Notions of Convexity and Ellipticity Conditions

Leo Chang ${ }^{1}$, Stanley Jian ${ }^{2}$. Aren Martinian ${ }^{3}$, and Adam Moubarak 4
${ }^{1}$ Northwestern University, ${ }^{2}$ Columbia University, 3University of California, Berkeley, ${ }^{4}$ Stevens Institute of Technology

Abstract

In the study of regularity theory for anisotropic minimal surfaces, several ellipticity conditions have been posed, including the atomic condition (AC), the scalar atomic ondition (SAC), and the uniform scalar atomic condition (USAC). Our work explores integrands satisfying them. In particular, we construct a weaker condition (wAC) which is equivalent to convexity of C^{1} integrands in codimension 1 and leads to a weakened ectifiability theorem. Analogously, we demonstrate equivalence between (USAC) and strong convexity, and consequently that (USAC) fails to hold for ℓ_{p} norms with $p>2$

Background

Plateau's Problem

Given a boundary γ, what is the surface with that boundary that minimizes the total area? What if we wish to minimize other quantities given the boundary γ ?

Varifold

A d-dimensional Varifold V is a Radon measure on $\mathbb{R}^{n} \times \mathbb{G}(n, d)$.
By disintegration of measure V can be decomposed as

$$
V(d x, d T)=\|V\|(d x) \otimes \mu_{x}(d T)
$$

Integrands and Energy

Unless otherwise stated, assume all integrands are autonomous. Given a positive C integrand $\Psi: \mathbb{G}(n, d) \rightarrow \mathbb{R}$, the anisotropic energy of a varifold V is defined as

$$
\Psi(V):=\int_{\mathbb{G}(n, d)} \Psi(T) d \mu(T)
$$

Given an integrand Ψ, its dual $\Psi^{*}: \mathbb{G}(n, d) \rightarrow \mathbb{R}$ is defined as

$$
\Psi^{*}(P):=\Psi(\mathrm{id}-P)=\Psi\left(P^{\perp}\right) \quad \forall P \in \mathbb{G}(n, d
$$

The first variation of the autonomous energy Ψ at the varifold V is given by

$$
\delta_{\Psi} V(g)=\left.\frac{d}{d t} \boldsymbol{\Psi}\left(\varphi_{t}^{\#} V, \Omega\right)\right|_{t=0}=\int_{\mathbb{G}(n, d)}\left\langle B_{\Psi}(T), D g(x)\right\rangle d \mu(T)
$$

where
$\left\langle B_{\Psi}(T), L\right\rangle:=\Psi(T)\langle T, L\rangle+\left\langle D \Psi(T), T^{\perp} L T+\left(T^{\perp} L T\right)^{\top}\right\rangle \quad \forall L \in \mathbb{R}^{n \times n}$ From this,

$$
A(\mu)=\int B_{\Psi}(T) d V(T)
$$

Atomic Conditions

Ψ satisfies the atomic condition (AC) if:

- (AC2): if $\operatorname{dim} \operatorname{ker} A(\mu)=n-d$, then $\mu=\delta_{T_{0}}$ for some $T_{0} \in \mathbb{G}(n, d)$.
Ψ satisfies the uniform scalar atomic condition (USAC) if

$$
\left\langle B_{\Psi}(T), B_{\Psi^{*}}(S)\right\rangle>C\|T-S\|^{2} \quad \forall T \neq S \in \mathbb{G}(n, d)
$$

Convexity Notions

Denote by G the 1 -homogeneous extension of Ψ to \mathbb{R}^{n} from the unit sphere, via the identification with $\mathbb{G}(n, d)$. We make use of the typical notion of convexity:

$$
G(t v+(1-t) u) \leq t G(v)+(1-t) G(u) \quad \forall u, v \in S^{n-1} \text { and } t \in[0,1]
$$

G is strongly convex if
$G(v) \geq G(u)+\nabla(G(u))^{\top}(v-u)+\frac{m}{2}\|v-u\|^{2} \quad \forall u, v \in S^{n-1}$

Characterization Theorem 1: (wAC) and Convexity

Theorem (De Philippis, De Rosa, Ghiraldin, 2016): In codimension 1, an integrand G satisfies the atomic condition if and only if the function G is strictly convex
Definition: An integrand G satifies the weak atomic condition (wAC) if

- (AC1): $\operatorname{dim} \operatorname{ker} A(\mu) \leq 1$ for all $\mu \in \mathcal{P}(\mathbb{G}(n, d)$),
- (wAC2): if $\operatorname{dim} \operatorname{ker} A(\mu)=1$, then μ is supported on A_{u} for some $u \in S^{n-1}$ where

$$
A_{u}=\left\{v \in S^{n-1}: \nabla G(v)= \pm \nabla G(u)\right\}
$$

Theorem: In codimension 1, an integrand G satisfies (wAC) if and only if G is convex.

Figure 1. A level set for the molified ℓ^{∞} norm. A_{u} is concentrated on the right flat face, as the blue and red vectors have parallel gradients. In order for $\operatorname{dim} \operatorname{ker} A(\mu)$ to be one, the vectors must live in A Lemma: Let G be a C^{1} convex function. Then

$$
A_{u}=\left\{ \pm v \in S^{n-1}: G(u)=\langle\nabla G(v), u\rangle \text { and } G(v)=\langle\nabla G(u), v\rangle\right\}
$$

Corollary: If $\operatorname{dim} \operatorname{ker}(A(\mu))=1$, then μ is supported on A_{u} for some $u \in \operatorname{ker} A(\mu)$.

$\xrightarrow{\text { tiling }}$ \qquad
Figure 2. An example of a varifold with rectifiable Figure 3 . The tiling limit, a minimizer for Ψ (and also support but not satisfying the atomic condition.

Figure 3 . The tiling limit, a minimizer for Ψ (and also
stationary varifold with respect to Ψ) but $\mu \neq \delta$.

The (wAC) condition also leads to a weakened rectifiability theorem on varifolds:
Theorem: Let $G \in C^{1}\left(\Omega \times \mathbb{G}(n, n-1), \mathbb{R}_{>0}\right)$ be a positive non-autonomous integrand. Theorem: Let $G \in C^{1}\left(\Omega \times \mathbb{G}(n, n-1), \mathbb{R}_{>0}\right)$ be a positive non-autonomous integrand.
If G satisfies (wAC) at every $x \in \Omega$, then for every V with locally bounded first variation there exists a $n-1$-rectifiable set K such that

$$
V_{*}=\theta \mathcal{H}^{n-1}\left\llcorner K \otimes \mu_{x} \quad \text { with } \operatorname{supp}\left(\mu_{x}\right) \subseteq A_{T_{x} K}\right.
$$

where

$$
V_{*}:=V\left\llcorner\left\{x \in \Omega: \theta^{*}(x, V)>0\right\} \times \mathbb{G}(n, n-1) .\right.
$$

Conversely, if every varifold V_{*} associated to V with locally bounded first variation has rectifiable support with supp $\left(\mu_{x}\right) \in A_{T_{x} K^{\perp}}$, then Ψ satisfies (wAC).

Characterization Theorem 2: (USAC) and Strong Convexity

A 1-homogenous, even integrand $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly convex if there exists a constant $c>0$ such that

$$
G(u)-\langle d G(v), u\rangle \geq c|u-v|^{2} \quad \forall u, v \in S^{n-1}
$$

Theorem: In dimension or codimension 1 , a C^{2} integrand G satisfies (USAC) if and

 only if G is strongly convex.Lemma: In codimension 1, G satisfying (USAC) is equivalent to there existing some $\boldsymbol{k}>0$ such that

$$
G(u) G(v)-\langle d G(u), v\rangle\langle d G(v), u\rangle \geq k|u-v|^{2}|u+v|^{2} \quad \forall u, v \in S^{n-}
$$

Corollary: In dimension and codimension 1 , for any $p>2$, the ℓ_{p} norm on \mathbb{R}^{n} defined by

$$
G(v)=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

does not satisfy (USAC). We speak about the ℓ_{p} norm as a function on the Grassmannian manifold in dimension and codimension 1 via $\Psi(\operatorname{span}(v))=G(v)$ and $\Phi\left(v^{\perp}\right)=$ $\Psi^{*}(\operatorname{span}(v))=G(v)$, respectively

Dimension 1 Results

Theorem: Every positive integrand on $\mathbb{G}(n, 1)$ satisfies (AC1). Hence, any varifold with locally bounded first variation has \mathcal{H}^{1}-rectifiable support.

This means any curve in \mathbb{R}^{n} (for which $\delta_{F}(V)$ is a Radon measure) is \mathcal{H}^{1}-rectifiab (union of countably many lipschitz graphs). The same is not true for codimension and counterexamples exist in $G(3,2)$.

$$
\begin{aligned}
& \text { Theorem: Let } G \text { be a positive 1-homogeneous integrand on } \mathbb{R}^{n} \text {. Define } \\
& \Psi: \mathbb{G}(n, n-1) \rightarrow \mathbb{R} \text { as }|v| \Psi\left(v^{\perp}\right)=G(v) \text { (hence }|v| \Psi^{*}(v)=G(v) \text {. Then: } \\
& \text { 1. } \Psi^{*} \text { satisfying }(\mathrm{AC}) \text { is equivalent to strict convexity of } G \text {. } \\
& \text { 2. } \Psi^{*} \text { satisfying }(\mathrm{AC}) \text { is equivalent to } \Psi \text { satisfying (AC). } \\
& \text { 3. } \Psi^{*} \text { satisfying }(\mathrm{wAC}) \text { is equivalent to convexity of } G \text {. }
\end{aligned}
$$

Future Work

As it stands, (wAC) is only defined in dimension and codimension 1 . We have a generalized notion, but it needs to be explored further
The relationship between ellipticity conditions and notions of convexity in higher dimension and codimension.

References

1] Guido De Philippis, Antonio De Rosa, and Francesco Ghiraldin, Rectifability of varifolds with locally bounded first variation with respect to anisotropic surface energies, 2016.
The authors thank Professor Antonio De Rosa, Seyed Abdolhamid Banihashemi, and Vasanth Pidaparthy for providing guidance throughout our REU program.

