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Two possible projects with 
autoencoders

Introduction 
The discovery of collective variables of stochastic systems is a 
problem of great interest in a variety of contexts, including 
those of our REU. Specifically, we often choose to model such 
systems either with full Langevin dynamics 

or the overdamped simplification: 

In many contexts, there is actually a map , i.e the 
collective variable that coarse grains these systems in the low 
dimensional space  such that the original dynamics in  can be 
described/understood/modeled in terms of the dynamics in . 
Our goal is to find 

Autoencoders 

An autoencoder is a neural network  that approximates 
the identity function. However, the most important components of 
 are the encoder   which takes the input to a low-dimensional 

latent space (  and the decoder  which takes the latent 
representation back into ambient space (  In our case, we 
will think of  as the collective variable, and our goal will be 
to design this using two approaches taking inspiration from 
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Diffusion Nets by Mishne, Shaham, Cloninger, Cohen (2016) and 
from the PE for ED paper by Lelievre and Zhang. 

Project 1: Target measure diffusion 
Nets
In diffusion nets, the training set is  with diffusion map . 
The encoder is trained to approximate the diffusion map: 

The decoder is trained to reconstruct the inputs from the outputs 
of this decoder. In this project, instead of the diffusion map, 
we will use the Target Measure Diffusion map (TMD map) . 
The benefits of TMD map are numerous, one of which is that it can 
approximate the generator of the overdamped Langevin dynamics 
through arbitrarily sampled data. Surprisingly this has not been 
done before for collective variable discovery!

Important papers: 
1. Diffusion Nets by Mishne, Shaham, Cloninger, Cohen (2016)

2. Target Measure Diffusion maps by Banisch, Trstanova, Klus, 
Koltai, Bittracher (2018) 

Project 2: CV through CE 
autoencoder
In the PE for ED paper by Lelievre and Zhang (2018), the authors 
suggest an interesting criterion for assessing the quality of a 
vector-valued collective variable . In particular, with  as the 
diffusion tensor in the SDE (for O.L.D it could just be the 
identity matrix, for instance) if we define 
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Then set 

And finally define: 

Then the generator of OLD can be written as 

Lelievre and Zhang posit that a good choice of  corresponds to 
the case where 

Let us call this criterion (*). In effect,  is a good collective 
variable if (*) is met. In fact, for systems of the form 

ξ
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This condition is exactly true. This suggests an interesting loss 
function for an encoder. Essentially, let the encoder be  and 
plugging this into the above construction, let  be the 
respective operators. Criterion (*) suggests minimizing a loss of 
the form 

Minimizing this loss would potentially shrink the coefficients of 
L_1 w.r.t L_0, thus meeting criterion (*). We can also come up 
with different loss functions whose extrema meet criterion (*). 
So we should explore designing such an encoder! Or at least tell 
me why it definitely wouldn’t work.

Important papers: 
1. Pathwise estimates (PE) for effective dynamics (ED): the case 

of nonlinear vectorial reaction coordinates
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