
SIR Model 

• Used to model the spread of certain diseases

• Population divided into three states: susceptible, 

infected, and recovered

• , , and  are the fractions of the 

population in each state


              


 = rate at which infected individuals contact other 
individuals.

 = rate at which infected individuals recover.
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Random Graphs 

Erdös-Renyi Random Graphs: , where 
number of nodes, probability that a 

possible edge exists.


Watts-Strogatz Random Graphs: , 
where number of nodes, number of 
nearest neighbors to which each node starts 
connected, probability of rewiring an edge

• Have the small-world property


Barabási-Albert Model: , where 
number of nodes, number of edges attached 
from a new node to existing nodes

• Generates scale-free graphs using preferential 
attachment


Stochastic Block Model (SBM):  
• Generates graphs that contain communities


• Degree of a node: number of nodes to which it is 
connected 

• Degree distribution: probability distribution for the 
degrees across the whole network
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SIR on Random Graphs 

• Each node represents an individual

• An edge indicates that two individuals are in contact

• The disease can only spread between nodes in contact


• For each time step , a susceptible individual in contact 
with an infected individual becomes infected with 
probability , an infected individual recovers with 
probability 


• Probability a susceptible node in contact with an 

infected node becomes infected: 
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Generating Functions [1] 

 generates the degree distribution for a 

randomly chosen vertex in the network. 


 generates the excess degree distribution for 

a vertex reached by following a randomly chosen edge
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G0(x; T ) = G0(1 + (x − 1)T )
G1(x; T ) = G1(1 + (x − 1)T )

• For an Erdös-Renyi graph:           


• For a SBM with community sizes  and edge probability matrix : 
 generates the degree distribution 

by community for a random vertex in community  for large communities.  


 generates the excess degree distribution by 

community for a vertex reached following an edge from community  to community .

                is the outbreak size of community 
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Outbreak Size 

, where  is the solution to S(T ) = 1 − G0(u; T ) u u = G1(u; T )

Simulated SIR for  time steps on Erdös-Renyi, Watts-Strogatz, 
and Barabási-Albert random graphs with mean degree , 
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TOP LEFT: SBM with equal community 
sizes, , , 

TOP RIGHT: Equal community sizes, 

,   is a uniformly 
distributed random variable in 

BOTTOM LEFT: Equal community 
sizes,  is a uniformly distributed 
random variable in , , 



BOTTOM RIGHT: Unequal community 
sizes, , , 
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Goal 

Analyze SIR on various random graphs and explore 
the outbreak sizes.

 vs  for an Erdös-Renyi graph 
and a SBM with the same mean degree 
and number of nodes
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