
Approximating Noisy
Nonlinear Oscillator Dynamics
using Markov Chains

CHRISTOPHER MOAKLER

Nonlinear Oscillators

! Nonlinear oscillators can take many forms but one of the most
commonly studied is that of the Duffing Oscillator.

! The Duffing Oscillator is described by:

! The various parameters are

! : displacement of the oscillator

! : controls the degree of damping

! : controls the stiffness

! controls the degree of non-linearity

! controls the amplitude of the driving force

! the angular frequency of the driving force

𝑥̈ + 𝛿𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝛾cos(𝜔𝑡)

𝑥

𝛿

𝛼

𝛽 :

𝛾 :

𝜔:

Duffing Equation with noise

! The Duffing equation models the behavior of a mass attached to a
non-linear spring and linear dampener.

! The system is also subject to a periodic driving force.

! We are interested in studying the Duffing equation with an added

noise term.

! That is,

! In general, we can not find exact solutions to the Duffing equation
and instead we turn to numerical techniques.

𝑥̈ + 𝛿𝑥̇ + 𝛼𝑥 + 𝛽𝑥3 = 𝛾cos(𝜔𝑡) + 𝜖 𝑑𝑊

Motivations

! What makes these systems interesting?

! The Duffing equation can admit multiple attractors which are stable

periodic orbits in the state space.

! Some interesting work done by a recent PhD from UMD, Lautaro

Cilenti, explored these attractors and their applications to systems
such as turbines and vibrational energy harvesters.

Motivating Examples

https://blog.klm.com/jet-engine-propulsion-the-comparison-of-
power-between-a-car-and-an-aircraft/

Turbines have circular arrays of blades
that can be modeled as non-linear
oscillators

Taylor et al The Energy Harvesting Eel: a small
subsurface ocean/river power generator 2001

Vibrational energy can be harvested in
myriad ways.

Controlling the Vibrations with Noise

! Cilenti did very interesting work looking at coupled non-linear
oscillators in a circular array.

! These oscillators are coupled through the base that connects them.

Cilenti 2022

Controlling the Vibrations with Noise

! The most probable escape paths between oscillators were found
using a combination of large deviation theory, optimal control
theory, and Floquet theory.

! Cilenti was successful in determining the most probable escape
paths and quasipotential barriers using this approach for single
oscillators as well as 2, 3, and 5 coupled oscillators.

! He was unable to determine the escape rate which is something
we’re interested in finding.

Analogue Markov Chain Approach

! The approach we’re taking is to model the process with an analogue
Markov chain proposed originally by Lorenz.

! The analogue Markov chain approach discretizes the phase space
into sets of distinct states.

! The transition probability between these states is then approximated.

! With this transition probability matrix, we can calculate the

committor function.

! A proof-of-concept for this approach was undertaken by Daniel

Yuan during the REU last year at UMD.

Brief Review of Markov Chains

! Professor Cameron went over Markov Chains with you previously, but
I’ll do a quick review.

! First, what is a Markov Chain or Markov Process?

! A Markov Process is a sequence of events where the probability of

each event depends only on the current state.

! What is an example of a Markov Process?

! Flipping a coin, rolling a dice, roulette, etc.

! These processes don’t have “memory”

! What are examples that are NOT Markovian?

Random Walk

! A common example of a Markov Process is that of a “random walk”.

! At each time step, you randomly choose a direction to take your

next step in.

! When I was taught this, we called it a drunkard’s walk and answered

questions like, “Will the drunk find it home from the bar?”

! The drunk takes each step randomly without remembering where

they were.

! You can study this in 1-, 2-, 3-, or even more dimensions if you like!

Markov Transition Probability Matrix

! It can be convenient to represent the probabilities of going from one
state to another with a matrix.

! Let’s construct one for this process.

! How many states are there?

! How large of a matrix will we need?

! What are the values of each matrix element.

A More Complex Example

! Let’s try it for this example,

How to determine the Markov
Matrix

! To construct the Markov Transition Matrix, we follow a series of steps

1. Generate the Point Cloud

! We generate a point cloud that samples the transition the pathway and
the are around the attractors

2. From the point cloud, we simulate trajectories for one period.

! We launch a large number of trajectories and track where they begin

and end.

3. We identify which states in the point cloud are closest to the end of
the trajectories and consider them to have ended there instead.

4. We form a transition probability matrix from this data.

Generating the Point Cloud

! To generate the point cloud, we run two very long trajectories
(~1000+ periods) originating from the two attractors.

! You can run these trajectories at a given noise value to sample the
space that the system is likely to encounter.

! However, you get pretty awful point clouds in this way.

The Basins from Cilenti’s Work

Lautaro 2022

The Blue region is an
unstable basin that
explodes to infinity.

A Bad Point Cloud

Basic Sampling

! That “basic sampling” does a very poor job of sampling the space
between the basins.

! There is the high amplitude attractor with a relatively small basin.

! The trajectory quickly leaves that basin and moves into the low

amplitude attractor’s basin.

! However, the path that the system takes in that region is where a lot

of the important dynamics are taking place!

! We want to sample that better.

! How can we do that?

! What does it even mean to “sample better”?

Enhanced Sampling

! In the study of rare events, getting a good sample is essentially the
whole ball game.

! Getting a good sample is… nontrivial.

! Since rare events are so rare, it can take a long time to see them

occur.

! Typically, we want to see them occur frequently so we can get a

large number of samples.

! There are a whole host of “enhanced sampling” methods.

! Some of these simply “raise the temperature” of the simulation.

! There are a lot of different methods that I won’t go into.

Metadynamics
! Metadynamics is one of the more popular enhanced sampling approaches.

! In metadynamics, you keep track of where the system has been during the

trajectory and periodically add a bias to push it away from where it’s been.

! For example, if the trajectory has spent the past 100 time steps around the

origin, we add a bump there to push the system away.

! After another 100 timesteps, maybe the system is around (1,0), so we add

another bump there.

! Over a long time, we add many bumps and sample the space in harder to

reach areas.

! I think about it as adding dirt to the Grand Canyon.

! Add enough little dirt piles and you can just walk out of the Grand Canyon.

! The park rangers will not like this though…

Point cloud

Spatially Rarefy the States

! That picture on the previous point is a bit of a lie.

! When you run the metadynamics sampling, you get a LOT of states.

! It’s basically a solid blob.

! That’s a bit too many points for what we need so we “rarefy” the

states.

! Rarefy as in make more rare.

! The way we do this is by removing points that are close to other
points.

! There’s more to it than just this but I’ll come back to it.

How to determine the Markov
Matrix

! To construct the Markov Transition Matrix, we follow a series of steps

1. Generate the Point Cloud

! We generate a point cloud that samples the transition the pathway and
the are around the attractors

2. From the point cloud, we simulate trajectories for one period.

! We launch a large number of trajectories and track where they begin

and end.

3. We identify which states in the point cloud are closest to the end of
the trajectories and consider them to have ended there instead.

4. We form a transition probability matrix from this data.

Trajectories from the Point Cloud

! Now that we have a discretized space to work with, we need to
know how likely we are to move from one state to another.

! To determine this, we launch many trajectories from each point in
the point cloud for a single period.

! The end points of these trajectories are tracked.

! However, not all the end points will lie in our discretized space.

! So, we simply identify the point in the point cloud closest to the end

point of these trajectories and consider the trajectory to have ended
there.

Transition Probability

! We now have data on where trajectories end for all the points in the
point cloud.

! We can use this to form a transition probability from state to state .

! All these transition probabilities taken together form a transition

probability matrix that fully describe the stochastic process.

! These matrices are really quite large.

! ~50,000 x 50,000

! How big is this in memory?

! How do we store this in memory?!

𝑖 𝑗

Sparse Matrices

! The transition matrix turns out to be a very sparse
matrix.

! That is, most of the elements are 0.

! This is an example of a transition matrix we work with.

! It’s got about 4% of elements that are nonzero.

! Matlab has built in functionality to handle sparse

matrices.

! For example, you can use spalloc to allocate the

storage for a sparse matrix.

! Matlab will also speed up various operations involving

sparse matrices.

Strongly Connected Component

! We additionally only want a point cloud that is “Strongly connected”

! That is, we want a collection of points such that you can go from any

point to any other point.

! You may have to pass through many other points, we do not have

any disconnected components.

! This is a non-trivial problem.

! We use Matlab’s built in conncomp function to find the connected

components.

! It uses a depth first search to look through all the connections

between points.

Spatially Rarefy the States

! Returning to my point from before about spatially rarefying the
states.

! We have a lot of states that are essentially sitting atop one another.

! We don’t want that, it’s a waste of compute power and memory.

! So, we coarsen the set!

! We look at the eigenvalues of the P matrix.

! This tells us which states can be used to

	 represent the entire network efficiently.

Chen, J., Saad, Y. & Zhang, Z. Graph coarsening: from scientific
computing to machine learning. SeMA 79, 187–223 (2022). https://
doi.org/10.1007/s40324-021-00282-x

How to determine the Markov
Matrix

! To construct the Markov Transition Matrix, we follow a series of steps

1. Generate the Point Cloud

! We generate a point cloud that samples the transition the pathway and
the are around the attractors

2. From the point cloud, we simulate trajectories for one period.

! We launch a large number of trajectories and track where they begin

and end.

3. We identify which states in the point cloud are closest to the end of
the trajectories and consider them to have ended there instead.

4. We form a transition probability matrix from this data.

Markov Chain Theorem and
Probability Distributions

! With the transition matrix we can start to determine some interesting
things about the matrix.

! If we start with a given state, we can use the transition matrix to
determine the probability of being in a different state at the next
time step.

! You can continue acting the matrix on the state vector to determine

the probability at any point in time.

! The vector component of is the probability that the system will
be in the state at that time.

𝑥(𝑡 + 1) = 𝑥(𝑡) ∗ 𝑃

𝑥(𝑡) = 𝑥(0) ∗ 𝑃 𝑡

𝑖𝑡h 𝑥(𝑡)
𝑖𝑡h

Steady State Probability Distribution

! We can determine the steady state probability distribution by finding
the state vector that is unchanged when acted upon by the matrix
P.

! That is the vector such that,

! How do we solve for in this case?

! This is just an eigenvector problem.

! Google used to use a similar approach to rank their search results.

! Google PageRank if you want some more details.

𝜋

𝜋 = 𝜋𝑃

𝜋

Transition Path Theory

! Transition path theory is an extension of transition state theory.

! Transition state theory is used to determine the rates of chemical

reactions.

! Or at least try to explain them.

! You may be familiar with the Arrhenius Equation.

	 Here, k is the rate constant, T is the temperature, A is the pre-
exponential factor, is the activation energy of the reaction, and R is the
gas constant.

! Transition Path Theory is a more powerful formalism that allows us to talk

more about the statistics of these transitions.

𝑘 = 𝐴𝑒− 𝐸𝑎
𝑅𝑇

𝐸𝑎

Transition Path Theory contd

! In transition state theory we talk about a state space S and two
subsets of that space.

! A can be thought of as the reactants state.

! B can be thought of as the product state.

Eric Vanden-
Eijnden

Transition Path
Theory, Lect.
Notes Phys. 703,
453–493 (2006)

The Committor Function

! One of the most powerful aspects of the TPT formalism is the
committor function.

! The committor function describes the transition process very broadly.

! There are technically two types of committor that we typically

define:

! : The forward committor is the probability that, if you start at the

state , will proceed to before returning to .

! : The backward committor is the probability that was last at
instead of .

𝑞+(𝑥)
𝑥 𝑥(𝑡) 𝐵 𝐴

𝑞−(𝑥) 𝑥(𝑡) 𝐴
𝐵

Reactive Trajectories

! There are a lot of other parameters we can determine using the TPT
formalism.

! Before we do, let’s quickly define a “reactive reajectory”

! A reactive trajectory is a trajectory that is going from A to B without

returning to A.

Probability Density of Reactive
Trajectories

! We can determine the probability that a state is going to be a part
of a reactive trajectory pretty easily.

Here is the probability density of reactive trajectories, is the forward
committor, is the backward committor, and is the steady state
probability density.

! This equation should make intuitive sense.

𝜇𝑟(𝑥) = 𝑞+(𝑥)𝑞−(𝑥)𝜋(𝑥)

𝜇𝑟 𝑞+

𝑞− 𝜋

Probability Current of Reactive
Trajectories

! We can also define something called the probability current of
reactive trajectories.

! This is the probability that the system will go from state to state while
on a reactive trajectory.

	 Here is the probability of going from state to state when on a
reactive trajectory, is the forward committor, is the backward
committor, is the probability that the system is in state , and is the
probability of going from state to state .

! This again should make some intuitive sense.

𝑖 𝑗

𝑓𝑖𝑗 = 𝜋𝑖𝑞−
𝑖 𝑃𝑖𝑗𝑞+

𝑗

𝑓𝑖𝑗 𝑖 𝑗
𝑞+ 𝑞−

𝜋𝑖 𝑖 𝑃𝑖𝑗
𝑖 𝑗

Transition Rate and Escape Rate

! We are very interested in determining when the system will transition.

! We capture this in the “transition rate”

	 Here is the probability of going from state to state when on a
reactive trajectory, and is the transition rate.

! We also define the escape rate as

	 Here is the probability that we were last in A.

𝜈𝐴𝐵 = ∑
𝑖∈𝐴

∑
𝑗∈𝑆

𝑓𝑖𝑗 = ∑
𝑖∈𝑆

∑
𝑗∈𝐵

𝑓𝑖𝑗

𝑓𝑖𝑗 𝑖 𝑗
𝜈𝐴𝐵

𝑘𝐴𝐵 =
1
𝜌𝐴

𝜈𝐴𝐵

𝜌𝐴

Mean First Passage Time

! One final parameter we are sometimes interested in is the mean first
passage time or MFPT, .

! The mean first passage time is how long it takes for the system to go from
state to state for the first time.

! It can be calculated using

! Together, these form a system of equations you can solve to find the entire
matrix, .

𝜇𝑖𝑗

𝑖 𝑗

𝜇𝑖𝑗 = 1 + ∑
𝑘≠𝑗

𝑃𝑖𝑘𝜇𝑘𝑗

𝜇𝑗𝑗 =
1
𝜋𝑗

𝜇𝑖𝑗

One non-linear oscillator

! We’ve applied this approach to a single non-linear oscillator
described by the following equation

! This system has two attractors, one associated with a high amplitude
oscillations and one with small oscillations.

! This system also has basins that are about equal in size.

𝑥̈ + 0.1𝑥̇ + 𝑥 + 0.3𝑥3 = 0.4cos(1.4𝑡) + 0.05 𝑑𝑊

Calculating the Committor

! With the transition matrix we can form the generator, , of the
stochastic process.

! With this generator, we can now compute the forward and
backward committor functions.

! To do this, we solve the following system of equations:

! Here is the element of L, A and B are the attractors, and S is the
entire state space.

𝐿

∑
𝑘∈𝑆

𝑙𝑖𝑘𝑞+
𝑘 = 0, ∀𝑖 ∈ (𝐴 ∪ 𝐵)𝐶

𝑞+
𝑖 = 0,∀𝑖 ∈ 𝐴

𝑞+
𝑖 = 1,∀𝑖 ∈ 𝐵

𝑙𝑖𝑘 𝑖𝑘𝑡h

Committor Function

Analogue Markov Chain Committor
comparison

Cilenti 2022

Probability Density Plot

Application to Another System

! After the success with the first system, I also applied it to a system
designed to replicate an experimental system Lautaro studied.

! Lautaro was able to determine values for the parameters to mimic
his experimental set up.

! This system is not as well behaved as the first system.

𝑥̈ + 0.009𝑥̇ + 𝑥 − 0.48𝑥3 = 0.007cos(0.9𝑡) + 0.004 𝑑𝑊

45

46

Escape Time vs Noise Level

Cilenti 2022

47

Experimental Noise

Cilenti 2022

48

Numerical Colored Noise
 𝑛(𝑡 + 𝑑𝑡) = 𝑛(𝑡) − Θ 𝑑𝑡 𝑛(𝑡) + Σ 2𝑑𝑡Θ 𝜂𝑖

Θ:The correalation time Σ:The standard Deviation

49

0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2 106

102

103

E
xp

ec
te

d
tim

e,
 s

ec
on

ds

 = 42
E[tau

1
]

E[tau
2
]

LSfit
1
, linear

LSfit
1
, quad

LSfit
2
, linear

LSfit
2
, quad

0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2 106

102

103

E
xp

ec
te

d
tim

e,
 s

ec
on

ds

 = 32
E[tau

1
]

E[tau
2
]

LSfit
1
, linear

LSfit
1
, quad

LSfit
2
, linear

LSfit
2
, quad

0 1 2 3 4 5
-2 106

50

100

150

200

250

300
350
400

E
xp

ec
te

d
tim

e,
 s

ec
on

ds

 = 22
E[tau

1
]

E[tau
2
]

LSfit
1
, linear

LSfit
1
, quad

LSfit
2
, linear

LSfit
2
, quad

0.5 1 1.5 2 2.5 3 3.5 4
-2 106

102

103

E
xp

ec
te

d
tim

e,
 s

ec
on

ds

 = 52

E[tau
1
]

E[tau
2
]

LSfit
1
, linear

LSfit
1
, quad

LSfit
2
, linear

LSfit
2
, quad

50

Generalizing to Coupled Oscillators

! One of the next steps is to extend this procedure to coupled
oscillators.

! The equation that describes this system is given by:

! now represents a vector of beam displacements, is the
coupling matrix, and is the coupling factor between oscillators.

𝒙̈ + 𝛿𝒙̇ + 𝛼𝒙 + 𝛽𝒙3 + 𝜈𝑫𝑁𝒙 = 𝛾cos(𝜔𝑡) + 𝜖 𝑑𝑊

𝑫𝑁 =

2 −1 −1
−1 2 −1
⋮ ⋱ ⋱ ⋱

−1 −1 2

𝒙 𝑫𝑁
𝜈

Coupled Oscillators

! With coupled oscillators, there will be more basins and more
transitions between the basins.

! We will need to effectively sample the state space to accurately
compute the committor and its associated parameters.

! This will be more difficult not only because of the increased number
of basins but also the increased dimensionality.

! With increasing dimensionality, we will need more points to get
enough resolution of the space.

Future Directions

! We’re studying the effect of the colored noise for a single oscillator.,
but there are a lot of interesting things we can explore with different
colored noise.

! We also want to extend this to coupled oscillators.

! We have experimental data and results of MC simulations of these

sorts of systems that we want to compare to.

