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Long-time behavior of systems governed by
stochastic differential equations

Deterministic Stochastic
forcing forcing

SDE:  dX; =[b(X,)dt - Veo(X,)dWy, X, € M C R?

A smooth A small The standard
vector field parameter Brownian motion
A smooth matrix
function

The stochastic term enables
transitions between attractors!

Attractors Chaotic
attractor
We want to find: '
- Maximum likelihood transition paths ®
« Transition rates
Equilibrium

point
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Example 1: population dynamics

Consumer-resource model of plankton x and their consumers y
(Collie and Spencer, 1994; Steele and Henderson, 1981)

dz — (aa;u — 1] — 22 ) dt + odw,

dy = (254 — py?) dt + odw,

Source: https://journal.r-project.orag/archive/
2016/RJ-2016-031/RJ-2016-031.pdf

a =154, §=10.14, ° T
5 —

/y — 0476, 5 — ]_, 4 Elen

k=1, u=0.112509 . 3 2

€53
2 —
Two saddles and 1
two equilibrium point attractors

0 -6 ul



https://journal.r-project.org/archive/2016/RJ-2016-031/RJ-2016-031.pdf
https://journal.r-project.org/archive/2016/RJ-2016-031/RJ-2016-031.pdf
https://journal.r-project.org/archive/2016/RJ-2016-031/RJ-2016-031.pdf

Example 2: nonlinear oscillator

A noise-driven transition from the high- to the low-amplitude attractor

'

Y
System model: X"+ ax’ + cix + c3x3 = Fcos(wt) + ont

v
—av — c1x — c3x” + F cos(wh) + on(t)
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Lautaro Cilenti,
Ph.D. Mech. Eng. UMD, 2022



Example 2: nonlinear oscillator

System model: X"+ ax’ + cix + c3x3 = Fcos(wt) + ot
T =, r € R
U= —av — c1x — c3x° + Fcos(wh) +on(t), veR
0 =1, 0 € Sar/u
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Phase space: ]RQ X Sgw/w
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Example 3: molecular dynamics

Alanine dipeptide: 22 atoms
Phase space: R132
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An easy case:
the overdamped Langevin dynamics in 2D

dX; = —VV(X,)dt + /28~ 1dW,

Invariant pdf is

6
the Gibbs density:
4
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Transition path theory

(A mathematical framework for quantifying transition processes)
W. E and E. Vanden-Eijnden, 2006

The committor is the probability that the process starting at x will
reach region B prior to reaching region A

q(x) := Prob,(t < 74)

The potential function The committor The reactive current
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Solving the committor problem
Lqg=p"1ePVV . (e‘ﬁVVq) =0
q(0A) =0, ¢(0B) =1

Approach 1:
finite element

method
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Solving the committor problem

Lqg=p"1ePVV . (e‘ﬁVVq) =0
q(0A) =0, ¢q(0B) =1

Approach 1: Approach 2:
finite element Target-measure
method

diffusion map

Good for low intrinsic dimension
The ambient space can be high-dimensional
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Solving the committor problem
Lqg=p"1ePVV . (e‘ﬁVVq) =0

q(0A) =0,

Approach 1:

finite element
method

Good fordim=2or 3

q(0B) =1
Approach 2: Approach 3:
Target-measure Neural network-
based solvers

diffusion map

Good for low intrinsic dimension
The ambient space can be high-dimensional
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Model reduction via
physically motivated collective variables

dX; = [-M(X;)VF(Xy) + 871V - M(Xy)]dt
+ /281 M (X)) 2 dw,

tm-mmap reactive current

Phase space: T4 tmmmap + deltanet :
2.0-107° ps~1

long trajectory :

(Vani, Weare, Dinner, 2022)
1.4-107% ps~1

Method: target-measure
Mahalanobis diffusion map
(Evans, MC, Tiwary, 2022)
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Model reduction via
machine-learned collective variables

Linear discriminant analysis (LDA)

“ 900

Co “
ass

C2 “‘ Cs . ‘ ‘ .
< (L

Physicall tivated collecti iabl X :
ysically motivated collective variables The collective variable learned by the LDA
and labeled data

1.0

0.8

Free Energy (a™1)

17



—_
Model reduction via ° §’ |
diffusion maps 7

Coifman and Lafon, 2006 \\//
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Model reduction
via
machine-learned
collective variables

Autoencoders

Tutorial:
https://deeptime-ml.qgithub.io/latest/notebooks/tae.html

implementation by L. Evans)
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Lemon Slice Potential
https://www.mdpi.com/1099-4300/23/2/134
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Training Data with Autoencoder reconstruction, AE
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Model reduction via Markov chain

Noisy nonlinear oscillator with periodic forcing

X"+ ax’ + cix + c3x3 = Fcos(wt) + ont
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Polymer network fracture
and random graphs

Manyuan Tao, work in preparation
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Goal: develop a random graph model
describing the evolution of holes

Vertices = the network cells. Initially, there are no holes, hence no edges



Goal: develop a random graph model
describing the evolution of holes

Time =1: add one edge at random



Goal: develop a random graph model
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Time = 2: add one edge at random



Goal: develop a random graph model
describing the evolution of holes

Time =j: j edges
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Goal: develop a random graph model
describing the evolution of holes

Research plan and research questions

- Assume that the network is N-by-N where N is large.
. Start with the assumption that the edges are added uniformly at random.
- Predict the size distribution of connected components at time t.
- Predict time at which the giant component arises.

« Predict the time or complete fracture for the polymer network.

- Compare with the experimental data.

- Assume a preferential attachment model for adding edges.

 Predict the component size distribution, the time at which the giant
component arises, and the time of fracture of the polymer network.
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