A BRIEF REVIEW OF THE PROBABILITY THEORY

MARIA CAMERON

Contents

1. Definitions 1
2. Expected values and moments 4
3. Independence, joint distributions, covariance 5
4. Chebyshev's inequality 8
5. Types of convergence of random variables 9
6. Laws of Large Numbers and the Central Limit Theorem 12
7. Conditional probability and conditional expectation 13
References 15

1. Definitions

A probability space is a triple consisting of the set of outcomes, the set of subsets of the set of outcomes that we want to be able to assign probabilities to called the σ-algebra, and the probability measure, i.e. a function that assigns probabilities.

- A sample space Ω is the set of all possible outcomes.
- An event A is a subset of Ω.
- A σ-algebra \mathcal{B} is a subset of the set of all subsets of Ω that is closed with respect to set operations. The minimal requirements guaranteeing that the σ algebra possesses these properties constitute the set of axioms that defines it:
(1) $\emptyset \in \mathcal{B}$ and $\Omega \in \mathcal{B}$;
(2) If $B \in \mathcal{B}$ then $B^{c} \in \mathcal{B}$ (B^{c} is the complement of B in Ω, i.e., $B^{c} \equiv \Omega \backslash B$).
(3) If $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}, \ldots\right\}$ is a finite or countable collection in \mathcal{B} then

$$
\bigcup_{i} A_{i} \in \mathcal{B} .
$$

Corollary: If $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}, \ldots\right\}$ is a finite or countable collection in \mathcal{B} then

$$
\bigcap_{i} A_{i} \in \mathcal{B}
$$

Indeed,

$$
\bigcap_{i} A_{i}=\left(\bigcup_{i} A_{i}^{c}\right)^{c} .
$$

Example 1 Suppose you are tossing a die. For a single throw, the sample space is $\Omega=\{1,2,3,4,5,6\}$. If you are interested in particular number on the top, the natural choice of the σ-algebra is the set of all subsets of Ω. Then $|\mathcal{B}|=2^{6}=64$. If you are interested only in whether the outcome is odd or even, then a reasonable choice of σ-algebra is

$$
\mathcal{B}=\{\emptyset,\{1,3,5\},\{2,4,6\},\{1,2,3,4,5,6\}\} .
$$

If you are interested only whether there is an outcome or not, you can choose the coarsest σ-algebra

$$
\mathcal{B}=\{\emptyset,\{1,2,3,4,5,6\}\}
$$

Example 2 Suppose you are doing a measurement whose outcome can be any real number. For example, you are living in a one-dimensional world, you are throwing a point object, and measuring its position with respect to a fixed point, i.e. the origin of a coordinate system in your 1Dworld. The set of outcomes is \mathbb{R}. The most commonly chosen σ-algebra is the so-called Borel σ-algebra which is generated by all open sets in \mathbb{R}. Thanks to the properties of σ-algebra, the Borel σ-algebra can be generated by all intervals of the form $(-\infty, a]$, where $a \in \mathbb{R}$.

- A probability measure P is a function $P: \mathcal{B} \rightarrow[0,1]$ such that
(1) $P(\Omega)=1$;
(2) $0 \leq P(A) \leq 1$ for all $A \in \mathcal{B}$.
(3) Countable additivity: If $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}, \ldots\right\}$ is a finite or countable collection in \mathcal{B} such that $A_{i} \cap A_{j}=\emptyset$ for any i, j, then

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right) .
$$

Corollary: $P(\emptyset)=0$. Indeed,

$$
1=P(\Omega)=P(\Omega \cup \emptyset)=P(\Omega)+P(\emptyset)=1+P(\emptyset) .
$$

Hence, $P(\emptyset)=0$.

- A probability space is the triple (Ω, \mathcal{B}, P).
- A random variable η is a \mathcal{B}-measurable function $\eta: \Omega \rightarrow \mathbb{R}$.

A function is called \mathcal{B}-measurable if the preimage of any measurable subset of \mathbb{R} is in \mathcal{B}. It is proven in analysis that it is suffices to check that $\{\omega \in \Omega \mid \eta(\omega) \leq x\} \in \mathcal{B}$ for any $x \in \mathbb{R}$.

- A probability distribution function of a random variable η is defined by

$$
F_{\eta}(x)=P(\{\omega \in \Omega \mid \eta(\omega) \leq x\})=P(\eta \leq x) .
$$

Theorem 1. If F is a probability distribution function then
(1) F is nondecreasing, i.e. $x<y$ implies $F(x) \leq F(y)$.
(2) $\lim _{x \rightarrow-\infty} F(x)=0, \quad \lim _{x \rightarrow \infty} F(x)=1$.
(3) $F(x)$ is continuous from the right for every $x \in \mathbb{R}$, i.e.,

$$
\lim _{y \rightarrow x+0} F(y)=F(x) .
$$

Example 3 Suppose you are tossing a die. Consider the probability space

$$
\begin{equation*}
\left(\Omega=\{1,2,3,4,5,6\}, \mathcal{B}=2^{\Omega}, P(\omega)=\frac{1}{6}\right), \tag{1}
\end{equation*}
$$

where 2^{Ω} is the set of all subsets of Ω, and $\omega \in \Omega=\{1,2,3,4,5,6\}$. Consider the random variable $\eta(\omega)=\omega$. The probability distribution function is given by

$$
F_{\eta}(x)= \begin{cases}0, & x<1, \\ j / 6, & j \leq x<j+1, \quad j=1,2,3,4,5 \\ 1, & x \geq 6 .\end{cases}
$$

- Suppose $F_{\eta}^{\prime}(x)$ exists. Then $f_{\eta}(x) \equiv F_{\eta}^{\prime}(x)$ is called the probability density function (pdf) of the random variable η, and

$$
P(x<\eta \leq x+d x)=F_{\eta}(x+d x)-F_{\eta}(x)=f_{\eta}(x) d x+o(d x) .
$$

Example 4 The Gaussian density

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}},
$$

where m and σ are constants. m is the mean, while σ is the standard deviation.
Example 5 The density of an exponential random variable with parameter $a>0$ is given by:

$$
f(x)= \begin{cases}a e^{-a x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Example 6 The density of a uniform random variable on an interval $[a, b]$ is

$$
f(x)=\frac{1}{b-a} I_{[a, b]}(x)= \begin{cases}\frac{1}{b-a}, & x \in[a, b] \\ 0, & \text { otherwise } .\end{cases}
$$

Here $I_{[a, b]}(x)$ is the indicator function of the interval $[a, b]$.

- If the set of outcomes Ω is discrete (finite or countable) and the σ-algebra is the set of all subsets Ω, then the function $P(\omega)$ is often called the probability mass function.

2. Expected values and moments

Definition 1. Let (Ω, \mathcal{B}, P) be a probability space, and η be a random variable. Then the expected value, or mean, of the random variable η is defined as
(2) $E[\eta]=\int_{\Omega} \eta(\omega) d P$.

If Ω is a discrete set,

$$
E[\eta]=\sum_{i} \eta\left(\omega_{i}\right) P\left(\omega_{i}\right) .
$$

Example 7 Suppose you are tossing a die. Consider the probability space (1) and the random variable $\eta(\omega)=\omega, \omega=1,2,3,4,5,6$. The expected value of η is

$$
E[\eta]=\sum_{j=1}^{6} j \frac{1}{6}=3.5
$$

Suppose that the random variable η is fixed. Then we will omit the subscript in the notation of its probability distribution function: $F_{\eta}(x) \equiv F(x)$.

The integral in Eq. (2) can be rewritten using $F(x)$:

$$
E[\eta]=\int_{\mathbb{R}} x P(x<\eta \leq x+d x)=\int_{-\infty}^{\infty} x d F(x) .
$$

If a derivative $f(x)$ of the probability distribution function F exists, then

$$
E[\eta]=\int_{-\infty}^{\infty} x f(x) d x .
$$

If g is a function defined on the range of the random variable η (on $\eta(\Omega)$), then the expected value of this function is

$$
E[g(\eta)]=\int_{-\infty}^{\infty} g(x) d F(x)
$$

Moments: Let us take $g(x)=x^{n}$.

$$
E\left[\eta^{n}\right]=\int_{-\infty}^{\infty} x^{n} d F(x)
$$

Central moments: Let us take $g(x)=(x-E[\eta])^{n}$.

$$
E\left[(\eta-E[\eta])^{n}\right]=\int_{-\infty}^{\infty}(x-E[\eta])^{n} d F(x)
$$

Variance $=2$ nd central moment:

$$
\operatorname{Var}(\eta)=E\left[(\eta-E[\eta])^{2}\right)=\int_{-\infty}^{\infty}(x-E[\eta])^{2} d F(x)
$$

Example 8 Suppose you are tossing a die. Consider the probability space (1) and the random variable $\eta(\omega)=\omega, \omega=1,2,3,4,5,6$. The variance of η is

$$
\operatorname{Var}(\eta)=\frac{1}{6} \sum_{j=1}^{6}(j-3.5)^{2}=\frac{35}{12}=2.91(6) .
$$

The standard deviation:

$$
\sigma(\eta)=\sqrt{\operatorname{Var}(\eta)}
$$

3. Independence, joint distributions, covariance

- Two events $A, B \in \mathcal{B}$ are independent if

$$
P(A \cap B)=P(A) P(B) .
$$

- Two random variables η_{1} and η_{2} are independent if the events $\left\{\omega \in \Omega \mid \eta_{1}(\omega) \leq x\right\}$ and $\left\{\omega \in \Omega \mid \eta_{2}(\omega) \leq y\right\}$ are independent for all $x, y \in \mathbb{R}$.

Example 9 Suppose you are tossing a die twice. Consider the probability space
$\left(\Omega=\{1,2,3,4,5,6\}^{2}, \mathcal{B}=2^{\Omega^{2}}, P\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=1 / 36\right), \quad 1 \leq \omega_{1}, \omega_{2} \leq 6$.
Let η_{1} and η_{2} be random variables equal to the outcomes of the first and Table 1. Two throws of a die. Values of the random variables $\xi\left(\omega_{1}, \omega_{2}\right)=$ $\omega_{1}+\omega_{2}$ (left) and $\beta\left(\omega_{1}, \omega_{2}\right)=\omega_{1}-\omega_{2}$ (right).

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	-1	0	1	2	3	4
3	-2	-1	0	1	2	3
4	-3	-2	-1	0	1	2
5	-4	-3	-2	-1	0	1
6	-5	-4	-3	-2	-1	0

the second throws respectively. These random variables are independent. Now consider the random variables $\eta\left(\omega_{1}, \omega_{2}\right)=\omega_{1}$ and $\xi\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2}$ (see Table 1, left). We can show that η and ξ are dependent by taking e.g., $x=1$ and $y=2$ in Eq. (3):

$$
P(\eta \leq 1 \& \xi \leq 2)=\frac{1}{36} \neq P(\eta \leq 1) P(\xi \leq 2)=\frac{1}{6} \cdot \frac{1}{36}=\frac{1}{216} .
$$

Finally, we consider the random variables $\xi\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2}$ and $\beta\left(\omega_{1}, \omega_{2}\right)=$ $\omega_{1}-\omega_{2}$ (see Table 1, right). We can show that they are dependent by taking e.g., $x=2$ and $y=-1$ in Eq. (3):

$$
P(\xi \leq 2 \& \beta \leq-1)=0 \neq P(\xi \leq 2) P(\beta \leq-1)=\frac{1}{36} \cdot \frac{15}{36}=\frac{5}{432} .
$$

- The joint distribution function of two random variables η_{1} and η_{2} is given by
$F_{\eta_{1} \eta_{2}}(x, y)=P\left(\left\{\omega \in \Omega \mid \eta_{1}(\omega) \leq x, \eta_{2}(\omega) \leq y\right\}\right)=P\left(\eta_{1}(\omega) \leq x, \eta_{2}(\omega) \leq y\right)$.
- If the second mixed derivative of $F_{\eta_{1} \eta_{2}}$ exists, it is called the joint probability density of η_{1} and η_{2} and denoted by

$$
f_{\eta_{1} \eta_{2}}(x, y):=\frac{\partial F_{\eta_{1} \eta_{2}}(x, y)}{\partial x \partial y} .
$$

In this case,

$$
F_{\eta_{1}, \eta_{2}}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{\eta_{1} \eta_{2}}(x, y) d x d y
$$

Exercise Show that two random variables are independent if and only if

$$
F_{\eta_{1} \eta_{2}}(x, y)=F_{\eta_{1}}(x) F_{\eta_{2}}(y) .
$$

Furthermore, if the joint pdf $f_{\eta_{1} \eta_{2}}(x, y)$ exists, then η_{1} and η_{2} are independent iff

$$
f_{\eta_{1} \eta_{2}}(x, y)=f_{\eta_{1}}(x) f_{\eta_{2}}(y) .
$$

- Given the joint pdf $f_{\eta_{1} \eta_{2}}$, one can obtain $f_{\eta_{1}}(x)$ by

$$
f_{\eta_{1}}(x)=\int_{-\infty}^{\infty} f_{\eta_{1} \eta_{2}}(x, y) d y
$$

In this equation, $f_{\eta_{1}}$ is called a marginal of $f_{\eta_{1} \eta_{2}}$, and the variable η_{2} is integrated out.

- Properties of expected value and variance It follows from the definition, that the expected value is a linear functional:

$$
\begin{equation*}
E\left[a \eta_{1}+b \eta_{2}\right]=a E\left[\eta_{1}\right]+b E\left[\eta_{2}\right] . \tag{5}
\end{equation*}
$$

$\operatorname{Var}(a \eta)=a^{2} \operatorname{Var}(\eta)$.

- If η_{1} and η_{2} are independent, then
$\operatorname{Var}\left(\eta_{1}+\eta_{2}\right)=\operatorname{Var}\left(\eta_{1}\right)+\operatorname{Var}\left(\eta_{2}\right)$.
If η_{1} and η_{2} are dependent, (7) is not true: take $\eta_{1}=\eta_{2}$. In general,
$\operatorname{Var}\left(\eta_{1}+\eta_{2}\right)=\operatorname{Var}\left(\eta_{1}\right)+\operatorname{Var}\left(\eta_{2}\right)+2 \operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)$,
where $\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)$ is the covariance of η_{1} and η_{2} - see below. You will see below that (7) does not imply that η_{1} and η_{2} are independent, only that they are uncorrelated.

Example 10 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. Then

$$
\begin{gathered}
E[\xi]=E\left[\eta_{1}+\eta_{2}\right]=E\left[\eta_{1}\right]+E\left[\eta_{2}\right]=7 . \\
E[\beta]=E\left[\eta_{1}-\eta_{2}\right]=E\left[\eta_{1}\right]+E\left[-\eta_{2}\right]=0 . \\
\operatorname{Var}[\xi]=\operatorname{Var}\left[\eta_{1}+\eta_{2}\right]=\operatorname{Var}\left[\eta_{1}\right]+\operatorname{Var}\left[\eta_{2}\right]=\frac{35}{6}=5.8(3) . \\
\operatorname{Var}[\beta]=\operatorname{Var}\left[\eta_{1}-\eta_{2}\right]=\operatorname{Var}\left[\eta_{1}\right]+\operatorname{Var}\left[-\eta_{2}\right]=\operatorname{Var}\left[\eta_{1}\right]+\operatorname{Var}\left[\eta_{2}\right]=\frac{35}{6}=5.8(3) .
\end{gathered}
$$

Example 11 Consider the Bernoulli random variable
(9) $\quad \eta= \begin{cases}1, & P(1)=p, \\ 0, & P(0)=1-p .\end{cases}$

Its expected value and variance are

$$
\begin{gathered}
E[\eta]=1 \cdot p+0 \cdot(1-p)=p \\
\operatorname{Var}(\eta)=(1-p)^{2} \cdot p+(0-p)^{2} \cdot(1-p)=p(1-p)
\end{gathered}
$$

Now consider the sum of n independent copies of η :

$$
\xi:=\sum_{i=1}^{n} \eta_{i}
$$

Using Eq. (5) we calculate $E[\xi]$:

$$
E[\xi]=\sum_{\mathrm{i}=1}^{n} E\left[\eta_{i}\right]=n p
$$

Since $\eta_{i}, 1 \leq i \leq n$, are independent, we can calculate $\operatorname{Var}(\xi)$ using Eq. (7):

$$
\operatorname{Var}(\xi)=\sum_{i=1}^{n} \operatorname{Var}\left(\eta_{i}\right)=n p(1-p)
$$

Finally, consider the average of n independent copies of η :

$$
\zeta:=\frac{1}{n} \sum_{i=1}^{n} \eta_{i} \equiv \frac{\xi}{n} .
$$

Using Eqs. (5) and (6), we find

$$
\begin{gathered}
E[\zeta]=p \\
\operatorname{Var}(\zeta)=\operatorname{Var}\left(\frac{\xi}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(\xi)=\frac{p(1-p)}{n} .
\end{gathered}
$$

- The covariance of two random variables η_{1} and η_{2} is defined by

$$
\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)=E\left[\left(\eta_{1}-E\left[\eta_{1}\right]\right)\left(\eta_{2}-E\left[\eta_{2}\right]\right)\right] .
$$

Remark If η_{1} and η_{2} are independent, then $\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)=0$. If $\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)=0$ then η_{1} and η_{2} are uncorrelated. Note that uncorrelated random variables are not necessarily independent.

Example 12 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. As we have established in Example 9, ξ and β are dependent. However, they are uncorrelated. Indeed,

$$
\begin{aligned}
& \operatorname{Cov}(\xi, \beta)=\sum_{1 \leq \omega_{1} \leq 6,1 \leq \omega_{2} \leq 6}\left(\omega_{1}+\omega_{2}-7\right)\left(\omega_{1}-\omega_{2}\right) P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \\
& =\frac{1}{36}\left(\sum_{\omega_{1}<\omega_{2}}\left(\omega_{1}+\omega_{2}-7\right)\left(\omega_{1}-\omega_{2}\right)+\sum_{\omega_{1}>\omega_{2}}\left(\omega_{1}+\omega_{2}-7\right)\left(\omega_{1}-\omega_{2}\right)\right)=0 .
\end{aligned}
$$

Example 13 A vector-valued random variable $\eta=\left[\eta_{1}, \ldots, \eta_{n}\right]$ is jointly Gaussian if

$$
P\left(x_{1}<\eta_{1} \leq x_{1}+d x_{1}, \ldots, x_{n}<\eta_{n} \leq x_{n}+d x_{n}\right)=\frac{1}{Z} e^{-\frac{1}{2}(x-m)^{\top} A^{-1}(x-m)} d x+o(d x),
$$

where $x=\left[x_{1}, \ldots, x_{n}\right]^{\top}, m=\left[m_{1}, \ldots, m_{n}\right]^{\top}, d x=d x_{1} \ldots d x_{n}$, and A is a symmetric positive definite matrix. The normalization constant Z is given by

$$
Z=(2 \pi)^{n / 2}|A|^{1 / 2}, \text { where }|A|=\operatorname{det} A .
$$

In the case of jointly Gaussian random variables, the covariance matrix C whose entries are

$$
C_{i j}=E\left[\left(\eta_{i}-E\left[\eta_{i}\right]\right)\left(\eta_{j}-E\left[\eta_{j}\right]\right)\right]
$$

is equal to A. Two jointly Gaussian random variables are independent if and only if they are uncorrelated.

4. Chebyshev's inequality

Chebyshev's inequality holds for any random variable. It is a very useful theoretical tool for proving various estimates. In practice, it often gives too rough estimates which is a consequence of its universality. Chebyshev's inequality is not improvable, as we can construct a random variable for which it turns into an equality.
Theorem 2. Let η be a random variable. Suppose $g(x)$ is a nonnegative, nondecreasing function (i.e., $g(x) \geq 0$, $g(a) \leq g(b)$ whenever $a<b)$. Then for any $a \in \mathbb{R}$
(10) $\quad P(\eta \geq a) \leq \frac{E[g(\eta)]}{g(a)}$.

Proof.

$$
\begin{aligned}
E[g(\eta)] & =\int_{-\infty}^{\infty} g(x) d F(x) \\
& \geq \int_{a}^{\infty} g(x) d F(x) \geq g(a) \int_{a}^{\infty} d F(x)=g(a) P(\eta \geq a)
\end{aligned}
$$

Given a random variable η we define a random variable

$$
\xi:=|\eta-E[\eta]| .
$$

Define

$$
g(x)= \begin{cases}x^{2}, & x \geq 0, \\ 0, & x<0 .\end{cases}
$$

Plugging this into Eq. (10) we obtain

$$
P(|\eta-E[\eta]| \geq a) \leq \frac{\operatorname{Var}(\eta)}{a^{2}}
$$

Example 14 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. We will compare the exact probabilities with their Chebyshev estimates.

$$
\begin{aligned}
& P(|\xi-7| \geq 1)=P(\xi \neq 7)=1-\frac{6}{36}=\frac{5}{6}=0.8(3), \quad \frac{\operatorname{Var}(\xi)}{1}=\frac{35}{6}=5.8(3) \\
& P(|\xi-7| \geq 2)=P(\xi \leq 5 \text { or } \xi \geq 9)=\frac{20}{36}=\frac{5}{9}=0 .(5), \quad \frac{\operatorname{Var}(\xi)}{4}=\frac{35}{24}=1.458(3) \\
& P(|\xi-7| \geq 3)=P(\xi \leq 4 \text { or } \xi \geq 10)=\frac{12}{36}=\frac{1}{3}=0 .(3), \quad \frac{\operatorname{Var}(\xi)}{9}=\frac{35}{54}=0.6(481) \\
& P(|\xi-7| \geq 4)=P(\xi \in\{2,3,11,12\})=\frac{6}{36}=\frac{1}{6}=0.1(6), \quad \frac{\operatorname{Var}(\xi)}{16}=\frac{35}{96}=0.36458(3) ; \\
& P(|\xi-7| \geq 5)=P(\xi \in\{2,12\})=\frac{2}{36}=\frac{1}{18}=0.0(5), \quad \frac{\operatorname{Var}(\xi)}{25}=\frac{35}{150}=0.2(3)
\end{aligned}
$$

Choosing $a=k \sigma$ we get

$$
P(|\eta-E[\eta]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

This means that for any random variable η defined on any probability space we have that the probability that η deviates from its expected value by at least k standard deviations does not exceed $1 / k^{2}$.

The bounds given Chebyshev's inequality cannot be improved in principle, because they are exact for the random variable

$$
\eta= \begin{cases}1, & P=\frac{1}{2 k^{2}} \\ 0, & P=1-\frac{1}{k^{2}} \\ -1, & P=\frac{1}{2 k^{2}}\end{cases}
$$

It is easy to check that $E[\eta]=0, \operatorname{Var}(\eta)=\frac{1}{k^{2}}$. Hence

$$
P(|\eta| \geq 1)=\frac{1}{k^{2}}=\frac{\operatorname{Var}(\eta)}{1^{2}}
$$

i.e. Chebyshev's inequality turns into equality.

5. Types of convergence of Random variables

Suppose we have a sequence of random variables $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$. In probability theory, there exist several different notions of convergence of a sequence of random variables $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ to some limit random variable η.

- $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ converges in distribution or converges weakly, or converges in law to η if
$\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for every x where $F(x)$ is continuous,
where F_{n} and F are the probability distribution functions of η_{n} and η respectively.
Remark Convergence of pdfs $f_{n}(x)$ implies convergence of $F_{n}(x)$. The converse is not true in general. For example, consider $F_{n}(x)=x-\frac{1}{2 \pi n} \sin (2 \pi n x), x \in(0,1)$. The corresponding pdf is $f_{n}(x)=1-\cos (2 \pi n x), x \in(0,1) .\left\{F_{n}(x)\right\}$ converges to $F(x)=x$, i.e., to the uniform distribution, while $\left\{f_{n}(x)\right\}$ does not converge at all.

Remark In the discrete case, the convergence of probability mass functions $f(k):=$ $P(\eta=k)$ implies the convergence of the probability distribution functions.

Example 15 Consider the sum of n independent copies of the Bernoulli random variable as in Example 11:

$$
\begin{equation*}
f(k ; n, p) \equiv P(\xi=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{13}
\end{equation*}
$$

where $\binom{n}{k}$ is the number of k-combinations of the set of n elements:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Now we let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a manner that the product $n p$ (i.e., the expected value of ξ) remains constant. We introduce the parameter

$$
\lambda:=n p
$$

Consider the sequence of random variables ξ_{n} where ξ_{n} is the sum of n independent copies of Bernoulli random variable with $p=\lambda / n$, i.e,
$\xi_{n}=\sum_{i=1}^{n} \eta_{i}^{(n)}$, where $\eta_{i}^{(n)}= \begin{cases}1, & P(1)=\lambda / n, \\ 0, & P(0)=1-\lambda / n .\end{cases}$
Plugging in $p=\lambda / n$ in the results of Example 11 we find the expected value and the variance:

$$
\begin{gathered}
E\left[\xi_{n}\right]=n \frac{\lambda}{n}=\lambda . \\
\operatorname{Var}\left(\xi_{n}\right)=n \frac{\lambda}{n}\left(1-\frac{\lambda}{n}\right)=\lambda\left(1-\frac{\lambda}{n}\right) .
\end{gathered}
$$

We will show that the sequence ξ_{n} converges to the Poisson random variable with parameter λ in distribution. Consider the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(k ; n, \frac{\lambda}{n}\right)=\lim _{n \rightarrow \infty} \frac{n(n-1) \ldots(n-k+1)}{k!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}= \\
& \frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty} \frac{n(n-1) \ldots(n-k+1)}{n^{k}} \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n} \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-k}
\end{aligned}
$$

The first limit in the equation above is 1 as $n(n-1) \ldots(n-k+1)=$ $n^{k}+O\left(n^{k-1}\right)$. The second limit can be calculated using the well-known fact that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

The third limit is 1 . Therefore,

$$
\lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}=\frac{\lambda^{k}}{k!} e^{-\lambda},
$$

which is the Poisson distribution with parameter λ.

- $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ converges in probability to η if for any $\epsilon>0$
$\lim _{n \rightarrow \infty} P\left(\left|\eta_{n}-\eta\right| \geq \epsilon\right)=0$
Remark Convergence in probability implies convergence in distribution.
Proof. We will prove this fact for the case of scalar random variables. We have $\lim _{n \rightarrow \infty} P\left(\left|\eta_{n}-\eta\right| \geq \epsilon\right)=0$, we need to prove $\lim _{n \rightarrow \infty} P\left(\eta_{n} \leq x\right)=P(\eta \leq x)$ for every x where F_{η} is continuous. First we show an auxiliary fact that for any two random variables ξ and $\zeta, x \in \mathbb{R}$ and $\epsilon>0$
$P(\xi \leq a) \leq P(\zeta \leq a+\epsilon)+P(|\xi-\zeta|>\epsilon)$.
Indeed,

$$
\begin{aligned}
P(\xi \leq a) & =P(\xi \leq a \& \zeta \leq a+\epsilon)+P(\xi \leq a \& \zeta>a+\epsilon) \\
& \leq P(\zeta \leq a+\epsilon)+P(\xi-\zeta \leq a-\zeta \& a-\zeta<-\epsilon) \\
& \leq P(\zeta \leq a+\epsilon)+P(\zeta-\xi<-\epsilon) \\
& \leq P(\zeta \leq a+\epsilon)+P(\zeta-\xi<-\epsilon)+P(\zeta-\xi>\epsilon) \\
& =P(\zeta \leq a+\epsilon)+P(|\zeta-\xi|>\epsilon) .
\end{aligned}
$$

Applying Eq. (16) to $\xi=\eta_{n}$ and $\zeta=\eta$ with $a=x$ and $a=x-\epsilon$, we get

$$
P\left(\eta_{n} \leq x\right) \leq P(\eta \leq x+\epsilon)+P\left(\left|\eta_{n}-\eta\right|>\epsilon\right)
$$

$$
P(\eta \leq x-\epsilon) \leq P\left(\eta_{n} \leq x\right)+P\left(\left|\eta_{n}-\eta\right|>\epsilon\right)
$$

$$
P(\eta \leq x-\epsilon)-P\left(\left|\eta_{n}-\eta\right|>\epsilon\right) \leq P\left(\eta_{n} \leq x\right) \leq P(\eta \leq x+\epsilon)+P\left(\left|\eta_{n}-\eta\right|>\epsilon\right)
$$

Taking the limit $n \rightarrow \infty$ and taking into account that $\lim _{i \rightarrow \infty} P\left(\left|\eta_{n}-\eta\right| \geq \epsilon\right)=0$, we get

$$
F_{\eta}(x-\epsilon) \leq \lim _{n \rightarrow \infty} F_{\eta_{n}}(x) \leq F_{\eta}(x+\epsilon) .
$$

If x is a point of continuity of F_{η},

$$
\lim _{\epsilon \rightarrow 0} F_{\eta}(x-\epsilon)=\lim _{\epsilon \rightarrow 0} F_{\eta}(x+\epsilon)=F_{\eta}(x)
$$

Therefore, taking the limit $\epsilon \rightarrow 0$ we obtain the weak convergence:

$$
\lim _{n \rightarrow \infty} F_{\eta_{n}}(x)=F_{\eta}(x)
$$

for any x where $F_{\eta}(x)$ is continuous.
Remark The converse is, generally, not true. However, convergence in distribution to a constant random variable implies convergence in probability.

- $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ converges almost surely or almost everywhere or with probability 1 or strongly to η if
$P\left(\lim _{n \rightarrow \infty} \eta_{n}=\eta\right)=1$.
Remark Convergence almost surely implies convergence in probability (by Fatou's lemma) and in distribution.
- To summarize,

$$
\begin{equation*}
\eta_{i} \rightarrow \eta \text { almost surely } \Rightarrow \eta_{i} \rightarrow \eta \text { in probability } \Rightarrow \eta_{i} \rightarrow \eta \text { in distribution } \tag{18}
\end{equation*}
$$

6. Laws of Large Numbers and the Central Limit Theorem

- Let $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ be a sequence of random variables with finite expected values $\left\{m_{1}=\right.$ $\left.E\left[\eta_{1}\right], m_{2}=E\left[\eta_{2}\right], \ldots\right\}$. Define

$$
\xi_{n}=\frac{1}{n} \sum_{i=1}^{n} \eta_{i}, \quad \bar{\xi}_{n}=\frac{1}{n} \sum_{i=1}^{n} m_{i} .
$$

Definition 2. (1) The sequence of random variables η_{n} satisfies the Law of Large Numbers if $\xi_{n}-\bar{\xi}_{n}$ converges to zero in probability, i.e., for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|\xi_{n}-\bar{\xi}_{n}\right|>\epsilon\right)=0 .
$$

(2) The sequence of random variables η_{n} satisfies the Strong Law of Large Numbers if $\xi_{n}-\bar{\xi}_{n}$ converges to zero almost surely, i.e., for almost all $\omega \in \Omega$

$$
\lim _{n \rightarrow \infty} \xi_{n}-\bar{\xi}_{n}=0
$$

- If the random variables η_{n} are independent and if $\operatorname{Var}\left(\eta_{i}\right) \leq V<\infty$, then the Law of Large Numbers holds by the Chebyshev Inequality (10):

$$
\begin{aligned}
P\left(\left|\xi_{n}-\bar{\xi}_{n}\right|>\epsilon\right) & =P\left(\left|\sum_{i=1}^{n} \eta_{i}-\sum_{i=1}^{n} m_{i}\right|>n \epsilon\right) \\
& \leq \frac{\operatorname{Var}\left(\eta_{1}+\ldots+\eta_{n}\right)}{\epsilon^{2} n^{2}} \leq \frac{V}{\epsilon^{2} n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Theorem 3. (Khinchin) A sequence of independent identically distributed random variables $\left\{\eta_{i}\right\}$ with $\mathbb{E}\left[\eta_{i}\right]=m$ and $\mathbb{E}\left[\left|\eta_{i}\right|\right]<\infty$ satisfies the Law of Large Numbers.

Theorem 4. (Kolmogorov) A sequence of independent identically distributed random variables with finite expected value and variance satisfies the Strong Law of Large Numbers.

Theorem 5. (The central limit theorem) Let $\left\{\eta_{1}, \eta_{2}, \ldots\right\}$ be a sequence of independent identically distributed (i.i.d.) random variables with $m=E\left[\eta_{i}\right]$ and $0<\sigma^{2}=\operatorname{Var}\left(\eta_{i}\right)<\infty$, then
$\frac{\left(\sum_{i=1}^{n} \eta_{i}\right)-n m}{\sigma \sqrt{n}} \longrightarrow N(0,1)$ in distribution,
i.e., converges weakly to the standard normal distribution $N(0,1)$ (i.e., the Gaussian distribution with mean 0 and variance 1) as $n \rightarrow \infty$.

A proof via Fourier transform can be found in [1]. Another proof making use of characteristic functions can be found in [2].
Remark Eq. (19) can be recasted as
$\frac{1}{n} \sum_{i=1}^{n} \eta_{i} \longrightarrow N\left(m, \frac{\sigma^{2}}{n}\right)$ in distribution,
i.e., the average of the first n i.i.d. random variables η_{i} converges in distribution to the Gaussian random variable with mean $m=E\left[\eta_{i}\right]$ and variance σ^{2} / n.

7. Conditional probability and conditional expectation

- The conditional probability of an event B given that the event A has happened is given by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} .
$$

Note that if A and B are independent, then $P(A \cap B)=P(A) P(B)$ and hence

$$
P(B \mid A)=\frac{P(A) P(B)}{P(A)}=P(B) .
$$

Example 16 Suppose you are tossing a die twice. Consider the probability space (4). Let A be the event that the outcome of the first throw is even, and B be the event that the sum of the outcomes is ≥ 10. Then (see Table 1)

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{4 / 36}{1 / 2}=\frac{2}{9} .
$$

Note that $P(B)=1 / 6<P(B \mid A)$. Hence the events A and B are dependent.
If the event A is fixed, then $P(B \mid A)$ defines a probability measure on (Ω, \mathcal{B}).

- If η is a random variable on Ω, then conditional expectation of η given the event A is

$$
E[\eta \mid A]=\int_{\Omega} \eta(\omega) P(d \omega \mid A)=\int_{\Omega} \eta(\omega) \frac{P(d \omega \cap A)}{P(A)}=\frac{\int_{A} \eta(\omega) P(d w)}{P(A)} .
$$

Example 17 . Suppose you are tossing a die twice. Consider the probability space (4). Let A be the event that the outcome of the first throw is even, and η be the random variable whose value is the sum of outcomes, i.e., $\eta\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=\omega_{1}+\omega_{2}$. Then

$$
E[\eta \mid A]=\sum_{\omega_{1}=1}^{6} \sum_{\omega_{2}=1}^{6}\left(\omega_{1}+\omega_{2}\right) P\left(\left\{\omega_{1}, \omega_{2}\right\} \mid \omega_{1} \in\{2,4,6\}\right) .
$$

Let us calculate $P\left(\left\{\omega_{1}, \omega_{2}\right\} \mid \omega_{1} \in\{2,4,6\}\right)$.

$$
\begin{aligned}
& P\left(\left\{\omega_{1}, \omega_{2}\right\} \mid \omega_{1} \in\{2,4,6\}\right)= \\
&= \frac{P\left(\left\{\omega_{1}, \omega_{2}\right\} \cap\left(\omega_{1} \in\{2,4,6\}\right)\right)}{P\left(\omega_{1} \in\{2,4,6\}\right)} \\
&= \begin{cases}0, & \omega_{1} \in\{1,3,5\}, \\
\frac{P\left(\left\{\omega_{1}, \omega_{2}\right\}\right)}{P\left(\omega_{1} \in\{2,4,6\}\right)}=\frac{1 / 36}{1 / 2}=\frac{1}{18}, & \omega_{1} \in\{2,4,6\} .\end{cases}
\end{aligned}
$$

Now we continue our calculation:

$$
E\left[\omega_{1}+\omega_{2} \mid \omega_{1} \in\{2,4,6\}\right]=\sum_{\omega_{1} \in\{2,4,6\}} \sum_{\omega_{2}=1}^{6}\left(\omega_{1}+\omega_{2}\right) \frac{1}{18}=\frac{135}{18}=7.5 .
$$

Note that $E[\eta]=7 \neq E[\eta \mid A]=7.5$.

- Now we show how one can construct new random variables using conditional probability. For simplicity, we start with partitioning the set of outcomes Ω into a finite or countable number of disjoint measurable subsets:

$$
\Omega=\bigcup_{i} A_{i}, \quad \text { where } \quad A_{i} \in \mathcal{B}, \quad A_{i} \cap A_{j}=\emptyset .
$$

Definition 3. Let η be a random variable on the probability space (Ω, \mathcal{B}, P). Let $\mathcal{A}=\left\{A_{i}\right\}$ be a partition of Ω as above. Define a new random variable $E[\eta \mid \mathcal{A}]$ as follows:
$E[\eta \mid \mathcal{A}]=\sum_{i} E\left[\eta \mid A_{i}\right] \chi\left(A_{i}\right)$,
where $\chi\left(A_{i}\right)$ is the indicator function of A_{i} :

$$
\chi\left(A_{i} ; \omega\right)= \begin{cases}1, & \omega \in A_{i}, \\ 0, & \omega \notin A_{i} .\end{cases}
$$

Remark Note that $E[\eta \mid \mathcal{A}]$ is a random variable as it is a function of the outcome ω. Indeed,

$$
E[\eta \mid \mathcal{A}](\omega)=E\left[\eta \mid A_{i}\right] \text { where } A_{i} \ni \omega .
$$

Example 18 Suppose you are tossing a die twice. Let us partition the set of outcomes as follows:

$$
\Omega=\bigcup_{i=1}^{6}\left\{\left(\omega_{1}, \omega_{2}\right) \mid \omega_{1}=i\right\} .
$$

The corresponding partition \mathcal{A} is

$$
\mathcal{A}=\left\{\left\{\left(\omega_{1}, \omega_{2}\right) \mid \omega_{1}=i\right\}\right\}_{i=1}^{6} .
$$

Take the random variable $\xi=\omega_{1}+\omega_{2}$ (see Table 1, left), the sum of numbers on the top. Construct a new random variable

$$
\begin{aligned}
E[\xi \mid \mathcal{A}] & =\sum_{i=1}^{6} E\left[\xi \mid \omega_{1}=i\right] \chi\left(\omega_{1}=i\right)=\sum_{i=1}^{6}(i+3.5) \chi\left(\omega_{1}=i\right) \\
& =4.5 \chi\left(\omega_{1}=1\right)+5.5 \chi\left(\omega_{1}=2\right)+6.5 \chi\left(\omega_{1}=3\right) \\
& +7.5 \chi\left(\omega_{1}=4\right)+8.5 \chi\left(\omega_{1}=5\right)+9.5 \chi\left(\omega_{1}=6\right) .
\end{aligned}
$$

- Now we define the conditional expectation of one random variable η given the other random variable θ. First we assume that θ assumes a finite or countable number of values $\left\{\theta_{1}, \theta_{2}, \ldots\right\}$. Define the partition \mathcal{A} where

$$
A_{i}=\left\{\omega \in \Omega \mid \theta=\theta_{i}\right\} .
$$

Definition 4. We define a new random variable $E[\eta \mid \theta]$ as a the following function of the random variable θ :

$$
E[\eta \mid \theta]:=E[\eta \mid \mathcal{A}], \quad \text { i.e., } \quad E[\eta \mid \theta]=E\left[\eta \mid A_{i}\right] \quad \text { if } \quad \theta=\theta_{i} .
$$

Example 19 Suppose you are tossing a die twice. Let $\left(\omega_{1}, \omega_{2}\right)$ be the numbers on the top. Define random variables $\xi=\omega_{1}+\omega_{2}$ and $\theta=\omega_{1}$. Then it follows from our calculation from the previous example that

$$
E[\xi \mid \theta]=3.5+\theta \text {. }
$$

References

[1] A. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, 3rd edition, Springer 2013
[2] L. Koralov and Ya. Sinai, Theory of probability and stochastic processes, 2nd edition, Springer, 2007

