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1. Countable, uncountable sets

Definition 1.1. Let X,Y be sets, a function f : X → Y is said to be injective if for all
x, y ∈ X, f(x) = f(y), then x = y. The function f is said to be surjective if for all y ∈ Y ,
there is x ∈ X such that f(x) = y. A function is said to be bijective if f is injective and
surjective.

Remark 1.2. Note that f is bijective if and only if it has an inverse, meaning that there
exists f−1 such that f ◦ f−1 is the identity in X and f−1 ◦ f is the identity in Y .

Definition 1.3. Let X be a set, X is said to be finite if there exists N ∈ N and f : X →
{0, . . . , N − 1} bijective. In this case we will say that N is the cardinal of X.

Definition 1.4. Let X be a set, X is said to be infinite if it is not finte. The set X is
said to be countable if there f : X → N bijective. If X is not finite or countable, is said to
be uncountable.

Theorem 1.5. Let X be countable and A ⊆ X be infinite, then A is countable.

Proof. Let’s see first that every infinite set of N is countable. Let A ⊆ N be infinite. In
particular, A ̸= ∅. Since A ⊆ N is not empty, by the well ordering principle, there exist
a0 ∈ A such that a0 = min(A). Now, consider A \ {a0} and note that, since A is infinite,
A \ {a0} is not empty, then, we can take a1 = min(A \ {a0}). Note that since A is infinite,
we can recursively get a0, a1, a2, . . . , an, for all n ∈ N. This procedure does not over, as A
is inifnite. Now, note that f : N → A, f(n) := an is a bijection.

Now, letX be countable and A ⊆ X be infinite. SinceX is countable, there is f : X → N
bijective. Consider the set f(A) := {f(a) : a ∈ A} and note that since f is bijective, f(A)
is infinite. Then, f(A) is countable, but since the function g : A → f(A), g(a) := f(a) is
a bijection, A itself is countable. □

Theorem 1.6. The set N× N is countable.

Proof. Note that we can arrange N× N as follows:
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(0, 0) (0, 1) (0, 2) (0, 3) . . .
(1, 0) (1, 1) (1, 2) (1, 3) . . .
(2, 0) (2, 1) (2, 2) (2, 3) . . .

and note that we can arrange this as (0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2), (0, 3), . . .
which is a bijection between N× N and N. □

Lemma 1.7. The set Z is countable.

Proof. Consider the following function, f : Z → N, f(n) is going to be odd if n is positive,
even if n is negative. This is a bijection and hence Z is countable. □

Theorem 1.8. The set Q is countable.

Proof. Note that Q can be seen as a subset of Z×Z as every rational number is the quotient
of two integer numbers. Since is is an infinite set of a countable set, it is countable itself. □

Theorem 1.9. The set P(N) := {A : A ⊆ N} of all subsets of natural numbers is not
countable.

Proof. By way of contradiction, assume that there is f : N → P(N) bijective, in particular
is onto. Let X := {n ∈ N : n /∈ f(n)}. Clearly X ∈ P(N), since f is bijective, there
exists n ∈ N such that f(n) = X, does n ∈ X? If n ∈ X, then n /∈ f(n) = X, which is a
contradiction. if n /∈ X, then n ∈ f(n) = X, which is as well a contradiction. Then, P(N)
is not countable. □

Theorem 1.10. The set of all real numbers R is not countable.

Proof. First, note that (0, 1) and R has the same cardinality as using for example tan−1

with proper scale. Now, by way of contradiction, assume that (0, 1) is countable, then we
can arrange their elements as a sequence x0, x1, x2, . . . . Note that, this means that we can
write every element in (0, 1) as follows:

x0 := 0, y00y
0
1y

0
2y

0
3 . . . ,

x1 := 0, y10y
1
1y

1
2y

1
3 . . . ,

x2 := 0, y20y
2
1y

2
2y

2
3 . . .

Now, define the following sequence,

ỹn :=

{
ynn + 1 if ynn ̸= 9;
0 if ynn = 9.

and consider the element y := 0, ỹ0ỹ1ỹ2ỹ3 . . . , clearly y ∈ (0, 1), but does y is listed? Note
that y disagrees in the diagonal from every element, so it cannot be in the list, meaning
that (0, 1) was not countable. □

Theorem 1.11. Let (An)n be a countable family of countable sets, then
⋃

n∈NAn is count-
able.

Proof. Note that we can arrange each An as a sequence (aij)i,j , meaning that
⋃

nAn can
be embedded into N × N. The union is an infinite subset of a countable set, hence is
countable. □

Lemma 1.12. LetX be an uncountable set, if A ⊆ X is countable, then Ac is uncountable.

Proof. By way of contradiction, assume that both A and Ac are countable. By the previous
result, A ∪Ac is countable, but X = A ∪Ac is uncountable, a contradiction. □

Exercise 1.13. The empty set is a subset of every set.
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Proof. We want to see that for every set X and every x ∈ ∅, x ∈ X. However, since the
empty set does not have any element, the condition satisfies trivially. □

Exercise 1.14. A complex number z ∈ C is said to be algebraic if there are rational
numbers a1, . . . , an not all zero such that anz

n + an−1z
n−1 + · · · + a0 = 0. The set of

algebraic numbers is countable.

Proof. Let n ∈ N, consider the set

Pn := {z ∈ C : anz
n + · · ·+ a0 = 0}.

Consider the mapping f : Pn → Qn, anz
n + · · · + a0 7→ (a0, . . . , an) and note that f is

injective. Note also that f(Pn) is infinite for all n ∈ N, so it is countable, as is a infinite
set of a countable set. Therefore, Pn is countable, as the restriction of f to the range of
Pn is bijective. From this, we can conclude that the set of the algebraic numbers, which
is the union of all Pn’s is countable as is the countable union of countable sets. □

Exercise 1.15. There are real numbers that there are not algebraic.

Proof. We have shown that R is uncountable. Suppose that every real number is algebraic,
then R has to be countable, which is a contradiction. □

Exercise 1.16. The set of irrational numbers is non countable.

Proof. Note that R is equal to the rational numbers disjoint union with the irrational
numbers, if the irrational numbers where countable, then R would be countable, which is
a contradiction. □

2. Metric spaces

Definition 2.1. Let X ̸= ∅, a metric is a function d : X ×X → [0,∞) such that

(1) For all x, y ∈ X, d(x, y) = 0 if and only if x = y.
(2) For all x, y ∈ X, d(x, y) = d(y, x).
(3) For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

The tuple (X, d) is called a metric space.

Example 2.2. Let’s provide some examples.

(1) Let X ̸= ∅, define the following metric

d(x, y) :=

{
1 if x ̸= y;
0 if x = y.

It can be shown that d is a metric on X, it is called the discrete metric.
(2) In Rn we define the euclidean metric as

d(x, y) :=

√√√√ n∑
i=1

|xi − yi|2.

The function d is a metric over Rn.
(3) More interesting, if (X, d) is a metric space, the following are metrics over d as

well,

d1(x, y) := min(d(x, y), 1),

d2(x, y) :=
d(x, y)

1 + d(x, y)
.
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Definition 2.3. Let (X, dX), (Y, dY ) be metric spaces, we can define a metric on the
product as follows,

dX×Y ((x1, x2)), (y1, y2)) := dX(x1, x2) + dY (y1, y2).

Other possible metrics over X × Y are,

d∞((x1, x2)), (y1, y2)) := max(dX(x1, x2), dY (y1, y2),

dp((x1, x2)), (y1, y2)) := (dX(x1, x2)
p + dY (y1, y2)

p)1/p, p ≥ 1.

Definition 2.4. Let (X, d) be a metric space, for r > 0 and x ∈ X we define the ball of
radius r > 0 centered at x as follows,

Br(x) := {y ∈ X : d(x, y) < r}.

The closed ball can be defined using ≤ instead of <.

Definition 2.5. Let (X, d) be a metric space, A ⊆ X is said to be

(1) open if for every x ∈ A, there exists r > 0 such that Br(x) ⊆ A.
(2) closed if is the complement of an open set.

A point a ∈ A is said to be a limit point if for every r > 0, A \ {a} ∩Br(a) ̸= ∅.

Lemma 2.6. Let (X, d) be a metric space, (Cλ)λ ⊆ X be a family of closed sets, (Uλ)λ
be a family of open sets, then

⋃
λ Uλ is open and

⋂
λCλ is closed.

Proof. Let (Uλ)λ be a family of open sets and call U :=
⋃

λ Uλ, we want to see U is open.
Let x ∈ U , then there exist λ ∈ Λ such that x ∈ Uλ, since Uλ is open, there is r > 0 such
that Br(x) ⊆ Uλ, hence Br(x) ⊆ U and U is open.

For the other part, call C :=
⋂

λCλ and note that Cc =
⋃

λC
cλ is open by the previous

paragraph, so C is closed. □

Now we are going to introduce a key concept in analysis which is going to be very useful.

Definition 2.7. Let (X, d) be a metric space, (xn)n be a sequence, i.e, a countable set in
X. Let x ∈ X, we will say that xn converges to x, xn → x if for all ε > 0, there exists
N ∈ N such that for all n ≥ N , xn ∈ Bε(x).

Lemma 2.8. Limits of sequences are unique.

Proof. Let (xn)n be a sequence and suppose that converges to x, y such that x ̸= y. Let
ε := d(x, y)/2. Since xn → x, there exists N1 ∈ N such that for all n ≥ N1, xn ∈ Bε(x)
and also there is N2 ∈ N such that for all n ≥ N2, xn ∈ Bε(y). Take N := max{N1, N2}
and note that therefore for all n ≥ N, xn ∈ Bε(x) ∩ Bε(y), but this is impossible, as this
intersection is empty. □

Lemma 2.9. Let (X, d) be a metric space, (xn)n ⊆ X be a sequence, x ∈ X. Then
xn → x if and only if for all ε > 0, Bε(x) all but except finitely many points.

Proof. Suppose that xn → x and let ε > 0, then, there is N ∈ N such that for all n ≥ N ,
xn ∈ Bε(x), but this just means that all except x1, . . . , xN are in the complement of
Bε(x). For the other direction, let ε > 0, by hypothesis, Bε(x) contains all but finitely
many elements in the sequence. Call them x1, . . . , xN and without loss of generality assume
that the indices are arranged (otherwise, just take a permutation). Then, for all n ≥ N ,
xn ∈ Bε(x) and we are done. □

Lemma 2.10. Let (X, d) be a metric space, A ⊆ X. Then a ∈ X is a limit point of A if
and only if there exist a sequence (xn)n ⊆ A such that xn → a.



FUNCTIONAL ANALYSIS 5

Proof. Note that if xn → a, for all ε > 0, Bε(a) has infinitely many points, so clearly
is not empty. On the other hand, suppose that a is a limit point of A and let ε >
0. Since a is a limit point of A, there is x1 ∈ A \ {a} ∩ Bε(a). Now, without loss of
generality, we may assume that x1 /∈ Bε/2(a) (otherwise, just re-scale), then, we may find
x2 ∈ A \ {a, x1}∩Bε/2(a). This recursive procedure constructs a sequence that eventually
converges to a. Note that there is no actually loss of generality, as the re-scaling only
depends on re-sizing up to finitely many elements. □

Lemma 2.11. Let (X, d) be a metric space, A ⊆ X, define A′ to be the set of all limit
points of A. Then A is closed if and only if A = A ∪A′.

Proof. Suppose A is closed, then Ac is open. By way of contradiction, assume A′ ̸⊆ A,
then there exists a ∈ A′ ∩Ac. By the previous lemma, we may find a sequence (xn)n ⊆ A
such that xn → a, and being Ac open, we may find ε > 0 such that Bε(a) ⊆ Ac. Then,
there exists N ∈ N such that for all n ≥ N , xn ∈ Bε(a), which is impossible as A and Ac

are disjoint.
On the other hand, by contrapositive, assume that A ̸= A ∪ A′, we want to show that

A is not closed. By way of contradiction, assume that A is closed, then Ac is open. Since
A ̸= A ∪ A′, then Ac ∩ A ∪ A′ ̸= ∅, but since A and Ac are disjoint, this implies that
Ac ∩A′ ̸= ∅. Let x ∈ Ac ∩A′ and take ε > 0 such that Bε(x) ⊆ Ac. Now, since x ∈ A′ is a
limit point, we may find a sequence (xn)n ⊆ A such that xn → x, this means that there is
N ∈ N such that for all n ≥ N , xn ∈ Bε(x), but this is a contradiction, as Bε(x) ⊆ Ac. □

Definition 2.12. Let (X, d) be a metric space, A ⊆ X, we define the closure of A as
follows,

A :=
⋂

C⊇A,C closed

C.

Note that A is the smallest closed set containing A, as is the intersection of closed sets
containing A. Let’s see now that A = A ∪A′.

Lemma 2.13. Let (X, d) be a metric space, A ⊆ X, then A = A ∪A′.

Now, the following result will be very important when we were dealing with normed
linear spaces.

Theorem 2.14. Let (X, d) be a metric space and A ⊆ X be a set. Then A is closed if
and only if every convergent sequence in A converges to an element in A.

Proof. Suppose A is closed and let (xn)n be a convergent sequence in A. By way of
contradiction, assume that the limit is not in A. Note that A being closed implies by
definition that Ac is open. Since x ∈ Ac is open, there is ε > 0 such that Bε(a) ⊆ A. Now,
by definition of convergence, there is N ∈ N such that for all n ≥ N, xn ∈ Bε(x), but this
is impossible, as Bε(x) ∩A = ∅.

Now, for the other implication, assume that A is not closed, then A is not equal to its
closure and since A = A ∪ A′, this means that A′ ∩ Ac ̸= ∅, so let x ∈ A′ ∩ Ac. Since x is
a limit point of A, there exists a sequence (xn)n ⊆ A converging to x, but x ∈ Ac, which
is a contradiction. □

Definition 2.15. Let (X, d) be a metric space, A ⊆ X is said to be bounded if

diam(A) := sup{d(x, y) : x, y ∈ A} < ∞.

Now, let’s explore more important properties of metric spaces.
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2.1. Compactness. Compactness (in my personal opinion) is one of the most important
topological properties and it can be extrapolated to many settings. For example, a form
of compactness allow us to prove the following statement: “let (pλ)λ be an infinite family
of polynomials (not necessarily countable), such that every finite subfamily has a common
root. Then, the entire (pλ)λ has a common root”!

Definition 2.16. Let (X, d) be a metric space, K ⊆ X is said to be compact if every
covering of K by open sets can be reduced to a finite covering.

Lemma 2.17. Let (X, d) be a metric space, K ⊆ X compact, then K is closed.

Proof. Let’s see that Kc is open, so let x ∈ Kc, for every k ∈ K, consider εk := d(x, k)/2
and note that Bεk(x)∩Bεk(k) = ∅. Note that the collection (Bek(k))k is a covering ofK, by
compactness, there exists a finite subcovering, meaning that K ⊆ Bεk1

(k1)∪· · ·∪Bekl
(kl).

Now, note that the set
⋂l

j=1Bekj
(x) is open and does not intersect K as is disjoint from

the union of the balls. So, Kc is open and K is closed. □

Lemma 2.18. Let (X, d) be a metric space, K ⊆ X be compact and C ⊆ K be closed,
then C is compact.

Proof. Let (Uα)α be an open covering of C, since C is closed, Cc is open and (Uα)α ∪ Cc

is an open covering of K, by compactness, there is a finite subcovering of K, but since
C ⊆ K, this subcovering also works for C. □

Lemma 2.19. Let (X, d) be a metric space, K ⊆ X be compact, then K is bounded.

Proof. By way of contradiction, assume that K is unbounded, then diam(K) = ∞. Let
x ∈ K, choose x1 ∈ K such that d(x, x1) = 1, note that keeping this procedure, since K
is infinite, otherwise couldn’t be unbounded, there is xn ∈ K \ {x1, . . . , xn−1} such that
d(x, xn) = n. Note that the family (Bn(xn))n is an open covering of K that does not
admit a finite subcovering, hence K is not compact, contradiction. □

Remark 2.20. In a metric space (X, d) compact sets are closed and bounded. However,
the reverse does not hold in general. However, in Rn this property holds, K is compact if
and only if is closed and bounded, this is called the Heine-Borel Property.

Theorem 2.21. Let (X, d) be a metric space, K ⊆ X be a set, then the following state-
ments are equivalent:

(1) K is compact.
(2) Every infinite set in K has a limit point in K
(3) Every sequence in K has a convergent subsequence in K.

Proof. Let’s see (1) ⇒ (2), so let A ⊆ K, we want to see that if A is infinite, then A has
an accumulation point in K, let’s prove this by contrapositive. Suppose that A does not
have accumulation points in K, therefore A′ = ∅ and A needs to be closed.

Note that, since A does not have limit points, for every a ∈ A, we can find εa > 0 such
that Bεa(a) ∩ A = {a}. Therefore, the covering (Bεa(a))a ∪ Ac is an open covering of K
and since it is compact, admits a finite subcovering. Hence, A must be finite.

To see (2) ⇒ (3), let (xn)n ⊆ K be a sequence, note that it is an infinite set of K and
therefore it has a limit point in K. But then we can find a sequence in the range of (xn)n
converging to x, as we wanted.

I am not proving (3) ⇒ (1), because this result is actually hard. It is only true for
metric spaces, we are going to use the result and let you to check the proof! □

2.2. Continuous functions.

Definition 2.22. Let (X, d) be a metric space, a subset D ⊆ X is said to be dense if for
all x ∈ X, there exists (dn)n ⊆ D such that dn → x.
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Example 2.23. The set Q is dense in R.

Definition 2.24. Let (X, dX), (Y, dY ) be metric spaces, a function f : X → Y is said
to be continuous if for all ε > 0, there exists δ > 0 such that if dX(x, y) < δ, then
dY (f(x), f(y)) < ε.

Theorem 2.25. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y be a function. Then
f is continuous if and only if the preimage of every open set in Y under f is open in X.

Theorem 2.26. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y be a function.
Then f is continuous if and only if for every sequence (xn)n ⊆ X such that xn → x, then
f(xn) → f(x).

Proof. Suppose that f is continuous and consider a convergent sequence (xn)n in X. Let
ε > 0, we need N ∈ N such that for all n ≥ N , f(xn) ∈ Bε(f(x)). Since f is continuous,
there exists δ > 0 such that if dX(x, y) < δ, then dY (f(x), f(y)) < ε. Since xn → x, there
is N ∈ N such that for all n ≥ N, xn ∈ Bδ(x), but by continuity this entails that for all
n ≥ N, f(xn) ∈ Bε(f(x)), as we wanted.

Now, suppose that f exchanges limits, let’s see that f is continuous. Let’s prove it by
contrapositive, suppose that if f is not continuous, then there is a convergent sequence in
X such that its images does not converge. Since f is not continuous, there are x, y ∈ X
and ε > 0 such that for all δ > 0, dX(x, y) < δ, but dY (f(x), f(y)) ≥ ε. Note that we can
choose δ = 1/n and in that way we can construct a sequence (xn)n converging to x, but
whose all images are a distance greater or equal than ε > 0 from f(x), this proves the
statement. □

Lemma 2.27. Let (X, dX), (Y, dY ) be metric spaces, f : X → Y be continuous and
K ⊆ X be compact, then f(K) is compact.

Proof. Let (Uα)α be an open covering of f(K) and note that since f is continuous,
(f−1(Uα))α is an open covering of K, being K compact, this means that admits a fi-
nite subcovering. Note that going back to Y , this provides a finite covering of f(K). □

Theorem 2.28. Let (X, d) be a metric space and f : X → R be continuous, let K ⊆ X
be compact, then K attains its minimum and its maximum on K.

Proof. Note that f(K) is a compact subset of R, hence is closed and bounded. Call
m := inf(f(K)),M := sup(f(K)). By the definition of the supremum, we may find
(xn)n ⊆ K such that f(xn) → M . Since (xn)n is a sequence in K and K is compact,
we may find a convergent subsequence to x ∈ K, without loss of generality, assume that
(xn)n itself converges to x. By continuity of f , f(xn) → f(x), but we already knew
that f(xn) → M , by uniqueness of the limits, f(x) = M . Note that if we are working
with a subsequence, we have to note that a sequence converges to x if and only if every
subsequence converges to the same limit. The proof for the value whose image is m is
analogue. □

Definition 2.29. Let (X, dX), (Y, dY ) be metric spaces, f : X → Y be a function. We
will say that f is uniformly continuous if for all ε > 0, there is δ > 0 such that for all
x, y ∈ X, if dX(x, y) < δ, then dY (f(x), f(y)) < ε.

Note that the difference between continuity and uniform continuity is that for continuity,
the δ might depend on the points, while for uniform continuity, δ is uniform for every pair
of elements in X.

2.3. Complete metric spaces.

Definition 2.30. Let (X, d) be a metric space, a sequence (xn)n inX is said to be a Cauchy
sequence if for all ε > 0, there exists N ∈ N, such that for all n,m ≥ N , d(xn, xm) < ε.
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Definition 2.31. Let (X, d) be a metric space, X is said to be complete if every Cauchy
sequence in X converges to an element in X.

Lemma 2.32. Let (X, d) be a metric space and (xn)n be a convergent sequence. Then
(xn)n is a Cauchy sequence.

Proof. Let x ∈ X be the limit of (xn)n and let ε > 0, then there exists N ∈ N such that for
all n ≥ N , d(xn, x) < ε/2. Let n,m ≥ N and note that d(xn, xm) ≤ d(xn, x)+d(x, xm) < ε,
then is a Cauchy sequence. □

Example 2.33. The set of the real numbers is a complete metric space, also every Rn.

Definition 2.34. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y , the function f is
said to be an isometry if dX(x, y) = dY (f(x), f(y)).

Note that clearly isometries are continuous and actually uniformly continuous. Isome-
tries preserves the structuree of the metric space.

Theorem 2.35. Let (X, d) be a metric space, then there exists a complete metric space
X∗ such that X can be isometrically embedded into X and X is dense in X∗, such space
is called the completion of X.

Proof. The idea of this proof is to construct a new metric space by taking all the Cauchy
sequences onX and defining the following relation, (xn)n ∼ (yn)n if and only if d(xn, yn) →
0. This relation is an equivalence relation, the set X∗ is just X/ ∼. □

Example 2.36. The set R is the completion of Q.

Definition 2.37. Let (X, d) be a metric space, X is said to be separable if it admits a
countable dense set.

Theorem 2.38 (Baire Category Theorem). Let (X, d) be a complete metric space and
(Un)n be a sequence of open dense sets in X, then the intersection is also dense in X.

Proof. First note that D is dense in X if and only if every open set in X intersects
D. This follows from the definition using sequences. So, let U ⊆ X open and take
x0 ∈ U , ε > 0 such that Bε(x0) ⊆ U . Since U1 is dense in X, Bε(x0) ∩ U1 ̸= ∅, so, let
x1 ∈ Bε(x0) \ {x0} ∩ U1 and now consider Bε/2(x1) ∩ U2, again since U2 is dense, we may
find x2 in such intersection. Note that following in this way, we can find (xn)n such that
each xn ∈ Un. Note that (xn)n is a Cauchy sequence, by the shrinking radius condition
and since X is complete, xn → x ∈ X. Note also that such x ∈ Bε/n(xn) ∩ Un ⊆ U for

all n, hence x ∈ ∩
⋂∞

n=1 Un ∩U . Since U was arbitrary, this shows that the intersection is
dense in X. □

2.4. Descriptive set theory.

Definition 2.39. Let (X, d) be a metric space, a set A ⊆ X is said to be an Fσ if it is
the countable union of closed sets, it is said to be a Gδ if it is the countable intersections
of open sets.

By taking countable intersections of Gδ sets and countable unions of Fσ sets we can move
on the Hierarchy, this how the Borel σ-algebra is generated. In this way we can prove that
the cardinality of the Borel σ-algebra is the cardinality of the continuum. Every family
in the construction has 2ℵ0 sets and by not assuming the continuum hypothesis, this
procedure ends up in the first uncountable ordinal ω1 < 2ℵ0 , then we have 2ℵ0 × ω1 = 2ℵ0

Borel sets.
A set A ⊆ X is said to be analytic if it is the image of a continuous function of a Borel

set. Analytic sets are ”big” in X in the following sense: they cannot be the countable
union of closed nowhere dense sets.

Definition 2.40. Let (X, d) be a metric space, X is said to be a Polish space if its
completely metrizable and has a countable dense set.
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2.5. Basic topology.

Definition 2.41. Let X ̸= ∅, a family of sets τ ⊆ P(X) is said to be a topology if

(1) ∅ ∈ τ ,
(2) τ is closed under arbitrary unions, meaning if (Uλ)λ ⊆ τ , then

⋃
λ Uλ ∈ τ ,

(3) τ is closed under finite intersections, meaning that if U1, . . . , Un ∈ τ , then
⋂n

i=1 Ui ∈
τ.

The pair (X, τ) is called a topological space. Sets in τ are called open sets, the comple-
ment of an open set is a closed set.

Definition 2.42. Let (X, τ) be a topological space, a set B ⊆ τ is said to be a basis for
τ if

(1) B covers X, i.e, for all x ∈ X, there exists B ∈ B such that x ∈ B.
(2) For every B1, B2 ∈ B and for every x ∈ B1 ∩ B2, there exists B3 ∈ B such that

B3 ⊆ B. A basis generates the topology by taking arbitrary unions of elements in
the basis. If B is a basis, clearly every basic set is open.

Example 2.43. Let’s see some examples of topological spaces.

(1) Every metric space is a topological space, note that for r > 0, the set B =
(Br(x))r>0,x) is a basis for the topology. Clearly it covers X and we have to
note that if we have Br(x) and Bq(y) such that they are not disjoint and we take
z ∈ Br(x)∩Bq(y), then we can find ε > 0, take for example diam(Br(x)∩Bq(y))/2,
such that Bε(z) ⊆ Br(x)∩Bq(y). The topology generated by the open balls is called
the metric topology.

This is consistent on what we have, that every open set can be expressed as the
union of arbitrary balls centered at their points.

(2) Let (L,≤) be a totally ordered set, meaning L ̸= ∅ and ≤ is a relation over L
satisfying the following,
(a) For all x ∈ L, x ≤ x (reflexivity).
(b) For all x, y ∈ L, x ≤ y and y ≤ x implies x = y (anti symmetry).
(c) For all x, y, z ∈ L, x ≤ z and z ≤ y, implies x ≤ y (transitivity).
(d) For all x, y ∈ L, one of the following holds always: x ≤ y or y ≤ x or x = y

(totality).
Over L, define the following sets in the standard way:

(x, y) := {z : x < z < y} open interval,

[x, y) := {z : x ≤ z < y} right half-closed interval,

(x, y] := {z : x < z ≤ y} left half-closed interval,

[x, y] := {z : x ≤ z ≤ y} closed interval.

Let B be the family of all open intervals in L, then B is a basis. Clearly covers
L and note that for (a, b), (c, d) ∈ B, if x ∈ (a, b) ∩ (c, d) then by taking α :=
min(a, c), β := min(b, d), the interval (α, β) ∈ B contains x and is fully contained in
the intersection. The topology generated by this basis is called the order topology.

(3) Consider the set NN of functions from the natural numbers to the natural numbers,
i.e, NN := {f : N → N}. Define the following sets over NN, for n ∈ N, f ∈ NN,

Vf,n := {g ∈ NN : f(i) = g(i), i = 1, . . . , n}
. Let’s see that the B = (Vf,n)f∈NN,n∈N is a basis in NN. Clearly it covers the space,

now for f, h ∈ NN, n,m ∈ N, take Vf,n ∩ Vh,m and note that this set it is just
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Vf,n ∩ Vh,m = {g ∈ NN : g(i) = f(i), i = 1, . . . , n ∧ g(i) = h(i), i = 1 . . . ,m}.

Without loss of generality, assume n ≥ m and let w be in that intersection.
Then w(i) = f(i) for all i = 1, . . . , n and w(i) = h(i) for all i = 1 . . . ,m. Since
n ≥ m, this later statement just means that w(i) = f(i) for all i = 1, . . . , n, as for
i = 1, . . . ,m, f and h agrees and after that w only needs to agree with f . Consider
the set Vw,n and note that this set is the set of all functions g such that g(i) = w(i)
for i = 1, . . . , n. Then g ∈ Vf,n ∩ Vh,m.

The topology generated by this topology is the same as the product topology in
NN. It can be shown that this topology is metrizable under the metric

d(f, g) :=
∞∑
n=1

min(|f(n)− g(n)|, 1)
2n

.

Under this metric, the space is complete, it is called the Baire space. The Baire space is
a Polish space. Actually it can be proved that is homeomorphic to the irrational numbers.

Remark 2.44. For a topological space, notions as compacntess, limit point, continuous
function, are defined as in metric spaces as well.

Example 2.45 (Sequentially compact space that is not compact). Consider ω1, the first
uncountable ordinal and give [0, ω1] the order topology. Note that with the order induced
by the ∈ relation one can show that the ordinal numbers are totally ordered. Under that
order, (ω1,∈) is a topological space and it has the least upper bound property as ordinals
are well-ordered.

It can be shown that K is compact in the order topology if and only if K closed and
bounded provided that the order satisfies the least upper bound property. Therefore [0, ω1)
is not compact. Take any sequence (αn)n ⊆ [0, ω1), note that this is just a countable family
of countable sets. Also, note that the limit of such sequence is just α :=

⋃∞
n=1 αn. Being

a countable union of countable sets, α itself is countable and therefore is an element in
[0, ω1), so every sequence has a convergent subsequence (even stronger), but [0, ω1) is not
compact.

3. Normed linear spaces

Remark 3.1. Here all vector spaces are going to be consider over the fields K = R or C

Definition 3.2. Let (X,+, ·) be a vector space. A norm is a function ∥ · ∥ : X → [0,∞)
such that

(1) For all x ∈ X, ∥x∥ = 0 if and only if x = 0.
(2) For all x ∈ X,α ∈ K, ∥αx∥ = |α|∥x∥.
(3) For all x, y ∈ X, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The pair (X, ∥ · ∥) is called a normed space.

Remark 3.3. Every normed space is a metric space, consider the metric d(x, y) := ∥x−y∥,
however, the converse is not true.

Definition 3.4. A normed space which is complete with respect to the metric induced by
the norm is a Banach space.

Definition 3.5. Let X be a normed space and (xn)n ⊆ X, we are going to say that the
series

∑∞
n=1 xn converges if the sequence of partial sums sn :=

∑n
j=1 xj converges with

respect to the norm in X. The series is said to be absolutely convergent if the series∑∞
n=1 ∥xn∥ converges in R.
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Theorem 3.6. Let X be a normed linear space, then X is a Banach space if and only if
every absolutely convergent series in X converges in X

Proof. Suppose X is a Banach space and let
∑∞

n=1 an absolutely convergent series. Let
m,n ∈ N and without loss of generality, assume that n > m. Consider the difference

∥sn − sm∥ =

∥∥∥∥∥∥
n∑

j=1

xj −
m∑
j=1

xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

j=m

xj

∥∥∥∥∥∥ ≤
n∑

j=m

∥xj∥

and note that the later term goes to zero as n,m → ∞ as since is a convergent series in
R is a Cauchy sequence. So, (sn)n is a Cauchy sequence in X and since X is a Banach
space, it converges.

Suppose now that every convergent series in X is convergent and let (xn)n be a Cauchy
sequence in X, therefore for all k ∈ N, there exists Nk ∈ N such that for all n,m ≥ Nk,
∥sn − sm∥ < 2−k. Without loss of generality, assume that the (Nk)k is an increasing
function.

Now, consider the sequence
∑∞

k=1(xNk+1
−xNk

) and note that the later condition entails
that this sequence is absolutely convergent and then it converges to x ∈ X. Now, note
that the sequence

xNk
= xN1 + (xN2 − xN1) + · · ·+ (xNk

− xNk−1
)

converges to such x ∈ X. Therefore,

∥xn − x∥ ≤ ∥xn − xNk
∥+ ∥xNk

− x∥
and note that the first term goes to zero since our sequence was a Cauchy sequence and
the second term goes to zero by the convergence of (xNk

). □

Definition 3.7. Let X be a vector space and ∥ · ∥1, ∥ · ∥2 be two norms on X, they are
said to be equivalent if there are α, β > 0 such that for all x ∈ X,

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥1.

Theorem 3.8. All the norms on Rn are equivalent.

Proof. We are going to prove that any norm is equivalent to the maximum norm, ∥x∥∞ :=
max{|x1|, . . . , |xn|}. Let ∥∥ be any norm over Rn and let e1, . . . , en be the standard basis
of Rn. Let x ∈ Rn and note that x =

∑n
i=1 xiei. Therefore,

∥x∥ =

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ ≤
n∑

i=1

|xi|∥ei∥ ≤ nmax {∥ei∥}∥x∥∞.

□

Call β = nmax {∥ei∥}. Consider now the following function, f : (Rn, ∥·∥∞) → R, f(x) =
∥x∥. Note that the previous inequality implies that

|f(x)− f(y)| = |∥x∥ − ∥y∥| ≤ ∥x− y∥ ≤ β∥x− y∥∞
and therefore f is a continuous function. Consider the unit closed ball in Rn and remem-
ber that by the Heine-Borel property, K = B1(0) is compact as is closed and bounded.
Therefore, the restriction of f to K has a minimum and a maximum in K. Let k ∈ K be
the minimum of f over K and note that, for all x ∈ K, f(k) ≤ f(x).

Now, for all x ̸= 0, take the element x/∥x∥∞, this element is clearly an element in K,

therefore, f(k) ≤ f
(

x
∥x∥

)
. But this just means the following,
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∥k∥ ≤
∥∥∥∥ x

∥x∥∞

∥∥∥∥⇒ ∥k∥∥x∥∞ ≤ ∥x∥.

Since x is arbitrary, the two norms are indeed equivalent.

Lemma 3.9. Let X be a normed linear space, then

(1) Every finite dimensional subspace of X is closed.
(2) If X is a Banach space and Y ⊆ X is a closed subspace, then Y is a Banach space.

(1) Let V be finite dimensional, let n := dim(V ). Now, pick a basis v1, . . . , vn for V
and define the following mapping, T : V → Rn, T (vi) := ei. Note that T can be
linearly extended and therefore V can be seen as Rn. But by our previous result,
all norms in Rn are equivalent, then V itself must be complete and then is closed.

(2) If Y is closed, contains all its limit points, then every convergent sequence in Y
must have its limit in Y and Y is a Banach space.

Clearly the real numbers are a Banach space, the complex numbers as well. Any Rn is
a Banach space. However, let’s try to deal with more interesting examples.

Example 3.10. Let X be a compact metric space and consider

C(X) := {f : X → R : f is continuous}.

Define the following function over X,

∥f∥∞ := sup
x∈X

|f(x)|

it is easy to see that ∥ · ∥∞ is a norm over C(X). With the point-wise addition and
multiplication, C(X) can be seen as a vector space. Let’s see that C(X) is a Banach
space. Let (fn)n be a Cauchy sequence with respect to ∥·∥∞. Now, for all x ∈ X, consider
(fn(x))n and note that (fn(x))n is a sequence in R. For m,n ∈ N, note that

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ → 0

as the sequence is a Cauchy sequence. Since R is complete, fn(x) converges to an element
f(x) ∈ R, define,

f(x) := lim
n→∞

fn(x)

we just shown that f is well defined, now we need to see that it is continuous. Let ε > 0,
we want N ∈ N such that for all n ≥ N, ∥f − fn∥∞ < ε. Since (fn)n is a Cauchy sequence,
there is N ∈ N such that for all n,m ≥ N , ∥fn− fm∥ < ε/2. Now, note that by continuity
of the norm function

lim
n→∞

∥fn − fN∥ = ∥f − fN∥ < ε/2

and hence, for all n ≥ N ,

∥f − fn∥∞ ≤ ∥f − fN∥+ ∥fN − fn∥ < ε.

So, fn converges uniformly to f . Since the uniform limit of continuous functions is
continuous, f ∈ C(X) and C(X) is a Banach space.

Example 3.11 (Sequence spaces). Now, let’s consider some spaces of sequences as exam-
ple.
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(1) ℓ∞(N): Consider the set of all bounded real sequences

ℓ∞(N) :=
{
(xn)n : sup

n∈N
< ∞

}
.

Endowed with the norm ∥xn∥∞ := supn∈N |xn| it becomes in a Banach space. It is
easy to see that the function is a norm and that ℓ∞(N) is a vector space, let’s see

that it is complete. Let (xjn)j be a Cauchy sequence in ℓ∞(N), and note that we
can arrange its elements as follows:

x11 x12 x13 x14 . . .
x21 x22 x23 x24 . . .
x31 x32 x33 x34 . . .

now, note that for n fixed, (xjn)j is a Cauchy sequence in R as for i, j ∈ N, |xin−
xjn| ≤ ∥xin − xjn∥∞ and the later term goes to zero when i, j → ∞, because it is a
Cauchy sequence. Since R is complete, the coordinate sequence converges, define,

xn := lim
j→∞

xjn.

Let’s see that this sequence is bounded, note that for k ∈ N fixed,

∥(xn)n∥∞ ≤ ∥(xn)n − (xkn)k∥+ ∥(xkn)k∥ = lim
j→∞

∥(xjn)n − (xkn)k∥∞ + ∥(xkn)n∥∞

and note that the limit on the right goes to zero when j, k → ∞, as is a Cauchy
sequence and the term on the left remains bounded, as the sequence is in ℓ∞(N).
Therefore, the limit is bounded.

Finally, by using again the continuity of the norm, we can show that the con-
vergence to (xn)n is uniform. Note that, for k ∈ N

∥(xn)n − (xjn)n∥∞ = lim
i→∞

∥(xin)n − (xjn)n∥∞
and the later term goes to zero when i, j → ∞, as the sequence is a Cauchy
sequence. Therefore, (xn)n is actually the uniform limit of the sequence and ℓ∞(N)
is a Banach space.

(2) For p ≥ 1, ℓp(N): Define the following space

ℓp(N) := {(xn)n :

∞∑
n=1

|xn|p < ∞}.

Define the function

∥(xn)n∥p :=

( ∞∑
n=1

|xn|p
)1/p

.

Here is not so straightforward to see that ℓp(N) is a vector space and that ∥ · ∥p
is a norm. Let’s start seeing that ℓp(N) is a vector space. Let α ∈ K, (xn)n ∈ ℓp,
then

∞∑
n=1

|αxn|p = |α|p
∞∑
n=1

|xn|p < ∞

meaning if (xn)n ∈ ℓp, then α(xn)n ∈ ℓp as well. Now, let’s see that ℓp is closed
under sums. Note that
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|xn − yn|p ≤ (2max(|xn|, |yn|))p ≤ 2p(|xn|p + |yn|p)
which means that

∞∑
n=1

|xn − yn|p ≤ 2p
∞∑
n=1

(|xn|p + |yn|p) ≤ 2p(∥(xn)n∥p + ∥(yn)n∥p) < ∞.

So, ℓp is a vector space. The hard part of proving that ∥ · ∥p is a norm is the
triangle inequality, which follows from Minkowski’s inequality, which we are going
to prove later.

Now, let (xjn)j be a Cauchy sequence in ℓp, as before, note that for fixed n and
j, i ∈ N, one has

|xin − xjn| ≤ ∥(xin)n − (xjn)n∥p
i,j→∞−−−−→ 0

as the sequence was a Cauchy sequence in ℓp. Since R is complete, for fixed n the
sequence converges, define,

xn := lim
j→∞

xjn.

We need to see that (xn)n ∈ ℓp and that the sequence converges to this element.

Let ε > 0, M ∈ N and choose i, j ∈ N such that ∥(xin)n − (xjn)n∥p < ε. Note that

M∑
n=1

|xin − xjn|p ≤ ∥(xin)n − (xjn)n∥pp < εp

if we take the limit when j → ∞, we get

M∑
n=1

|xin − xn|p < εp

and if we let M → ∞, we actually get
∑∞

n=1 |xin − xn|p < εp. So, the element
(xin)n − (xn)n ∈ ℓp, but since ℓp is a vector space, the element (xn)n = ((xn)n −
(xin)n)+ (xin)n ∈ ℓp. Convergence follows from the last inequality, as ε is arbitrary
small.

(3) Subspaces of ℓ∞: Consider the following subspaces of ℓ∞(N),

d := {x = (xn)n : xn ̸= 0 for all but finitely many n},
c0 := {x = (xn)n : xn → 0},
c := {x = (xn)n : xn converges}.

Note that we have the following inclusions d ⊆ c0 ⊆ c ⊆ ℓ∞. c0 and c are Banach
spaces as subspaces of ℓ∞, while d is dense in ℓ∞, in particular, is not closed.

Let’s see that c0 and c are closed. Let (xjn)j be a sequence in c0 converging to
some (xn)n ∈ ℓ∞, we want to see that xn → 0. Note that for all j ∈ N

|xn| ≤ |xn − xjn|+ |xjn| ≤ ∥(xn)n − (xjn)j∥∞ + |xjn|.
Let ε > 0 be, since (xjn)j converges to (xn)n, there exists N1 ∈ N such that for

all j ≥ N1, ∥(xn)n − (xjn)j∥∞ < ε/2. On the other hand, since for j fixed, xjn → 0

for all j ∈ N, there exists N2 ∈ N such that for all n ≥ N, |xjn| < ε/2. Take
N := max(N1, N2), so for all n, j ≥ N , |xn| < ε.
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The idea for c should be very similar, let (xjn)j be a sequence in c and let (xn)n
be its limit. For all n ∈ N, (xjn)j is a convergent sequence in R, call the limit yn.
Note that

|yn − ym| = lim
j→∞

|yn − xjm| = lim
i→∞

lim
j→∞

|xin − xjm| ≤ lim
i→∞

lim
j→∞

∥(xin)i − (xjn)j∥∞

and the later limit goes to zero, because the sequence was convergent and in par-
ticular a Cauchy sequence, so (yn)n is convergent, call it y its limit.

We want to show that xn converges to y. In order to do that, note that

|xn − y| ≤ |xn − xjn|+ |xjn − y| ≤ ∥(xn)n − (xjn)j∥∞ + lim
k→∞

|xjn − yk|

= ∥(xn)n − (xjn)j∥∞ + lim
k→∞

lim
i→∞

|xjn − xik|.

Note that the later term goes to zero when i, j → ∞ as the sequence is a Cauchy
sequence and the first goes to zero when j → ∞ by convergence. Therefore,
xn → y, as we wanted.

Finally, to see that d is dense in ℓ∞, let x = (xn)n be any element in ℓ∞, we

need a sequence (xjn)j in d such that xjn → x. So, define the sequence

xjn := (x1, x2, . . . , xj , 0, 0, . . . , )

note that for all j ∈ N, xjn ∈ d and the sequence (xjn)j − (xn)n converges to zero.
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