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These notes are largely based on the book “Markov Chains” by J. R. Norris [1]. These
Cambridge University notes are also based on the same book.

1. Discrete-time Markov chains

Think about the following problem.

Example 1 (Gambler’s ruin). Imagine a gambler who has $1 initially.
At each discrete moment of time t = 0, 1, . . ., the gambler can play $1 if he
has it and win one more $1 with probability p or lose it with probability
q = 1− p. If the gambler runs out of money, he is ruined and cannot play
anymore. What is the probability that the gambler will be ruined?

The gambling process described in this problem exemplifies a discrete-time Markov chain.
In general, a discrete-time Markov chain is defined as a sequence of random variables
(Xn)n≥0 taking a finite or countable set of values and characterized by the Markov property:
the probability distribution of Xn+1 depends only of the probability distribution of Xn and
does not depend on Xk for all k ≤ n − 1. We will denote this discrete set of values by S
and call it the set of states.

Definition 1. We say that a sequence of random variables (Xn)n≥0, where

Xn : Ω→ S ⊂ Z,
is a Markov chain with initial distribution λ and transition matrix P = (pij)i,j∈S if

1

http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf
http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf
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(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P(Xn+1 = in+1 | Xn = in) = pinin+1 .

We will denote the Markov chain by Markov(P, λ). Note that the ith row of P is the
probability distribution for Xn+1 conditioned on the fact that Xn = i. Therefore, all entries
of the matrix P are nonnegative, and the row sums are equal to one:

pij ≥ 0,
∑
j∈S

P(Xn+1 = j | Xn = i) =
∑
j∈S

pij = 1.

A matrix P satisfying these conditions is called stochastic.
Some natural questions about a Markov chain are:

• What is the equilibrium probability distribution, i.e., the one that is preserved from
step to step?
• Does the probability distribution of Xn tend to the equilibrium distribution?
• How one can find the probability to reach some particular subset of states A ⊂ S?

What is the expected time to reach this subset of states?
• Suppose we have selected two disjoint subsets of states A and B. What is the

probability to reach first B rather than A starting from a given state? What is the
expected time to reach B starting from A?

Prior to addressing these question, we will go over some basic concepts.

1.1. Time evolution of the probability distribution. If the set of states S is finite,
i.e., if |S| = N , then Pn is merely the nth power of P . If S is infinite, we define Pn by

(Pn)ij ≡ p(n)ij =
∑
i1∈S

. . .
∑

in−1∈S
pii1pi1i2 . . . pin−1j .

Notation Pi(Xn = j) denotes the probability that the Markov process starting at i at
time 0 will reach state j at time n:

Pi(Xn = j) := P(Xn = j | X0 = i).

Theorem 1. Let (Xn)n≥0 be a Markov chain with initial distribution λ and transition
matrix P . Then for all n,m ≥ 0

(1) P(Xn = j) = (λPn)j;

(2) Pi(Xn = j) = P(Xn+m = j | Xm = i) = p
(n)
ij .
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Proof. (1)

P(Xn = j) =
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1)P(Xn−1 = in−1 | Xn−2 = in−1) . . .P(X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
λi0pi0i1 . . . pin−1j = (λPn)j .

(2) The second statement is proven similarly.
�

1.2. Communicating classes and irreducibility. We say that state i leads to state j
(denote it by i −→ j) if

Pi(Xn = j for some n ≥ 0) > 0.

If i leads to j and j leads to i we say that i and j communicate and write i ←→ j. Note
that i leads to j if and only if one can find a finite sequence i1, . . . , in−1 such that

pii1 > 0, pi1i2 > 0, . . . , pin−1j > 0.

This, in turn, is equivalent to the condition that p
(n)
ij > 0 for some n.

The relation ←→ is an equivalence relation as it is

(1) symmetric as if i←→ j then j ←→ i;
(2) reflective, i.e., i←→ i;
(3) transitive, as i←→ j and j ←→ k imply i←→ k.

Therefore, the set of states is divided into equivalence classes with respect to the relation
←→ called communicating classes.

Definition 2. We say that a communicating class C is closed if

i ∈ C, i −→ j imply j ∈ C.

Once the chain jumps into a closed class, it stays there forever.
A state i is called absorbing if {i} is a closed class. In the corresponding network, the

vertex i has either only incoming edges, or no incident edges at all.

Example 2 Let us identify the states in the Gambler’s ruin Markov
chain 1 with the number of dollars at each of them. It is easy to see that
states {1, 2, . . .} =: C1 constitute a communication class. The class C1 is
not closed because state 1 ∈ C1 leads to state 0 /∈ C1. State 0 is a closed
communicating class {0} =: C0 and an absorbing state.
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Definition 3. A Markov chain whose set of states S is a single communicating class is
called irreducible.

Example 3 Let us consider a set of 7 identical particles shaped like
balls interacting according to a sticky potential. I.e., the particles do not
interact, when they do not touch each other, and they stick together as
they touch forming a bond. Some amount of energy needs to be spent in
order to break a bond. One example of such a system is a toy constructor
consisting of magnetic sticks and steel balls. Another example is micron-
size styrofoam balls immersed in water. M. Brenner’s and V. Manoharan’s
group (Harvard University) conducted a number of physical experiments
with such balls. M. Holmes-Cerfon and collaborators developed an efficient
numerical algorithm for enumeration all possible configurations of particles
and calculating transition rates between the configurations. A complete
enumeration has been done for up to 14 particles, an a partial one for
up to 19 [3]. One can model the dynamics of such a particle system as a
continuous-time Markov chain which, in turn, can be converted into a jump
chain, i.e., a discrete-time Markov chain. Such a jump chain for 7 particles
is displayed in Fig. 1. The numbers next to the arrows are the transition
probabilities. This chain was obtained from Fig. 6 in [2]. This Markov
chain is irreducible because the process starting at any configuration, can
reach any other configuration. While there are no direct jumps between
states 2 and 4, the transitions between them can happen in two jumps. So
is true for states 1 and 5. The transition matrix for this chain is given by:

(1) P =


0.7395 0.0299 0.0838 0.1467 0
0.1600 0.1520 0.4880 0 0.2000
0.1713 0.1865 0.4893 0 0.1529
0.8596 0 0 0 0.1404

0 0.2427 0.4854 0.1553 0.1165


1.3. Hitting times and absorption probabilities.

Definition 4. Let (Xn)n≥0 be a Markov chain with transition matrix P . The hitting time
of a subset A ⊂ S is the random variable τA : Ω→ {0, 1, 2, . . .} ∪ {∞} given by

τA = inf{n ≥ 0 | Xn ∈ A},

where we agree that inf ∅ =∞.

Definition 5. • The probability that (Xn)n≥0 ever hits A starting from state i is

(2) hAi = Pi(τ
A <∞).

• If A is a closed class, hAi is called the absorption probability.

https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
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Figure 1. A jump chain for 7 particles interacting according to a sticky
potential obtained from Fig. 6 in [2].

• The mean time taken for (Xn)n≥0 to reach A starting from i is

(3) kAi = Ei[τ
A] ≡ E[τA|X0 = i] =

∑
n<∞

nPi(τ
A = n) +∞Pi(τ

A =∞).

Example 4 In the Gambler’s ruin example 1, a good question to ask is
what is the probability that the gambler will eventually run out of money if
initially he has i dollars. If p ≤ 1/2, this probability is 1. The next question
is what is the expected time for the gambler to run out of money. Using

the just introduced notations, one needs to find h
{0}
i and, if h

{0}
i = 1, what

is k
{0}
i .

The quantities hAi and kAi can be calculated by solving certain linear equations.

Theorem 2. The vector of hitting probabilities hA = {hAi | i ∈ S} is the minimal non-
negative solution to the system of linear equations

(4)

{
hAi = 1, i ∈ A
hAi =

∑
j∈S pijh

A
j , i /∈ A.
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(Minimality means that if x = {xi | i ∈ S} is another solution with xi ≥ 0 for all i, then
hAi ≤ xi for all i.)

Proof. First we show that the hitting probabilities satisfy Eq. (4). Indeed, if i ∈ A then
τA = 0 and hence Pi(τ

A <∞) = 1. If i /∈ A, then

Pi(τ
A <∞) =

∑
j∈S

Pi(τ
A <∞ | X1 = j)Pi(X1 = j)

=
∑
j∈S

Pj(τ
A <∞)pij =

∑
j∈S

hAj pij .

Now we show that if x = {xi | i ∈ S} is another nonnegative solution of Eq. (4) then
xi ≥ hAi for all i ∈ S. If i ∈ A then hAi = xi = 1. If i /∈ A, we have

xi =
∑
j∈S

pijxj =
∑
j∈A

pij +
∑
j /∈A

pijxj =
∑
j∈A

pij +
∑
j /∈A

pij
∑
k∈S

pjkxk

=
∑
j∈A

pij +
∑
j /∈A

pij

(∑
k∈A

pjk +
∑
k/∈A

pjkxk

)
=Pi(τ

A = 1) + Pi(τ
A = 2) +

∑
j /∈A

∑
k/∈A

pijpjkxk.

Continuing in this manner we obtain

xi =

n∑
k=1

Pi(τ
A = k) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn

=Pi(τ
A ≤ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn .

Since xj ≥ 0 for all j ∈ S, the last term in the last sum is nonnegative. Therefore,

xi ≥ Pi(τ
A ≤ n) for all n.

Hence
xi ≥ lim

n→∞
Pi(τ

A ≤ n) = Pi(τ
A <∞) = hi.

�

Theorem 3. Assume that hAi > 0 for all i ∈ (S\A). The vector of mean hitting times
kA = {kAi | i ∈ S} is the minimal non-negative solution to the system of linear equations

(5)

{
kAi = 0, i ∈ A
kAi = 1 +

∑
j∈S pijk

A
j , i /∈ A.

Proof. First we show that the mean hitting times satisfy Eq. (5). Indeed, if i ∈ A the
kAi = 0 as τA = 0. Let us consider two cases.
Case 1: there is i∗ ∈ S\A such that hAi∗ < 1.
Case 2: for all i ∈ S\A such that hAi = 1.
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In Case 1, Eq. (4) implies that all hAi < 1 for i /∈ A such that i −→ i∗. In this case, all
kAi = ∞ such that i −→ i∗ by Eq. (3). Hence Eq. (5) holds. Let us consider Case 2. If
i /∈ A then

kAi =Ei[τ
A] =

∞∑
n=1

nP(τA = n | X0 = i)

=

∞∑
n=1

n
∑
j∈S

P(τA = n | X1 = j, X0 = i)Pi(X1 = j)

We can switch order of summation because all terms are positive (this follows from the
monotone convergence theorem). Also the Markov property implies that

P(τA = n | X1 = j, X0 = i) = P(τA = n | X1 = j).

We continue:

kAi =
∑
j∈S

∞∑
n=1

nP(τA = n | X1 = j)Pi(X1 = j)

=
∑
j∈S

( ∞∑
m=0

(m+ 1)P(τA = m | X0 = j)pij

)

=
∑
j∈S

( ∞∑
m=0

mP(τA = m | X0 = j)pij +
∞∑

m=0

P(τA = m | X0 = j)pij

)

=
∑
j∈S

pijk
A
j +

∑
j∈S

pij

∞∑
m=0

P(τA = m | X0 = j).

Now we use the observe that

∞∑
m=0

P(τA = m | X0 = j) = hAj = 1

since we are considering Case 2. Finally,∑
j∈S

pij = 1

as this is a row sum of the transition matrix. As a result, we obtain what the desired
equation:

kAi = 1 +
∑
j∈S

pijk
A
j .
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Now we show that if {yi | i ∈ S} with yi ≥ 0 for every i ∈ S is another solution of Eq.
(5) then kAi ≤ yi for all i ∈ S. If i ∈ A, then kAi = yi = 0. For i /∈ A we have:

yi =1 +
∑
j∈S

pijyj = 1 +
∑
j /∈A

pijyj = 1 +
∑
j /∈A

pij

(
1 +

∑
k/∈A

pjkyk

)
=Pi(τ

A ≥ 1) + Pi(τ
A ≥ 2) +

∑
j /∈A

∑
k/∈A

pijpjkyk.

Continuing in this manner we obtain:

yi =Pi(τ
A ≥ 1) + Pi(τ

A ≥ 2) + . . .Pi(τ
A ≥ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn

=Pi(τ
A = 1) + 2Pi(τ

A = 2) + . . .+ nPi(τ
A ≥ n) +

∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn .

Since yi ≥ 0, so is the last term. Hence

yi ≥ Pi(τ
A = 1) + 2Pi(τ

A = 2) + . . .+ nPi(τ
A ≥ n) for all n.

Therefore,

yi ≥
∞∑
n=1

nPi(τi = n) = Ei[τ
A] = kAi .

�

Example 5 Consider a particle wandering along the edges of a cube Fig.
2(a). If the particle reaches vertices (0, 0, 0) and (1, 1, 1), it disappears.
From each of the other vertices (colored with a shade of grey in Fig. 2(a)),
it moves to any vertex connected to it via an edge with equal probabilities.
Suppose that the particle is initially located at the vertex (0, 0, 1). Find the
probability that it will disappear at vertex (0, 0, 0).
Hint: consider four subsets of vertices:
0 ≡ {(0, 0, 0)},
1 ≡ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
2 ≡ {(0, 1, 1), (1, 0, 1), (0, 1, 1)}, and
3 ≡ {(1, 1, 1)}
as shown in the Fig. 2(b). Find the probabilities to jump along each arrow
in Fig. 2(b). Denote by Pi the probability for the particle to disappear at
vertex (0, 0, 0) starting from subset i, i = 0, 1, 2, 3. Write an appropriate
system of equations for Pi and solve it.
Solution 1: Transition probabilities between the subsets 0, 1, 2 and 3 are

shown in Fig. 2(b). Let Pi be the probability for the particle to disappear
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(a)

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

(1,1,1)

(b)

0 1 2 3

1/3 2/3

2/3

1/3

Figure 2. Illustration for Example 5

at (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
have:

P0 = 1;

P1 =
1

3
P0 +

2

3
P2;

P2 =
2

3
P1 +

1

3
P3;

P3 = 0.

The solution of this system is P0 = 1, P1 = 3
5 , P2 = 2

5 , P3 = 0.
Solution 2: Transition probabilities between the subsets 0, 1, 2 and 3 are
shown in Fig. 2(b). The probability to get to 0 starting from 1 is the sum
of probabilities to get to 0 from nth visit of 1:

P1 =

∞∑
n=1

1

3

(
2

3

)2(n−1)
=

1

3

1

1− 4
9

=
3

5
.

Answer: 3
5 .

Example 6 Consider a particle wandering along the edges of a cube like
in Example 5 except for now the only absorbing state is the vertex (0, 0, 0).
If particle is at any other vertex, it goes to one of the vertices connected to
it by an edge with equal probability. Find the expected time for a process
starting at each vertex to be absorbed at (0, 0, 0).

Solution: Taking symmetry into account, we define a reduced Markov
chain shown in Fig. 3. Let ki = Ei[τ

0] be the expected first passage time
to (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
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0 1 2 3

1/3 2/3

2/3 1/3

1

Figure 3. Illustration for Example 6

have:

k0 = 0;

k1 = 1 +
1

3
k0 +

2

3
k2;

k2 = 1 +
2

3
k1 +

1

3
k3;

k3 = 1 + k2.

The solution of this system is k0 = 0, k1 = 7, k2 = 9, k3 = 10.

1.4. Solving recurrence relationships. In the case where the Markov chain has an infinite set of states, Z or {0, 1, 2, . . .},
and only transitions between nearest neighbors are possible, Eqs. (4) and (5) become linear 2nd order recurrence relation-
ships, homogeneous and nonhomogeneous respectively. A recipe for solving linear recurrence relationships with constant
coefficients, homogeneous and nonhomogeneous, can be found e.g. here (a presentation by Niloufar Shafiei).

Second order recurrence relationships can be solved uniquely if one has two initial (boundary) conditions. However, if
the set of states S = {0, 1, 2, . . .} and A = {0} (as in the Markov chain Gambler’s ruin 1), Eqs. (4) and (5) have only one

boundary condition. The solutions hA and kA are determined by the additional requirements that they must be minimal
and nonnegative.

Now we consider the “birth-and-death” Markov chain where the coefficients are of the transition matrix P are

P00 = 1, Pi,i+1 = pi, Pi,i−1 = qi, pi + qi = 1, i ≥ 1.

In this chain, 0 is an absorbing state, and we wish to calculate the absorption probability starting from an arbitrary state
i. Eq. (4) gives:

h0 = 1, hi = qihi−1 + pihi+1, i ≥ 1.

This recurrence relationship cannot be solved by the tools for the case of constant coefficients. However, another technique
works in this case. Consider

ui := hi−1 − hi.

Subtracting hi from both parts of hi = qihi−1 + pihi+1 and taking into account that qi + pi = 1 we get:

piui+1 = qiui.

Therefore,

ui+1 =

(
qi

pi

)
ui =

(
qiqi−1 . . . q1

pipi−1 . . . p1

)
u1 =: γiu1.

Then

u1 + u2 + . . .+ ui = h0 − h1 + h1 − h2 + . . .+ hi−1 − hi = h0 − hi.

Hence

hi = h0 − u1(1 + γ1 + . . .+ γi−1) = 1− u1

i−1∑
j=0

γj ,

as h0 = 1. Here we have defined γ0 = 1. Note that u1 cannot be determined from the boundary condition h0 = 1. It has
to be determined from the condition that h is the minimal nonnegative solution. Therefore, we need to consider two cases.∑∞

j=0 γj =∞: In this case, u1 must be 0. Hence hi = 1 for all i ≥ 0. Hence the absorption probability is 1 for

every i.

http://www.eecs.yorku.ca/course_archive/2008-09/S/1019/Website_files/21-linear-recurrences.pdf
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∑∞
j=0 γj <∞: In this case, the minimal nonnegative solution will be the one where

hi → 0 as i→∞.

This will take place if we set

u1 =

 ∞∑
j=0

γj

−1

.

Then

hi = 1−
∑i−1

j=0 γj∑∞
j=0 γj

=

∑∞
j=i γj∑∞
j=0 γj

.

Therefore, the absorption probabilities hi < 1 for i ≥ 1.

Example 7 A gambler has $1 initially. At each round, he either wins $1 with probability p or loses
$1 with probability q = 1− p playing agains an infinitely rich casino. Find the probability that he gets
broke, i.e., his capital is down to $0.
Solution: Let Pi be the probability to get to the situation of having $0 provided that the initial
amount is $i. We have:

P0 = 1;

Pi = pPi+1 + qPi−1, 1 ≤ i <∞.

Observe that the probability to get to $0 starting from $1 is the same as the one to get to $1 starting
from $2. Therefore, the probability to get to $0 starting from $2 is the product of the probabilities
to get to $1 from $2 and to get to $0 from $1, i.e., P2 = P 2

1 . Hence, we get the following quadratic
equation for P1, taking into account that P0 = 1 and q = 1− p:

P1 = pP
2
1 + 1− p.

Solving it, we get two roots: 1 and 1−p
p . If p ≤ 1/2, then 1−p

p ≥ 1, hence the only suitable solution

is P1 = 1. If p > 1/2, then 1−p
p < 1, and we should pick the root P1 = 1−p

p . One can see it as

follows. Suppose that there is a maximal amount of money $N that the gambler can get from the
casino. Performing a calculation similar to the one in the previous problem and letting N → ∞, one
can get that P1 → q/p = (1− p)/p as N →∞.

Answer: P1 = 1 if p ≤ 1/2, and P1 = 1−p
p if p > 1/2.

1.5. Recurrence and transience.

Definition 6. Let (Xn)n≥0 be a Markov chain with transition matrix P . We say that a state i is recurrent if

(6) Pi(Xn = i for infinitely many n) = 1.

We say that a state i is transient if

(7) Pi(Xn = i for infinitely many n) = 0.

Surprisingly at the first glance, one can show that every state is either recurrent or transient. This is the consequence
of the Markov property. To prove this, we will need the following definitions.

Definition 7. • The first passage time to state i is the random variable Ti defined by

Ti(ω) = inf{n ≥ 1 | Xn(ω) = i}, where inf ∅ =∞.

• The rth passage time to state i is the random variable T
(r)
i defined inductively by

T
(0)
i = 0, T

(r+1)
i = inf{n ≥ T (r)

i + 1 | Xn(ω) = i}, r = 0, 1, 2, . . . .

• The length of rth excursion to i is

S
(r)
i =

{
T

(r)
i − T (r−1)

i if T
(r−1)
i <∞

0 otherwise.

• The return probability is defined by

fi = Pi(Ti <∞).

• The number of visits Vi of state i is the random variable that can be written as the sum of indicator functions

Vi =

∞∑
n=0

1{Xn=i}.
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Note that

Ei[Vi] =Ei

[ ∞∑
n=0

1{Xn=i}

]
=
∞∑

n=0

E
[
1{Xn=i}|X0 = i

]
=
∞∑

n=0

Pi(Xn = i) =
∞∑

n=0

p
(n)
ii .(8)

Also note that the conditions for a state to be recurrent or transient can be written as

• state i is recurrent if Pi(Vi =∞) = 1;
• state i is transient if Pi(Vi =∞) = 0.

Theorem 4. The following dichotomy holds:

(1) if Pi(Ti <∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii =∞;

(2) if Pi(Ti <∞) < 1, then i is transient and
∑∞

n=0 p
(n)
ii <∞.

In particular, every state is either transient or recurrent.

Proof. (1) Let us denote Pi(Ti <∞) by fi. First show that

Pi(Vi > r) = f
r
i .

Pi(Vi > r) =Pi(T
(r)
i <∞) = Pi(S

(r)
i <∞ | T (r−1)

i <∞)Pi(T
(r−1)
i <∞)

=Pi(S
(r)
i <∞ | T (r−1)

i <∞)Pi(S
(r−1)
i <∞ | T (r−2)

i <∞) . . . Pi(Ti <∞)

=f
r
i .

(2) If fi = Pi(Ti <∞) = 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f
r
i = lim

r→∞
1 = 1.

Hence i is recurrent and
∑∞

n=0 p
(n)
ii = Ei[Vi] =∞.

(3) If fi = Pi(Ti <∞) < 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f
r
i = 0.

Hence i is transient and

∞∑
n=0

p
(n)
ii = Ei[Vi] =

∞∑
r=0

Pi(Vi > r) =

∞∑
r=0

f
r
i =

1

1− fi
<∞.

�

Now I will list some facts about recurrence and transience. I will not prove them. Proofs can be found e.g. in [1].

• In a communicating class, states are either all transient or all recurrent.
• Every recurrent class is closed.
• Every finite closed class is recurrent.
• For a simple random walk on Z, where the entries of the transition matrix are all zeros except for pi,i+1 = q,
pi,i−1 = 1− q, all states are transient if q 6= 1/2, and all states are recurrent if q = 1/2.

• For a simple symmetric random walk on Z2, all states are recurrent.
• For a simple symmetric random walk on Zn, n ≥ 3, all states are transient.

1.6. Invariant distributions and measures.

Definition 8. A measure on a Markov chain is any vector λ = {λi ≥ 0 | i ∈ S}. A
measure is invariant (a. k. a stationary or equilibrium) if

λ = λP.

A measure is a distribution if, in addition,
∑

i∈S λi = 1.

Theorem 5. Let the set of states S of a Markov chain (Xn)n≥0 be finite. Suppose that for
some i ∈ S

Pi(Xn = j) = p
(n)
ij → πj as n→∞ for all j ∈ S.

Then π = {πj | j ∈ S} is an invariant distribution.
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Proof. Since p
(n)
ij ≥ 0 we have πj ≥ 0. Show that

∑
j∈S πj = 1. Since S is finite, we can

swap the order of taking limit and summation:∑
j∈S

πj =
∑
i∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
i∈S

p
(n)
ij = 1.

Show that π = πP :

πj = lim
n→∞

p
(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

lim
n→∞

p
(n−1)
ik pkj =

∑
k∈S

πkpkj .

�

Remark If the set of states is not finite, then the one cannot exchange summation and

taking limit. For example, limn→∞ p
(n)
ij = 0 for all i, j for a simple symmetric random walk

on Z. {πi = 0 | i ∈ Z} is certainly an invariant measure, but it is not a distribution.

The existence of an invariant distribution does not guarantee convergence to it. For
example, consider the two-state Markov chain with transition matrix

P =

(
0 1
1 0

)
.

The distribution π = (1/2, 1/2) is invariant as

(1/2, 1/2)

(
0 1
1 0

)
= (1/2, 1/2).

However, for any initial distribution λ = (q, 1− q) where q ∈ [0, 1/2) ∪ (1/2, 1], the limit

lim
n→∞

Pn

does not exist as

P 2k = I, P 2k+1 = P.

In order to eliminate such cases, we introduce the concept of aperiodic states.

Definition 9. Let us call a state i aperiodic, if p
(n)
ii > 0 for all sufficiently large n.

Theorem 6. Suppose P is irreducible and has an aperiodic state i. Then for all states j

and k, p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. Since the chain is irreducible, there exist such r and s that p
(r)
ji > 0 and p

(s)
ik > 0.

Then for sufficiently large n we have

p
(r+n+s)
jk =

∑
i1,...,in∈S

p
(r)
ji1
pi1i2 . . . pin−1inp

(s)
ink
≥ p(r)ji p

(n)
ii p

(s)
ik > 0.

�

Definition 10. We will call a Markov chain aperiodic if all its states are aperiodic.
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Theorem 7. Suppose that (Xn)n≥0 is a Markov chain with transition matrix P and initial
distribution λ. Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

A proof of this theorem is found in [1]. In the case where the set of states is finite,
this result can be proven by means of linear algebra. A building block of this proof is the
Perron-Frobenius theorem.

Theorem 8. Let A be an N ×N matrix with nonnegative entries such that all entries of
Am are strictly positive for all m > M . Then

(1) A has a positive eigenvalue λ0 > 0 with corresponding left eigenvector x0 where all
entries are positive;

(2) if λ 6= λ0 is any other eigenvalue, then |λ| < λ0.
(3) λ0 has geometric and algebraic multiplicity one.

Let P be the stochastic matrix for a Markov chain with N states. For sufficiently large
n, all entries of Pn for stochastic irreducible aperiodic matrices P become positive. The
proof of this fact is similar to the one of Theorem 6. Furthermore, the largest eigenvalue
of a stochastic matrix is equal to 1. Indeed, since the row sums of P are ones, λ0 = 1 is an
eigenvalue with the right eigenvector e = [1, . . . , 1]>.

Now let us show that the other eigenvalues do not exceed λ0 = 1 in absolute value. Let
(λ, v) be an eigenvalue and a corresponding right eigenvector of a stochastic matrix P . We
normalize v so that

vi = max
k∈S
|vk| = 1.

Since

λvi =
∑
k∈S

pikvk,

we have

|λ| =

∣∣∣∣∣ 1

vi

∑
k∈S

pikvk

∣∣∣∣∣ ≤ 1

vi

∑
k∈S

pik|vk| ≤
∑
k∈S

pik = 1.

Remark The fact that the eigenvalues of a stochastic matrix do not exceed 1 in absolute
value is an instance of the Gershgorin Circle Theorem.

Theorem 9. Every irreducible aperiodic Markov chain with a finite number of states N
has a unique invariant distribution π. Moreover,

(9) lim
n→∞

qPn = π

for any initial distribution q.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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Proof. The Perron-Frobenius theorem applied to a finite stochastic irreducible aperiodic
matrix P implies that the largest eigenvalue of P is λ0 = 1 and all other eigenvalues are
strictly less than 1 in absolute value. The left eigenvector π, corresponding to λ0 has
positive entries and can be normalized so that they sum up to 1. Hence,

π = πP,

N∑
i=1

πi = 1.

Now let us establish convergence. First we consider the case when P is diagonalizable:

P = V ΛU,

where Λ is the matrix with ordered eigenvalues along its diagonal:

Λ =


1

λ1
. . .

λN−1

 , 1 > |λ1| ≥ . . . ≥ |λN−1|,

V is the matrix of right eigenvectors of P : PV = V Λ, such that its first column is
e = [1, . . . , 1]>. U = V −1 is the matrix of left eigenvectors of P : UP = ΛU . The
first row of U is π = [π1, . . . , πN ]. One can check that if UV = IN , these choices of the
first column of V and the first row of U are consistent. Therefore, taking into account that∑N

i=1 qi = 1, we calculate:

lim
n→∞

qPn

= lim
n→∞

[q1 q2 . . . qN ]


1 ∗ ∗ ∗
1 ∗ ∗ ∗

. . .
1 ∗ ∗ ∗




1
λn2

. . .

λnN



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗



= [1 0 . . . 0]


1

0
. . .

0



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗


= [π1 π2 . . . πN ].

In the case when P is not diagonalizable, the argument is almost identical, just a bit
more tedious. We consider the Jordan decomposition of P

P = V JU
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where U = V −1 and J is the Jordan form of of P , i.e., a block-diagonal matrix of the form:

J =


1

J1
. . .

Jr

 ,
with the first block being 1×1 matrix J0 ≡ 1, and respectively, the first column of V being
[1, . . . , 1]>, and the first row of U being π – the right and left eigenvectors corresponding
to the eigenvalue 1, and the other blocks Ji of sizes mi ×mi, where 1 ≤ mi ≤ N − 1 and
m1 + . . .+mr = N − 1, of the form

(10) Ji =


λi 1

λi 1
. . .

. . .

λi

 =: λiImi×mi + E.

Exercise (1) Check that the matrix E in Eq. (10) with ones right above the diagonal
and all other entries zero is nilpotent. More precisely, Emi = 0mi×mi .

(2) Check that the matrices λiImi×mi and E commute.
(3) Check that

Jn
i =

mi−1∑
k=0

(
n
k

)
λn−ki Ek.

(4) Argue that
lim
n→∞

Jn
i = 0mi×mi

provided that |λi| < 1.
(5) Now prove Eq. (9) for the case when P is not diagonalizable.

�

2. Time reversal and detailed balance

For Markov chains, the past and the future are independent given the present. This
property is symmetric in time and suggests looking at Markov chains with time running
backward. On the other hand, convergence to equilibrium shows that the behavior is
asymmetric in time. Hence, to complete the symmetry in time, we need to start with the
equilibrium distribution.

Theorem 10. Let (Xn)0≤n≤N be Markov(P, π), where P is irreducible and π is invariant.

Define Yn = XN−n. Then (Yn)0≤n≤N is Markov(P̂, π) where the transition matrix P̂ = (p̂ij)
defined by

πjpji = πip̂ij for all i, j ∈ S.

Proof. Note that, since P is irreducible, all components of π are positive. We need to check
the following three facts.
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(1) Check that P̂ is a stochastic matrix (i.e., all its entries are nonnegative and its row
sums are equal to 1):

p̂ij =
πj
πi
pji ≥ 0.∑

j∈S
p̂ij =

1

πi

∑
j∈S

πjpji =
πi
πi

= 1.

In the last equation, we used the fact that π is invariant for P .
(2) Check that π is invariant for P̂ , i.e., that πP̂ = π:∑

j∈S
πj p̂ji =

∑
j∈S

πipij = πi
∑
j∈S

pij = πi for all i ∈ S.

(3) Check that (Yn)0≤n≤N satisfies Markov property.

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(X0 = iN , X1 = iN−1, . . . , XN = i0)

=πiNpiN iN−1 . . . pi1i0 = p̂iN iN−1πiN−1piN−1iN−2 . . . pi1i0
= . . . = p̂iN−1iN . . . p̂i0i1πi0 .

Therefore, (Yn)0≤n≤N satisfies Markov property.

�

Definition 11. The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .

Definition 12. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji.

Suppose the set of states S is finite, the matrix P is irreducible, and the system is
distributed according to the invariant distribution π. The condition of detailed balance
means the following. Let Ni→j(n) be the number of transitions from i to j observed by
time n. Then for all i, j ∈ S,

lim
n→∞

Ni→j(n)

Nj→i(n)
= 1,

if P is in detailed balance with π. In words, over large intervals of times, on average, one
observes equal numbers of transitions from i to j and from j to i for all i, j ∈ S given the
detailed balance.

The detailed balance condition gives us another way to check whether a given measure
λ is invariant.

Theorem 11. Let P and λ be in detailed balance. Then λ is invariant for P .

Proof.

(λP )i =
∑
j∈S

λjpji = λi
∑
j∈S

pij = λi.

Hence λP = λ. �

Definition 13. Let (Xn)n≥0 be Markov(P, λ) where P is irreducible. We say that (Xn)n≥0
is reversible if for all N ≥ 1, (XN−n)0≤n≤N is Markov(P, λ).
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Theorem 12. Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose
that (Xn)n≥0 is Markov(λ,P). Then the following are equivalent:

(1) (Xn)n≥0 is reversible;
(2) P and λ are in detailed balance.

Proof. Both (1) and (2) imply that λ is invariant for P . Then both (1) and (2) are

equivalent to the statement that P̂ = P . �
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