n̂2 for S1 and S2 respectively so that n̂1 points to the side
containing A while n̂2 points to the side containing B. Then we consider the integral of
∇ · JAB over the region D(S1, S2) bounded by these surfaces. Clearly, this integral is zero
because ∇ · JAB ≡ 0. On the other hand, by the divergence theorem,

0 =

∫
D(S1,S2)

∇ · JABdx =

∮
S1∪S2

JAB · n̂dS =

∫
S1

JAB · n̂1dS +

∫
S2

JAB · n̂2dS.

Hence the last two integrals are equal in their absolute values. Flipping n̂2 to point to the
side containing B we find that these two integrals are equal and conclude that the flux of
the reactive current is the same for any dividing surface.



Summer 2022 REU tutorials

Since the flux of the reactive current is the same through any dividing surface, we can
pick an isocommittor surface as a dividing surface, i.e.

(30) Sq∗ =
{
x ∈ Rd | q(x) = q∗

}
, where 0 < q∗ < 1.

The isocommittor surfaces foliate the domain ΩAB. Noting the trivial fact that∫ 1

0
dq∗ = 1,

and that the unit normal to an isocommittor surface is given by

n̂(Sq∗) =
∇q
‖∇q‖

,

we can express the transition rate as the integral over the whole region ΩAB:

νAB =

∫ 1

0
dq∗

∫
Sq∗

JAB · n̂dS

= β−1Z−1

∫ 1

0
dq∗

∫
Sq∗

e−βV∇q · ∇q
‖∇q‖

dS

= β−1Z−1

∫ 1

0
dq∗

∫
Sq∗

e−βV ‖∇q‖dS(31)

Next, we observe that the volume element

(32) dq∗dS = ‖∇q‖dx.
Indeed, let z be a coordinate normal to the isocommittor surface with a positive direction
along the gradient of the committor. Then dq = ‖∇q‖dz which implies (32). Using (32),
we obtain the following expession for the transition rate:

(33) νAB = Z−1β−1

∫
ΩAB

e−βV ‖∇q‖2dx.
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