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While the PCA is a power tool when the data points lie near a d-dimensional hyperplane
in RD, it might fail to give a nice embedding if the data are instead located near some
d-dimensional curved manifold. To handle this case, Coifman and Lafon (Yale University,
2006) introduced the so-called diffusion maps [1]. The key idea of this approach is to
devise a discrete-time Markov chain on the data points and define the distances between
remote points using the stochastic matrix of this Markov chain. This approach is robust to
noisy data and is capable of adequately representing complex geometries of data structures.
This dimensional reduction technique has been successfully applied to problems arising in
protein dynamics (e.g. [2, 3]). The diffusion map algorithm requires providing a bandwidth
parameter ϵ whose choice is nontrivial and has been a subject of active research. One of
the first approaches to tackle the problem of choosing ϵ was proposed by A. Little, M.
Maggioni, and L. Rosasco. Later, simpler and more robust approaches were proposed by
Lindenbaum et al. [4] and T. Berry, J. Harlim, and D. Giannakis [5, 6, 7].

1. Background: properties of stochastic matrices

An n × n matrix P is called stochastic if its entries are nonnegative and its row sums
are equal to 1. The entries Pi,: can be interpreted as the transition probabilities from state
i: pij is the probability that the system currently at state i will go next to state j.

Definition 1. We say that a sequence of random variables (Xk)k≥0, Xk : Ω → S ⊂ Z, is
a Markov chain with initial distribution λ and stochastic matrix P = (pij)i,j∈S if
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https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf
https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf
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(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xk+1 = ik+1 | Xk = ik, . . . , X0 = i0) = P(Xk+1 = ik+1 | Xk = in) = pikik+1
.

We will write a probability distribution as a row vector. One can show that if λ is the
initial probability distribution, then the probabiliby distribution after one step becomes
λP , in two steps λP 2, in k steps λP k, and so on. A probability distribution π is invariant
if

πP = π and
n∑

i=1

πi = 1.

If µ is a row vector with n entries such that µP = µ, we say that µ is an invariant probability
measure. Note that µ does not need to sum up to 11.

We will limit ourselves to a special kind of Markov chains arising in diffusion maps:

• The number of states is finite: |S| = n.
• The stochastic matrix P is irreducible and aperiodic. Irreducibility means that any
state can be reached from any state in a finite number of jumps, i.e, for any pair
i, j, (P t)ij > 0 for some t ∈ N. Aperiodicity means that for any state i and for all
sufficiently large t, there is a nonzero probability of returning to i in t steps, i.e,
(P t)ii > 0 for all large enogh t and for all i. In this case, one can prove that there
exists a unique invariant probability distribution π, and for any initial probability
distribution λ we have

lim
k→∞

λP k = π.

• The Markov chain is time-reversible, or, equivalently, possesses the property of
detailed balance: if π is the invariant probability distribution then

πiPij = πjPji,

The detailed balance means that, on average, the number of transitions from i to
j per time unit is the same as that from j to i.

1.0.1. Spectral decomposition. The detailed balance property can be written in the matrix
form:

ΠP = P⊤Π, where Π := diag{π1, . . . , πn}.
Note that the detailed balance condition ΠP = P⊤Π implies that ΠP is symmetric. Indeed,
its transpose is P⊤Π. Hence, the stochastic matrix P is decomposable as

P = Π−1K̃, where K̃ is symmetric.

Furthermore, P has one eigenvalue equal to 1. The corresponding right eigenvector is
r0 = [1, . . . , 1]⊤ (as row sums are all 1), while the corresponding left eigenvector is π, the
invariant distribution (as πP = π). All other eigenvalues of P are less than 1 in absolute
value. The fact that they do not exceed 1 in absolute value readily follows for Gershgorin

1Note that is the set of states is infinite, invariant measure may exist while invariant distribution does not
exist. For example, consider a symmetric random walk on Z.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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circle theorem saying that the eigenvalues of a matrix A are located within the union of
Gershgorin discs D(aii, Ri) ⊂ C, where Ri =

∑
j ̸=i |aij |. Each such disc is centered on the

real axis in the interval [0, 1] and has a radius at most 1. The fact that all other eigenvalues
are less than 1 in absolute value follows from aperiodicity and irreducibility.

Exercise Prove this.

The detailed balance condition ΠP = P⊤Π implies that P is similar to a symmetric
matrix

Π1/2PΠ−1/2 = Π−1/2(ΠP )Π−1/2.

Hence all eigenvalues of P are real. Furthermore, let

V ΛV ⊤

be the spectral decomposition of Π1/2PΠ−1/2. Then

V ⊤Π1/2PΠ−1/2V = (Π−1/2V )−1/2P (Π−1/2V ) = Λ.

Hence

P = (Π−1/2V )Λ(Π−1/2V )−1

is the eigendecomposition of P . Denoting the matrix Π−1/2V of right eigenvectors of P
by R, we express V = Π1/2R. Hence, the matrix L = (Π−1/2V )−1 = V ⊤Π1/2 of left
eigenvectors of P is expressed via R and Π as:

L = V ⊤Π1/2 = R⊤Π.

Hence, the eigendecomposition of P is

(1) P = RΛR⊤Π.

Since RL = LR = I, we have

(2) R⊤ΠR = I.

2. A basic construction of a diffusion map

First, we present the most basic diffusion map algorithm corresponding to α = 0 in [1].
This construction is very similar to the construction of Laplacian eigenmap by Belkin and
Niyogi (2003) [8].

Let X = (xik) be an n × D matrix of data. The rows xi, i = 1, . . . , n, of X represent
data points lying in RD.

• First, we compute the squared-distance matrix between the data points:

∆(i, j) =
D∑

k=1

(xik − xjk)
2.

• Next, we pick a scaling parameter ϵ and define the diffusion kernel, an n×n matrix
K = (kij) where

kij = exp

(
−∆(i, j)

ϵ

)
.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
http://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf
http://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf
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A good choice of ϵ is very important. ϵ should be comparable to squared distances
from the data points to their neighbors. In practice, pick a reasonable initial guess
for ϵ and then tune it experimentally. One way to pick an initial ϵ is the following.
We find row minima among off-diagonal entries for the matrix ∆ . Then we find
the mean of these minima and set ϵ to be double this mean:

for i = 1 : N

drowmin(i) = min(d(i,setdiff(1:N,i)));

end

epsilon = 2*mean(drowmin);

Then, if the result is not satisfactory, keep increasing the factor by which the mean
of row minima is multiplied in the last line until the embedding starts making sense.
This recipe is good for now. A detailed discussion on choosing ϵ is found in Section
7 below.

• Convert the diffusion kernel K into a stochastic matrix P = (pij) by dividing each
row of K by the corresponding row sum:

P = Q−1K where Q := diag


n∑

j=1

k1j , . . . ,

n∑
j=1

knj

 := diag{q1, . . . , qn}.

Indeed, all entries of the resulting matrix P are nonnegative, and its row sums are
one.

Note that the diagonal entries of Q constitute an invariant probability measure.
Indeed:

[q1, . . . , qn]Q
−1K = [1, . . . , 1]K = [q1, . . . , qn]

as K = K⊤ and both ith row and ith column sum of K is qi. To obtain the
invariant probability distribution, we normalize [q1, . . . , qn] so that it sums up to
one:

π =
q∑n
i=1 qi

where q := [q1, . . . , qn].

• Let us take tth power of the matrix P and denote its entries by ptij ≡ (P t)ij . The

entry ptij is the probability to transition from i to j in t steps, t ∈ N. A family of
diffusion distances indexed by t ∈ N is defined by

(3) Dt(xi, xj)
2 :=

n∑
m=1

1

πm

∣∣ptim − ptjm
∣∣2 .

Hence, the diffusion distance is a weighted l2 distance between rows i and j of
the matrix P t. Note that Dt(xi, xj) will be small if there is a large number of
short paths connecting xi and xj , which makes the transition for either of them to
any state xm approximately equally likely. The power t plays the role of a scale
parameter. Let us list interesting features of the diffusion distance:
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– Since it reflects the connectivity of the data at a given scale, points are closer
if they are highly connected in the graph. Therefore, this distance emphasizes
the notion of a cluster.

– The quantity Dt(xi, xj) involves summing over all paths of length t connect-
ing xi and xj . This number is very robust to noise perturbation, unlike the
geodesic distance.

• The family of diffusion maps Ψt : RD → Rn−1 indexed by t ∈ N from the data space
RD to the diffusion space Rn−1 is defined so that the Euclidean distances ∥Ψt(xi)−
Ψt(xj)∥ in the diffusion space are equal to the diffusion distances Dt(xi, xj).

Let
P = RΛL ≡ RΛR⊤Π

be the spectral decomposition of P with ordered eigenvalues:

1 = λ0 > |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1|.
The diffusion map Ψt is defined by:

(4) Ψt(xi) :=

 λt
1r1(i)
...

λt
n−1rn−1(i)

 ,

where R := [r0, r1, . . . , rN−1] is the matrix of right eigenvectors of P normalized so
that R⊤ΠR = I. Respectively, λt

m, is the tth power of λm, m = 1, . . . , n− 1. Note
that since P is irreducible and aperiodic (as Pii > 0, i = 1, . . . , n) by construction,
λ0 = 1 and r0 = [1, . . . , 1]⊤. In Eq. (4), rm(i) denotes the ith entry of the vector
rk. In other words, Ψt(xi) is the transposed ith row of the matrix

(RΛt)⊤ ≡ [λt
1r1, λ

t
2r2, . . . , λ

t
n−1rn−1]

⊤.

Note that we remove the first column of R because it consists of all ones and hence
is not informative.

Proposition 1.

(5) Dt(xi, xj)
2 =

n−1∑
m=1

λ2t
m|rm(i)− rm(j)|2,

i.e., the diffusion distance in the data space equals the Euclidean distance in the
diffusion space.

We will prove this proposition after we finish the description of the construction.
• The diffusion maps allow us to do dimensional reduction by keeping only the first
few components of Ψt(·). Often it is desirable to keep only the first two or three
entries of Ψt(·) as then the diffusion map is readily visualizable. To make the
dimension of the embedding space justified, we introduce an accuracy parameter
δ ∈ (0, 1) and define the number of terms to keep:

(6) s(δ, t) = max{m ∈ N such that |λm|t > δ|λ1|t}.
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Then, up to relative precision δ, we have:

(7) Dt(xi, xj)
2 =

s(δ,t)∑
m=1

λ2t
m|rm(i)− rm(j)|2,

and

(8) Ψt(xi) =

 λt
1r1(i)
...

λt
s(δ,t)rs(δ,t)(i)

 .

This allows us to determine the power t for embedding into Rd as follows. We pick
δ ∈ (0, 1), for example, δ = 0.2, and then define t so that t is the smallest integer
such that

(9)

(
|λd|
|λ1|

)t

≤ δ Rightarrow t = ceil

[
log(1/δ)

log (|λ1|/|λd|)

]
.

Once the appropriate power for the desired dimension of embedding space (2 or 3)
is found, we can define diffusion maps (abusing the term) to 2D or 3D diffusion
spaces by

(10) Ψt(xi) =

[
λt
1r1(i)

λt
2r2(i)

]
and Ψt(xi) =

 λt
1r1(i)

λt
2r2(i)

λt
3r3(i)

 .

Now let us prove Proposition 1.

Proof. Let us redefine the diffusion kernel K as

K →

(
N∑
i=1

qi

)−1

K.

Then the stochastic matrix P with the new K can be decomposed as

P = Π−1K.

P is similar to the symmetric matrix

A := Π1/2PΠ−1/2 = Π1/2Π−1KΠ−1/2 = Π−1/2KΠ−1/2.

Hence, the eigenvalues of A coincide with those of P . Let

A = ΦΛΦ⊤ =

n−1∑
k=0

λkϕkϕ
⊤
k .

be an eigendecomposition of A where Φ is orthogonal, and the diagonal entries of Λ, the
eigenvalues, are ordered in the decreasing order. Then the desired eigendecomposition of
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P can be obtained as follows:

(11) P = Π−1/2AΠ1/2 = Π−1/2ΦΛΦ⊤Π1/2 =: RΛL =
n−1∑
k=0

λkrklk,

where rk := Π−1/2ϕk, the columns of R, are the right eigenvectors of P , and lk := ϕ⊤
k Π

1/2,
the rows of L, are the left eigenvectors of P . It can be readily verified that the left and
right eigenvectors satisfy the following conjugacy relationships:

(12)
n∑

m=1

πmri(m)rj(m) = r⊤i Πrj = ϕ⊤
i Π

−1/2ΠΠ−1/2ϕj = ϕ⊤
i ϕj = δi,j ,

(13)
n∑

m=1

li(m)lj(m)

πm
= liΠ

−1l⊤j = ϕ⊤
i Π

1/2Π−1Π1/2ϕ = ϕ⊤
i ϕj = δi,j .

Eq. (11) allows us to write entries of P t as

(14) ptim =

n−1∑
k=0

λt
krk(i)lk(m).

Plugging ptim and ptjm into the definition of Dt(i, j) (equation (3)), we get:

Dt(xi, xj)
2 =

n∑
m=1

1

πm

[
n−1∑
k=0

λt
krk(i)lk(m)− λt

krk(j)lk(m)

]2

=

n∑
m=1

1

πm

n−1∑
k=0

[
λt
krk(i)lk(m)− λt

krk(j)lk(m)
]2

+
n∑

m=1

n−1∑
k=0

∑
s̸=k

lk(m)ls(m)

πm
λt
kλ

t
s[rk(i)− rk(j)][rs(i)− rs(j)].

Let us show that the second term in this sum is zero. Rearranging the order of summation
and using (13) we get

n−1∑
k=0

∑
s ̸=k

λt
kλ

t
s[rk(i)− rk(j)][rs(i)− rs(j)]

n∑
m=1

lk(m)ls(m)

πm
= 0.
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Returning to the first term, we calculate:

Dt(xi, xj)
2 =

n∑
m=1

1

πm

n−1∑
k=0

[
λt
krk(i)lk(m)− λt

krk(j)lk(m)
]2

=

n∑
m=1

n−1∑
k=0

[lk(m)]2

πm
λ2t
k [rk(i)− rk(j)]

2

=
n−1∑
k=0

λ2t
k [rk(i)− rk(j)]

2
n∑

m=1

[lk(m)]2

πm

=
n−1∑
n=0

λ2t
n [rn(i)− rn(j)]

2 .

Finally, we take into account that since r0 = [1, . . . , 1]⊤, r0(i)− r0(j) = 0. Therefore,

Dt(xi, xj) =
n−1∑
k=1

λ2t
k [rk(i)− rk(j)]

2

as desired. □

Algorithm 1: Diffusion map with uniform sampling

Input: Data X ∈ Rn×D, xi ∈ M ⊂ RD, kernel bandwidth ϵ > 0, time parameter
t ≥ 0

Do:
Step 1: Form kernel matrix

kij = exp

(
−∆(i, j)

ϵ

)
Step 2: Renormalize kernel using invariant distribution:

A = Q−1/2KQ−1/2 where Q := diag


n∑

j=1

k1j , . . . ,

n∑
j=1

knj

 := diag{q1, . . . , qn}.

Step 3: Get spectral decomposition of renormalized kernel:

A = ΦΛΦ⊤

Step 4: Construct right eigenvectors of the transition matrix P = Q−1K:

R = Q−1Φ

Output: Diffusion map at time t: RΛt
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3. Relation to Laplacian eigenmap

As we have mentioned, the presented construction of the diffusion map is the most basic
one and is very similar to the construction of Laplacian eigenmap [8]. Step 1 of Laplacian
eigenmap is the construction of a graph with vertices at the data points which is done in
one of the two following ways. Vertices xi and xj are connected by an edge

• if ∥xi − xj∥ < ϵ, or
• if xi is among k nearest neighbors of xj or xj is among k nearest neighbors of xi.

Then, either way, the kernel matrix K is defined by

kij =

{
exp

(
−∥xi−xj∥2

t

)
, ∥xi − xj∥ < ϵ,

0, otherwise.
,

where t is interpreted as time for the heat equation on the manifold occupied with the data.
Note that t = ∞ corresponds to kij = 1 if xi and xj are connected and zero otherwise, i.e.,
K is merely the adjacency matrix.

Next, we set up the matrix called the graph Laplacian:

(15) L := Q−K, where Q = diag

∑
j

k1j , . . . ,
∑
j

knj

 .

Then the following generalized eigenvalue problem is solved:

(16) LR = QRM, M = diag{µ0, µ1, . . . , µn−1},

where

(17) 0 = µ0 ≤ µ1 ≤ . . . ≤ µn−1.

Note that the matrix of the right eigenvectors R coincides with that of P . The matrix M
relates to Λ via

(18) Λ = I −M.

Finally, the Laplacian eigenmap to Rm, m ≤ n, is defined by

(19) xi 7→ (r1(i), . . . , rm(i)).

Exercise Show that the Laplacian eigenmap to Rm is the solution to the following opti-
mization problem:

(20)
∑
i,j

kij∥yi − yj∥22 = tr
(
Y ⊤LY

)
→ min subject to Y ⊤QY = I, Y ⊤Q1n×1 = 0.

Here, yi’s are columns of Y , and Y is n×m.

Remark It is shown in [8] that LLE and Laplacian eigenmap are closely related. The
minimization problem for LLE involves graph Laplacian squared.
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4. Illustrative examples

4.0.1. Swiss Roll. First we make an approximately uniform mesh of points on the Swiss
Roll as shown in Fig. 1(a). The number of points is n = 1060. We set δ = 0.2 and find the
values for ϵ and t as described above:

ϵ = 0.7717928, t = 147.

The points are sorted and colored according to the approximate geodesic distance to the
data point closest to the origin. The matrix P t is displayed in Fig. 1(b). The absolute
eigenvalues of P t starting from |λ1| are shown in Fig. 1(c). The embedding to 3D is in
Fig. 1(d). The Swiss Roll has been mostly unrolled.
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0.7

0.8

(d)

Figure 1. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh. (b): The matrix P t for ϵ = 0.7717928, t = 147. (c): The
absolute eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffu-
sion map to 3D.

Next, we repeat this experiment by adding noise to the data:
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noisestd = 0.4;

X = X + noisestd*randn(size(X)); % perturb by Gaussian noise

Setting δ = 0.2 as before, we find:

ϵ = 0.6108029, t = 300.

The results are shown in Fig. 2.
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(d)

Figure 2. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh and perturbed by Gaussian noise with standard deviation
0.4. (b): The matrix P t for ϵ = 0.6108029, t = 300. (c): The absolute
eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffusion map
to 3D.

Finally, we take the same Swiss Roll data that we used for the isomap experiments with
Gaussian noise of standard deviation 0.8. With δ = 0.2, we found

ϵ = 2.104531, t = 1705.

The results are shown in Fig. 3.
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Figure 3. (a): The Swiss Roll dataset used for the experiments with
isomap perturbed by Gaussian noise with standard deviation 0.8. (b): The
matrix P t for ϵ = 2.104531, t = 1705. (c): The absolute eigenvalues of the
eigenvalues of P t starting from |λ1|. (d): Diffusion map to 3D.

4.0.2. Pacman. Let us consider a data set consisting of 200 images depicting the Pacman.
This example is similar to the one in this article1. Each image is 65 × 65 pixels either
black (color = 0) or white (color = 255). The images differ from each other by the angle
of rotation of the Pacman around the center of the image. The angles of rotation are

αi =
2πi

200
.

A sample of 20 such images is shown in Fig. 4(a). This dataset is naturally embedded into

R652 = R4225 space. Note that D > N in this case. The PCA mapping into 3D applied to
this dataset is shown in Fig. 4(b). The absolute eigenvalues and the embedding into 3D

1While this article offers a nice exposition, I do not recommend to rely on it as it contains a number of
errors in important formulas. For example, Eqs. (6) and (7) contain errors, the comments following Eq.
(9) are misleading, etc.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6590&rep=rep1&type=pdf
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are shown in Figs. 4(c) and (d) respectively. Both the PCA and the diffusion map show
that the set of images is well-approximated by a 1D manifold as we would expect.
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Figure 4. The dataset consists of 200 images of the Pacman rotated around
the center of the image by angles αi = 2πi/200. (a): A sample of 20 data
points. (b): The PCA mapping into 3D. (c): The absolute eigenvalues
of the eigenvalues of P t starting from |λ1|. Here: δ = 0.5, ϵ = 2335698,
t = 187. (d): Diffusion map to 3D.

4.0.3. Cat-in-the-hat. A similar example with a more complex image of the Cat-in-the-hat
is shown in Fig. 5. Each image is 500× 500. The double-loop formed by the mapped data
is caused by the fact that the image rotated by π is closer to the original image than those
rotated by an angle between π/6 and 5π/6.
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Figure 5. The dataset consists of 200 images of the Cat-in-the-hat rotated
around the center of the image by angles uniformly distributed in (0, 2π).
(a): A sample of 20 data points. (b): The PCA mapping into 2D. (c):
The absolute eigenvalues of the eigenvalues of P t starting from |λ1|. Here:
δ = 0.2, ϵ = 7.318159 · 107, t = t. (d): Diffusion map to 3D.

5. The continuous counterpart of the diffusion map algorithm

Reference for this section: [9] arXiv:2208.13772. The basic diffusion map algorithm
presented in Section 2 leaves us with two questions. What is a good choice of the bandwidth
parameter ϵ? What is a good choice of power t? The first question will be answered in
Section 7 below. The second question will become irrelevant as we will renormalize the
kernel and eliminate the need for taking power t altogether. To understand to answers to

https://arxiv.org/abs/2208.13772
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these questions, we will consider the continuous counterpart of the diffusion map algorithm
also described in the paper by Coifman and Lafon (2006).

Why the diffusion map algorithm contains the word diffusion in its name? What is
the underlying diffusion process? Looking at the basic construction we can think that the
dynamics of the Markov chain with the constructed stochastic matrix P is, perhaps, a
diffusion process. In fact, it is indeed a diffusion process discretized to a point cloud. To
see it, let us start with a diffusion equation in Rd:

(21) ut =
1

4
∆u, x ∈ Rd, u(x, 0) = f(x),

where ∆u = ux1x1 + ux2x2 + . . .+ uxdxd
is Laplace’s operator applied to u. The solution to

(21) at time t = ϵ given by

(22) u(x, ϵ) =
1

(πϵ)d/2

∫
Rd

e−
||x−x′||2

ϵ f(x′)dx′.

On the other hand, if ϵ is small, u(x, ϵ) can be found using a Taylor expansion:

(23) u(x, ϵ) = u(x, 0) +
∂

∂t
u(x, 0)ϵ+O(ϵ2) = f(x) +

ϵ

4
∆f(x) +O(ϵ2).

Matching (22) and (23), we obtain the following Taylor expansion for the integral operator
with the Gaussian kernel kϵ(x, x

′) := exp(−||x− x′||2/ϵ):

(24)
1

(πϵ)d/2

∫
Rd

e−
||x−x′||2

ϵ f(x′)dx′ = f(x) +
ϵ

4
∆f(x) +O(ϵ2).

Now let us connect this integral operator with the matrix operatorsK and P constructed
in Section 2. We observe that the normalizing factor (πϵ)d/2 is obtained by integrating the
kernel with respect to its second argument over Rd:

(25) (πϵ)d/2 =

∫
Rd

e−
||x−x′||2

ϵ dx′.

Let X be an n × d data matrix whose rows x⊤i ∈ Rd are the data points forming a point
cloud. Let f be a smooth function with compact support. We discretize f to the point
cloud {xi}ni=1 by setting fi = f(xi), 1 ≤ i ≤ n, [f ] = [f1, . . . , fn]

⊤, and compute P [f ]. We
have:

[P [f ]]i =
[P [f ]]i
[K1n×1]i

=

∑
j e

−
||xi−xj ||

2

ϵ f(xj)∑
j e

−
||xi−xj ||2

ϵ

.

Taking limit as n → ∞ we get:

lim
n→∞

∑
j e

−
||xi−xj ||

2

ϵ f(xj)∑
j e

−
||xi−xj ||2

ϵ

=

∫
Rd e

− ||x−x′||2
ϵ f(x′)ρ(x)dx′∫

Rd e
− ||x−x′||2

ϵ ρ(x)dx′,
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where ρ(x) is the probability density function that the point cloud is sampled from. Using
the Taylor expansion (24) we calculate:

lim
n→∞

∑
j e

−
||xi−xj ||

2

ϵ f(xj)∑
j e

−
||xi−xj ||2

ϵ

=

∫
Rd e

− ||xi−x′||2
ϵ f(x′)ρ(x)dx′∫

Rd e
− ||xi−x′||2

ϵ ρ(x)dx′
(26)

=
(fρ)(xi) +

ϵ
4∆(fρ)(xi) +O(ϵ2)

ρ(xi) +
ϵ
4∆ρ(xi) +O(ϵ2)

=f(xi) +
ϵ

4

[
∆f(xi) + 2∇f(xi) ·

∇ρ(xi)

ρ(xi)

]
+O(ϵ2).(27)

To obtain the last equality we used

1

ρ+ ϵ
4∆ρ(x) +O(ϵ2)

=
1

ρ

(
1− ϵ

4

∆ρ

ρ
+O(ϵ2)

)
.

Therefore, subtracting [f ] from P [f ] and dividing the result by ϵ we obtain a point-wise
approximation to the action of the differential operator

(28)
1

4

[
∆+ 2

∇ρ · ∇
ρ

]
≡ 1

4

[
∆+∇ log ρ2 · ∇

]
on the function f :

(29) Lϵf(xi) := lim
ϵ→0

lim
n→∞

[P [f ]]i − fi
ϵ

=
1

4

[
∆f(xi) +∇ log ρ2 · ∇f(xi)

]
The operator 1

ϵ (P − I) in the left-hand side of (29) is the generator of the Markov chain
constructed in Section 2 for the discrete time steps of size ϵ. As we see, the generator
approximates not the Laplacian but the differential operator (28). If the sampling density
ρ were uniform in some region Ω, this operator would be proportional to Laplace’s operator
in Ω.

6. Removing the effect of nonuniform sampling

Usually, the sampling density of data points is nonuniform. In this case, it is advan-
tageous to modulate the effect of nonuniform density by the right renormalization of the
kernel function originally developed by Coifman and Lafon [1] and then simplified in later
works [10, 11]. We define a family of right-renormalized kernels by

(30) kϵ,α(xi, xj) = e−
∥xi−xj∥

2

ϵ ρ−α
ϵ (xj),

where ρϵ(x
′) is the estimate for the sampling density at x′. Note that typically the sampling

density is not known but can be estimated using the fact that the Gaussian kernel with a
proper normalization approximates the Dirac δ-function:

(πϵ)−d/2e−
∥x−x′∥

ϵ ≈ δ(x− x′).



DIFFUSION MAPS 17

Indeed, it is easy to check using Taylor expansion in ϵ that

(31) (πϵ)−d/2

∫
Rd

e−
∥x−x′∥2

ϵ ρ(x′)dx′ = ρ(x) +O(ϵ).

Motivated by this, we define the following density estimate:

(32) ρϵ(xi) = (πϵ)−d/2 1

n

∑
j

e−
∥xi−xj∥

2

ϵ .

If the kernel e−
||x−xj ||

2

ϵ is replaced with the right-normalized kernel

(33) e−
||x−xj ||

2

ϵ ρ−α
ϵ (xj),

a calculation of a limit similar to the one in the left-hand side of (26) results in the following
family of differential operators

(34) Lϵ,α :=
1

4

[
∆f +∇f · ∇

[
log ρ2(1−α)

]]
,

For α = 1, the resulting operator is the Laplacian. Another case of interest is α = 0.5. In
this case, the generator Lϵ,0.5 is the generator for the overdamped Langevin dynamics.

Let us summarize the diffusion map algorithm with α ∈ [0, 1] in Algorithm 2.
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Algorithm 2: Diffusion map with nonuniform sampling

Input: Data X sampled i.i.d through non-uniform density ρ, kernel bandwidth ϵ,
modulation parameter α ∈ [0, 1]

Do:

• Step 1. Set a rotation-invariant kernel

kϵ(x, y) = exp
[
−∥x− y∥2/ϵ

]
.

To make the kernel matrix sparse, define

[Kϵ]ij =

{
exp

[
−∥xi − xj∥2/ϵ

]
, ∥xi − xj∥ < 3

√
0.5ϵ,

0, otherwise.

• Step 2. Calculate row sums qϵ(x) =
∑

y kϵ(x, y) and form the new kernel

(35) k(α)ϵ (xi, xj) =
kϵ(xi, xj)

qαϵ (xj)
, or Kϵ,α = KϵQ

−α.

• Step 3. Calculate row sums

d(α)ϵ (xi) =
∑
j

k(α)ϵ (xi, xj)

and define the stochastic matrix

(36) Pϵ,α =
[
D(α)

ϵ

]−1
Kϵ,α,

where
D(α)

ϵ = diag
{
d(α)ϵ (x1), . . . , d

(α)
ϵ (xn)

}
.

• Step 4: Finally, we construct the Laplacian

Lϵ,α =
1

ϵ
(Pϵ,α − I).

• Step 4: Diagonalize Lϵ,α:

Lϵ,α = RΛR−1 ⇐⇒ Pϵ,α = R(I + ϵΛ)R−1

Note Pϵ,α and Lϵ,α get diagonalized by the same eigenbasis. The eigenvalues will
differ, but we choose to remove their influence by setting t = 0:

Output: Diffusion map: D
−1/2
α R

Note that the construction is the same the uniformly sampled diffusion map algorithm
except that the formula for the embeddings to 2D or 3D are

(37) Ψα(xi) =

[
r1(i)
r2(i)

]
, Ψα(xi) =

 r1(i)
r2(i)
r3(i)

 .

Note that in the above equation the parameter t has been chosen to be 0.

Remark The above algorithm was presented in class as diffusion map.
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Theorem 1 ([12]). Let the number of points n → 0 and assume the data xi has been
sampled i.i.d from sampling density ρ. Then

Lϵ,α → 1

4

(
∆f + (2− 2α)

∇ρ

ρ
· ∇f

)
+O(ϵ)(38)

Thus, 4Lϵ,α is a numerical approximation for Lα := ∆f + (2− 2α)∇ρ
ρ · ∇f

7. Choosing ϵ

Reference for this section: [9] arXiv:2208.13772. In practice, the limit ϵ → 0 cannot
be taken for a finite dataset. Instead, one generally tries to choose ϵ as small as possible
without making the corresponding generator matrix Lϵ,µ reducible. Many heuristics exist
for choosing the scaling parameter ϵ in diffusion maps, relating back to bandwidth selec-
tion in kernel density estimation [4]. Here, we present the method of Berry, Harlim and
Giannakis [5, 6, 7, 13] which we refer to as the “Ksum test”.

The idea for the heuristic is to find the range of ϵ where the asymptotic results of diffusion
maps hold true for the given dataset. We find this range by analyzing the double sum

S(ϵ) :=
1

N2

n∑
i=1

n∑
j=1

[Kϵ]ij

over a range of ϵ values. Here, [Kϵ]ij = kϵ(xi, xj) where kϵ(x, x
′) = exp(−∥x − x′∥2/ϵ) is

the Gaussian kernel. We assume that the point cloud is located in a finite region Ω ⊂ Rd.
For large n, the intermediate asymptotic for S(ϵ) is [12, 6]

S(ϵ) ≈
∫
Ω
dx

∫
Ω
dx′kϵ(x, x

′) ≈ πd/2ϵd/2vol(Ω) ≡ Cϵd/2

where C is a constant independent of ϵ. Hence,

(39) logS(ϵ) ≈ d

2
log ϵ+ logC,

i.e., logS is a linear function of log ϵ if ϵ is not too large and not too small.
On the other hand, if ϵ is large, [Kϵ]ij ≈ 1 for all i, j, and hence S(ϵ) → 1 as ϵ → ∞.

For small ϵ, [Kϵ]ij ≈ 0 for all i, j, i ̸= j, and [Kϵ]ii = 1. Therefore, S(ϵ) → N−1 as
ϵ → 0. Therefore, if we plot log ϵ against logS(ϵ), we expect to see a linear region of slope
approximately d

2 , where d is the dimension of the dataset.This region demarcates the range
of suitable values of ϵ [5, 6, 7, 13]. On the other hand, the slope of this graph should tend
to zero as ϵ → 0 and as ϵ → ∞.

In particular, we expect to have ∂ logS(ϵ)
∂ log ϵ ≈ d

2 where the slope is maximal. For a practical

calculation, it is useful to note that the slope is given by

(40)
∂ logS(ϵ)

∂ log ϵ
= −

∑N
i,j=1[Kϵ]ij log[Kϵ]ij∑N

i,j=1[Kϵ]ij
.

https://arxiv.org/abs/2208.13772
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8. Solving PDEs with diffusion maps

Recall that the d-dimensional diffusion map with parameter α is given by

(4) Ψα(xi) :=

 r1(i)
...

rn−1(i)

 ,

Here rj are the right eigenvectors of the transition matrix Pϵ,α. Equivalently, they are
the right eigenvectors of the generator matrix Lϵ,α. Thus, computing the diffusion map
amounts to solving

Lϵ,αR = RΛ(41)

In [12] it was shown that if the points xi are drawn from a compact manifold M (such as a
sphere or a torus) as n → ∞ and ϵ → 0, the solutions ri to the above problem approximate
the Neumann boundary value problem:

Lαf(x) = λf(x), x ∈ M ∂nf(x) = 0, x ∈ ∂M(42)

This means that Lϵ,α is useful for another purpose: numerically solving elliptic boundary
value problems on M! A particularly familiar boundary value problem is the committor
problem:

Lq(x) := β−1∆q −∇V · ∇q = 0, x ∈ Ω \ (A ∪B), q(∂A) = 0, q(∂B) = 1(43)

In fact, we can show, using (38) that when α = 1/2, L = β−1L1/2. Since L1/2 ≈ 4Lϵ,α, we

have that L ≈ 4β−1Lϵ,α. Thus if xi ∼ Z−1 exp (−βV ), the committor problem can now be
discretized to

Lϵ,α[q]i = 0, xi ∈ Ω \ (A ∪B), [q]i = 0, xi ∈ A, [q]i = 1, xi ∈ B(44)

This is a linear system with boundary constraints. The incorporation of these constraints
into the linear system is detailed in Section 2.1 of [14].
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