A BRIEF REVIEW OF THE PROBABILITY THEORY

MARIA CAMERON

Contents

1. Definitions 1
2. Expected values and moments 4
3. Independence, joint distributions, covariance 5
4. Chebyshev’s inequality 8
5. Types of convergence of random variables 9
6. Laws of Large Numbers and the Central Limit Theorem 12
7. Conditional probability and conditional expectation 13
References 15

1. Definitions

A probability space is a triple consisting of the set of outcomes, the set of subsets of the set of outcomes that we want to be able to assign probabilities to called the σ-algebra, and the probability measure, i.e. a function that assigns probabilities.

- A **sample space** Ω is the set of all possible outcomes.
- An **event** A is a subset of Ω.
- A **σ-algebra** B is a subset of the set of all subsets of Ω that is closed with respect to set operations. The minimal requirements guaranteeing that the σ-algebra possesses these properties constitute the set of axioms that defines it:
 1. $\emptyset \in B$ and $\Omega \in B$;
 2. If $B \in B$ then $B^c \in B$ (B^c is the complement of B in Ω, i.e., $B^c \equiv \Omega \setminus B$).
 3. If $A = \{A_1, \ldots, A_n, \ldots\}$ is a finite or countable collection in B then

$$\bigcup_i A_i \in B.$$

Corollary: If $A = \{A_1, \ldots, A_n, \ldots\}$ is a finite or countable collection in B then

$$\bigcap_i A_i \in B.$$

Indeed,

$$\bigcap_i A_i = \left(\bigcup_i A_i^c\right)^c.$$
Example 1 Suppose you are tossing a die. For a single throw, the sample space is $\Omega = \{1, 2, 3, 4, 5, 6\}$. If you are interested in particular number on the top, the natural choice of the σ-algebra is the set of all subsets of Ω. Then $|B| = 2^6 = 64$. If you are interested only in whether the outcome is odd or even, then a reasonable choice of σ-algebra is $B = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \{1, 2, 3, 4, 5, 6\}\}$.

If you are interested only whether there is an outcome or not, you can choose the coarsest σ-algebra $B = \{\emptyset, \{1, 2, 3, 4, 5, 6\}\}$.

Example 2 Suppose you are doing a measurement whose outcome can be any real number. For example, you are living in a one-dimensional world, you are throwing a point object, and measuring its position with respect to a fixed point, i.e. the origin of a coordinate system in your 1D-world. The set of outcomes is \mathbb{R}. The most commonly chosen σ-algebra is the so-called Borel σ-algebra which is generated by all open sets in \mathbb{R}. Thanks to the properties of σ-algebra, the Borel σ-algebra can be generated by all intervals of the form $(-\infty, a]$, where $a \in \mathbb{R}$.

• A probability measure P is a function $P : B \rightarrow [0, 1]$ such that
 (1) $P(\Omega) = 1$;
 (2) $0 \leq P(A) \leq 1$ for all $A \in B$.
 (3) Countable additivity: If $A = \{A_1, \ldots, A_n, \ldots\}$ is a finite or countable collection in B such that $A_i \cap A_j = \emptyset$ for any i, j, then

$$P \left(\bigcup_i A_i \right) = \sum_i P(A_i).$$

Corollary: $P(\emptyset) = 0$. Indeed,

$$1 = P(\Omega) = P(\Omega \cup \emptyset) = P(\Omega) + P(\emptyset) = 1 + P(\emptyset).$$

Hence, $P(\emptyset) = 0$.

• A probability space is the triple (Ω, B, P).

• A random variable η is a B-measurable function $\eta : \Omega \rightarrow \mathbb{R}$.

 A function is called B-measurable if the preimage of any measurable subset of \mathbb{R} is in B. It is proven in analysis that it is suffices to check that $\{\omega \in \Omega \mid \eta(\omega) \leq x\} \in B$ for any $x \in \mathbb{R}$.

• A probability distribution function of a random variable η is defined by

$$F_\eta(x) = P(\{\omega \in \Omega \mid \eta(\omega) \leq x\}) = P(\eta \leq x).$$

Theorem 1. If F is a probability distribution function then

(1) F is nondecreasing, i.e. $x < y$ implies $F(x) \leq F(y)$.

(2) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$.

(3) $F(x)$ is continuous from the right for every $x \in \mathbb{R}$, i.e.,
\[
\lim_{y \to x^+} F(y) = F(x).
\]

Example 3 Suppose you are tossing a die. Consider the probability space

(1) $(\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{B} = 2^{\Omega}, P(\omega) = \frac{1}{6})$,

where 2^{Ω} is the set of all subsets of Ω, and $\omega \in \Omega = \{1, 2, 3, 4, 5, 6\}$. Consider the random variable $\eta(\omega) = \omega$. The probability distribution function is given by

\[
F_\eta(x) = \begin{cases}
0, & x < 1, \\
\frac{j}{6}, & j \leq x < j + 1, \ j = 1, 2, 3, 4, 5 \\
1, & x \geq 6.
\end{cases}
\]

- Suppose $F_\eta'(x)$ exists. Then $f_\eta(x) \equiv F_\eta'(x)$ is called the **probability density function (pdf)** of the random variable η, and

\[
P(x < \eta \leq x + dx) = F_\eta(x + dx) - F_\eta(x) = f_\eta(x)dx + o(dx).
\]

Example 4 The Gaussian density

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}},
\]

where m and σ are constants. m is the mean, while σ is the standard deviation.

Example 5 The density of an exponential random variable with parameter $a > 0$ is given by:

\[
f(x) = \begin{cases}
ae^{-ax}, & x \geq 0, \\
0, & x < 0.
\end{cases}
\]

Example 6 The density of a uniform random variable on an interval $[a, b]$ is

\[
f(x) = \frac{1}{b-a}I_{[a,b]}(x) = \begin{cases}
\frac{1}{b-a}, & x \in [a, b], \\
0, & \text{otherwise}.
\end{cases}
\]

Here $I_{[a,b]}(x)$ is the indicator function of the interval $[a, b]$.

- If the set of outcomes Ω is discrete (finite or countable) and the σ-algebra is the set of all subsets Ω, then the function $P(\omega)$ is often called the **probability mass function**.
2. Expected values and moments

Definition 1. Let \((\Omega, \mathcal{B}, P)\) be a probability space, and \(\eta\) be a random variable. Then the expected value, or mean, of the random variable \(\eta\) is defined as

\[
E[\eta] = \int_{\Omega} \eta(\omega) dP.
\]

If \(\Omega\) is a discrete set,

\[
E[\eta] = \sum_i \eta(\omega_i) P(\omega_i).
\]

Example 7. Suppose you are tossing a die. Consider the probability space (1) and the random variable \(\eta(\omega) = \omega, \omega = 1, 2, 3, 4, 5, 6\). The expected value of \(\eta\) is

\[
E[\eta] = \sum_{j=1}^{6} j \frac{1}{6} = 3.5
\]

Suppose that the random variable \(\eta\) is fixed. Then we will omit the subscript in the notation of its probability distribution function: \(F_\eta(x) \equiv F(x)\).

The integral in Eq. (2) can be rewritten using \(F(x)\):

\[
E[\eta] = \int_{\mathbb{R}} x P(x < \eta \leq x + dx) = \int_{-\infty}^{\infty} x dF(x).
\]

If a derivative \(f(x)\) of the probability distribution function \(F\) exists, then

\[
E[\eta] = \int_{-\infty}^{\infty} x f(x) dx.
\]

If \(g\) is a function defined on the range of the random variable \(\eta\) (on \(\eta(\Omega)\)), then the expected value of this function is

\[
E[g(\eta)] = \int_{-\infty}^{\infty} g(x) dF(x).
\]

Moments: Let us take \(g(x) = x^n\).

\[
E[\eta^n] = \int_{-\infty}^{\infty} x^n dF(x).
\]

Central moments: Let us take \(g(x) = (x - E[\eta])^n\).

\[
E[(\eta - E[\eta])^n] = \int_{-\infty}^{\infty} (x - E[\eta])^n dF(x).
\]

Variance = 2nd central moment:

\[
\text{Var}(\eta) = E[(\eta - E[\eta])^2] = \int_{-\infty}^{\infty} (x - E[\eta])^2 dF(x).
\]
Example 8 Suppose you are tossing a die. Consider the probability space (1) and the random variable \(\eta(\omega) = \omega, \omega = 1, 2, 3, 4, 5, 6 \). The variance of \(\eta \) is
\[
\text{Var}(\eta) = \frac{1}{6} \sum_{j=1}^{6} (j - 3.5)^2 = \frac{35}{12} = 2.91(6).
\]

The standard deviation:
\[
\sigma(\eta) = \sqrt{\text{Var}(\eta)}.
\]

3. Independence, Joint Distributions, Covariance

- Two events \(A, B \in \mathcal{B} \) are independent if
 \[
P(A \cap B) = P(A)P(B).
\]
- Two random variables \(\eta_1 \) and \(\eta_2 \) are independent if the events
 \[
 \{ \omega \in \Omega \mid \eta_1(\omega) \leq x \} \quad \text{and} \quad \{ \omega \in \Omega \mid \eta_2(\omega) \leq y \}
 \]
 are independent for all \(x, y \in \mathbb{R} \).

Example 9 Suppose you are tossing a die twice. Consider the probability space
\[
(\Omega = \{1, 2, 3, 4, 5, 6\}^2, \mathcal{B} = 2^{\Omega^2}, P(\{\omega_1, \omega_2\}) = 1/36), \quad 1 \leq \omega_1, \omega_2 \leq 6.
\]

Let \(\eta_1 \) and \(\eta_2 \) be random variables equal to the outcomes of the first and second throws respectively. These random variables are independent.

Table 1. Two throws of a die. Values of the random variables \(\xi(\omega_1, \omega_2) = \omega_1 + \omega_2 \) (left) and \(\beta(\omega_1, \omega_2) = \omega_1 - \omega_2 \) (right).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

the second throws respectively. These random variables are independent.

Now consider the random variables \(\eta(\omega_1, \omega_2) = \omega_1 \) and \(\xi(\omega_1, \omega_2) = \omega_1 + \omega_2 \) (see Table 1, left). We can show that \(\eta \) and \(\xi \) are dependent by taking e.g., \(x = 1 \) and \(y = 2 \) in Eq. (3):
\[
P(\eta \leq 1 \& \xi \leq 2) = \frac{1}{36} \neq P(\eta \leq 1)P(\xi \leq 2) = \frac{1}{6} \cdot \frac{1}{12} = \frac{1}{16}.
\]
Finally, we consider the random variables $\xi(\omega_1, \omega_2) = \omega_1 + \omega_2$ and $\beta(\omega_1, \omega_2) = \omega_1 - \omega_2$ (see Table 1, right). We can show that they are dependent by taking e.g., $x = 2$ and $y = -1$ in Eq. (3):

$$P(\xi \leq 2 \& \beta \leq -1) = 0 \neq P(\xi \leq 2)P(\beta \leq -1) = \frac{1}{36} \cdot \frac{15}{36} = \frac{5}{432}.$$

- The joint distribution function of two random variables η_1 and η_2 is given by

$$F_{\eta_1 \eta_2}(x,y) = P\{\omega \in \Omega \mid \eta_1(\omega) \leq x, \eta_2(\omega) \leq y\} = P(\eta_1(\omega) \leq x, \eta_2(\omega) \leq y).$$

- If the second mixed derivative of $F_{\eta_1 \eta_2}$ exists, it is called the joint probability density of η_1 and η_2 and denoted by

$$f_{\eta_1 \eta_2}(x,y) = \frac{\partial F_{\eta_1 \eta_2}(x,y)}{\partial x \partial y}.$$

In this case,

$$F_{\eta_1 \eta_2}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\eta_1 \eta_2}(x,y) dx dy.$$

Exercise Show that two random variables are independent if and only if

$$F_{\eta_1 \eta_2}(x,y) = F_{\eta_1}(x)F_{\eta_2}(y).$$

Furthermore, if the joint pdf $f_{\eta_1 \eta_2}(x,y)$ exists, then η_1 and η_2 are independent iff

$$f_{\eta_1 \eta_2}(x,y) = f_{\eta_1}(x)f_{\eta_2}(y).$$

- Given the joint pdf $f_{\eta_1 \eta_2}$, one can obtain $f_{\eta_1}(x)$ by

$$f_{\eta_1}(x) = \int_{-\infty}^{\infty} f_{\eta_1 \eta_2}(x,y) dy.$$

In this equation, f_{η_1} is called a marginal of $f_{\eta_1 \eta_2}$, and the variable η_2 is integrated out.

- **Properties of expected value and variance** It follows from the definition, that the expected value is a linear functional:

$$E[a\eta_1 + b\eta_2] = aE[\eta_1] + bE[\eta_2].$$

- $\text{Var}(a\eta) = a^2\text{Var}(\eta)$.

- If η_1 and η_2 are independent, then

$$\text{Var}(\eta_1 + \eta_2) = \text{Var}(\eta_1) + \text{Var}(\eta_2).$$

- If η_1 and η_2 are dependent, (7) is not true: take $\eta_1 = \eta_2$. In general,

$$\text{Var}(\eta_1 + \eta_2) = \text{Var}(\eta_1) + \text{Var}(\eta_2) + 2\text{Cov}(\eta_1, \eta_2),$$

where $\text{Cov}(\eta_1, \eta_2)$ is the covariance of η_1 and η_2 — see below. You will see below that (7) does not imply that η_1 and η_2 are independent, only that they are uncorrelated.
Example 10 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. Then

\[E[\xi] = E[\eta_1 + \eta_2] = E[\eta_1] + E[\eta_2] = 7. \]

\[E[\beta] = E[\eta_1 - \eta_2] = E[\eta_1] + E[-\eta_2] = 0. \]

\[\text{Var}[\xi] = \text{Var}[\eta_1 + \eta_2] = \text{Var}[\eta_1] + \text{Var}[\eta_2] = \frac{35}{6} = 5.8(3). \]

\[\text{Var}[\beta] = \text{Var}[\eta_1 - \eta_2] = \text{Var}[\eta_1] + \text{Var}[\eta_2] = \text{Var}[\eta_1] + \text{Var}[\eta_2] = \frac{35}{6} = 5.8(3). \]

Example 11 Consider the Bernoulli random variable

\[\eta = \begin{cases} 1, & P(1) = p, \\ 0, & P(0) = 1 - p. \end{cases} \]

Its expected value and variance are

\[E[\eta] = 1 \cdot p + 0 \cdot (1 - p) = p, \]

\[\text{Var}(\eta) = (1 - p)^2 \cdot p + (0 - p)^2 \cdot (1 - p) = p(1 - p). \]

Now consider the sum of \(n \) independent copies of \(\eta \):

\[\xi := \sum_{i=1}^{n} \eta_i. \]

Using Eq. (5) we calculate \(E[\xi] \):

\[E[\xi] = \sum_{i=1}^{n} E[\eta_i] = np. \]

Since \(\eta_i, 1 \leq i \leq n \), are independent, we can calculate \(\text{Var}(\xi) \) using Eq. (7):

\[\text{Var}(\xi) = \sum_{i=1}^{n} \text{Var}(\eta_i) = np(1 - p). \]

Finally, consider the average of \(n \) independent copies of \(\eta \):

\[\zeta := \frac{1}{n} \sum_{i=1}^{n} \eta_i = \frac{\xi}{n}. \]

Using Eqs. (5) and (6), we find

\[E[\zeta] = p, \]

\[\text{Var}(\zeta) = \text{Var}\left(\frac{\xi}{n} \right) = \frac{1}{n^2} \text{Var}(\xi) = \frac{p(1 - p)}{n}. \]

- The covariance of two random variables \(\eta_1 \) and \(\eta_2 \) is defined by

\[\text{Cov}(\eta_1, \eta_2) = E[(\eta_1 - E[\eta_1])(\eta_2 - E[\eta_2])]. \]
Remark If η_1 and η_2 are independent, then $\text{Cov}(\eta_1, \eta_2) = 0$. If $\text{Cov}(\eta_1, \eta_2) = 0$ then η_1 and η_2 are uncorrelated. Note that uncorrelated random variables are not necessarily independent.

Example 12 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. As we have established in Example 9, ξ and β are dependent. However, they are uncorrelated. Indeed,

$$\text{Cov}(\xi, \beta) = \sum_{1 \leq \omega_1 \leq 6, 1 \leq \omega_2 \leq 6} (\omega_1 + \omega_2 - 7)(\omega_1 - \omega_2) \cdot P(\{\omega_1, \omega_2\})$$

$$= \frac{1}{36} \left(\sum_{\omega_1 < \omega_2} (\omega_1 + \omega_2 - 7)(\omega_1 - \omega_2) + \sum_{\omega_1 > \omega_2} (\omega_1 + \omega_2 - 7)(\omega_1 - \omega_2) \right) = 0.$$

Example 13 A vector-valued random variable $\eta = [\eta_1, \ldots, \eta_n]$ is jointly Gaussian if

$$P(x_1 < \eta_1 \leq x_1 + dx_1, \ldots, x_n < \eta_n \leq x_n + dx_n) = \frac{1}{Z} e^{-\frac{1}{2}(x-m)^T A^{-1}(x-m)} dx + o(dx),$$

where $x = [x_1, \ldots, x_n]^T$, $m = [m_1, \ldots, m_n]^T$, $dx = dx_1 \ldots dx_n$, and A is a symmetric positive definite matrix. The normalization constant Z is given by

$$Z = (2\pi)^{n/2} |A|^{1/2}, \quad \text{where } |A| = \det A.$$

In the case of jointly Gaussian random variables, the covariance matrix C whose entries are

$$C_{ij} = E[(\eta_i - E[\eta_i])(\eta_j - E[\eta_j])]$$

is equal to A. Two jointly Gaussian random variables are independent if and only if they are uncorrelated.

4. **Chebyshev’s Inequality**

Chebyshev’s inequality holds for any random variable. It is a very useful theoretical tool for proving various estimates. In practice, it often gives too rough estimates which is a consequence of its universality. Chebyshev’s inequality is not improvable, as we can construct a random variable for which it turns into an equality.

Theorem 2. Let η be a random variable. Suppose $g(x)$ is a nonnegative, nondecreasing function (i.e., $g(x) \geq 0$, $g(a) \leq g(b)$ whenever $a < b$). Then for any $a \in \mathbb{R}$

$$P(\eta \geq a) \leq \frac{E[g(\eta)]}{g(a)} \tag{10}$$

Proof.

$$E[g(\eta)] = \int_{-\infty}^{\infty} g(x) dF(x) \geq \int_{a}^{\infty} g(x) dF(x) \geq g(a) \int_{a}^{\infty} dF(x) = g(a) \cdot P(\eta \geq a).$$

\square
Given a random variable \(\eta \) we define a random variable
\[
\xi := |\eta - E[\eta]|.
\]
Define
\[
g(x) = \begin{cases}
x^2, & x \geq 0, \\
0, & x < 0.
\end{cases}
\]
Plugging this into Eq. (10) we obtain
\[
P(|\eta - E[\eta]| \geq a) \leq \frac{\text{Var}(\eta)}{a^2}.
\]

Example 14 Suppose you are tossing a die twice. Consider the probability space and random variables introduced in Example 9. We will compare the exact probabilities with their Chebyshev estimates.

\[
P(|\xi - 7| \geq 1) = P(\xi \neq 7) = 1 - \frac{6}{36} = \frac{5}{6} = 0.8(3), \quad \text{Var}(\xi) = \frac{35}{6} = 5.8(3);
\]
\[
P(|\xi - 7| \geq 2) = P(\xi \leq 5 \text{ or } \xi \geq 9) = \frac{50}{36} = \frac{25}{18} = 0.85(5), \quad \text{Var}(\xi) = \frac{35}{24} = 1.458(3);
\]
\[
P(|\xi - 7| \geq 3) = P(\xi \leq 4 \text{ or } \xi \geq 10) = \frac{54}{36} = \frac{9}{6} = 0.15(6), \quad \text{Var}(\xi) = \frac{35}{36} = 0.958(3);
\]
\[
P(|\xi - 7| \geq 4) = P(\xi \in \{2, 3, 11, 12\}) = \frac{6}{36} = \frac{1}{6} = 0.16(6), \quad \text{Var}(\xi) = \frac{35}{15} = 2.36458(3);
\]
\[
P(|\xi - 7| \geq 5) = P(\xi \in \{2, 12\}) = \frac{18}{36} = \frac{1}{2} = 0.0(5), \quad \text{Var}(\xi) = \frac{35}{25} = 0.2(3);
\]

Choosing \(a = k\sigma \) we get
\[
P(|\eta - E[\eta]| \geq k\sigma) \leq \frac{1}{k^2}.
\]
This means that for any random variable \(\eta \) defined on any probability space we have that the probability that \(\eta \) deviates from its expected value by at least \(k \) standard deviations does not exceed \(1/k^2 \).

The bounds given Chebyshev’s inequality cannot be improved in principle, because they are exact for the random variable
\[
\eta = \begin{cases}
1, & P = \frac{1}{6}, \\
0, & P = \frac{1}{2}, \\
-1, & P = \frac{1}{3}.
\end{cases}
\]
It is easy to check that \(E[\eta] = 0 \), \(\text{Var}(\eta) = \frac{1}{6} \). Hence
\[
P(|\eta| \geq 1) = \frac{1}{6^2} = \frac{\text{Var}(\eta)}{12},
\]
i.e. Chebyshev’s inequality turns into equality.

5. **Types of convergence of random variables**

Suppose we have a sequence of random variables \(\{\eta_1, \eta_2, \ldots\} \). In probability theory, there exist several different notions of convergence of a sequence of random variables \(\{\eta_1, \eta_2, \ldots\} \) to some limit random variable \(\eta \).

- \(\{\eta_1, \eta_2, \ldots\} \) **converges in distribution** or **converges weakly**, or **converges in law** to \(\eta \) if
\[
\lim_{n \to \infty} F_n(x) = F(x) \quad \text{for every } x \text{ where } F(x) \text{ is continuous},
\]
where \(F_n \) and \(F \) are the probability distribution functions of \(\eta_n \) and \(\eta \) respectively.

Remark Convergence of pdfs \(f_n(x) \) implies convergence of \(F_n(x) \). The converse is not true in general. For example, consider \(F_n(x) = x - \frac{1}{2\pi n} \sin(2\pi nx), \ x \in (0, 1) \). The corresponding pdf is \(f_n(x) = 1 - \cos(2\pi nx), \ x \in (0, 1) \). \(\{F_n(x)\} \) converges to \(F(x) = x \), i.e., to the uniform distribution, while \(\{f_n(x)\} \) does not converge at all.
Remark In the discrete case, the convergence of probability mass functions \(f(k) := P(\eta = k) \) implies the convergence of the probability distribution functions.

Example 15 Consider the sum of \(n \) independent copies of the Bernoulli random variable as in Example 11:

\[
(12) \quad \xi = \sum_{i=1}^{n} \eta_i, \quad \text{where} \quad \eta_i = \begin{cases} 1, & P(1) = p, \\ 0, & P(0) = 1 - p. \end{cases}
\]

Its probability distribution is the binomial distribution given by

\[
(13) \quad f(k; n, p) \equiv P(\xi = k) = \binom{n}{k} p^k (1 - p)^{n-k},
\]

where \(\binom{n}{k} \) is the number of \(k \)-combinations of the set of \(n \) elements:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}.
\]

Now we let \(n \to \infty \) and \(p \to 0 \) in such a manner that the product \(np \) (i.e., the expected value of \(\xi \)) remains constant. We introduce the parameter \(\lambda := np \).

Consider the sequence of random variables \(\xi_n \) where \(\xi_n \) is the sum of \(n \) independent copies of Bernoulli random variable with \(p = \lambda/n \), i.e,

\[
(14) \quad \xi_n = \sum_{i=1}^{n} \eta_i^{(n)}, \quad \text{where} \quad \eta_i^{(n)} = \begin{cases} 1, & P(1) = \lambda/n, \\ 0, & P(0) = 1 - \lambda/n. \end{cases}
\]

Plugging in \(p = \lambda/n \) in the results of Example 11 we find the expected value and the variance:

\[
E[\xi_n] = n \frac{\lambda}{n} = \lambda.
\]

\[
\text{Var}(\xi_n) = n \frac{\lambda}{n} \left(1 - \frac{\lambda}{n} \right) = \lambda \left(1 - \frac{\lambda}{n} \right).
\]

We will show that the sequence \(\xi_n \) converges to the Poisson random variable with parameter \(\lambda \) in distribution. Consider the limit

\[
\lim_{n \to \infty} f \left(k; n, \frac{\lambda}{n} \right) = \lim_{n \to \infty} \frac{n(n-1)\ldots(n-k+1) \lambda^k}{k!} \frac{1}{n^k} \left(1 - \frac{\lambda}{n} \right)^{n-k} = \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1)\ldots(n-k+1)}{n^k} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-k}
\]
The first limit in the equation above is 1 as \(n(n-1)\ldots(n-k+1) = n^k + O(n^{k-1}) \). The second limit can be calculated using the well-known fact that
\[
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.
\]
Hence
\[
\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}.
\]
The third limit is 1. Therefore,
\[
\lim_{n \to \infty} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda},
\]
which is the Poisson distribution with parameter \(\lambda \).

- \(\{\eta_1, \eta_2, \ldots\} \) converges in probability to \(\eta \) if for any \(\epsilon > 0 \)

\[
\lim_{n \to \infty} P(\{|\eta_n - \eta| \geq \epsilon\}) = 0
\]

Remark Convergence in probability implies convergence in distribution.

Proof. We will prove this fact for the case of scalar random variables. We have \(\lim_{n \to \infty} P(|\eta_n - \eta| \geq \epsilon) = 0 \), we need to prove \(\lim_{n \to \infty} P(\eta_n \leq x) = P(\eta \leq x) \) for every \(x \) where \(F_\eta \) is continuous. First we show an auxiliary fact that for any two random variables \(x \) and \(\zeta \), \(x, \zeta \in \mathbb{R} \) and \(\epsilon > 0 \)

\[
P(\xi \leq a) \leq P(\zeta \leq a + \epsilon) + P(|\zeta - \xi| > \epsilon).
\]
Indeed,
\[
P(\xi \leq a) = P(\xi \leq a \& \zeta \leq a + \epsilon) + P(\xi \leq a \& \zeta > a + \epsilon)
\]
\[
\leq P(\xi \leq a + \epsilon) + P(\xi \leq a - \zeta \& a - \zeta < -\epsilon)
\]
\[
\leq P(\xi \leq a + \epsilon) + P(\zeta - \xi < -\epsilon)
\]
\[
\leq P(\xi \leq a + \epsilon) + P(\zeta - \xi < -\epsilon) + P(\zeta - \xi > \epsilon)
\]
\[
= P(\xi \leq a) + P(|\zeta - \xi| > \epsilon).
\]
Applying Eq. (16) to \(\xi = \eta_n \) and \(\zeta = \eta \) with \(a = x \) and \(a = x - \epsilon \), we get
\[
P(\eta_n \leq x) \leq P(\eta \leq x + \epsilon) + P(|\eta - \eta_n| > \epsilon)
\]
\[
P(\eta \leq x - \epsilon) \leq P(\eta_n \leq x) + P(|\eta_n - \eta| > \epsilon).
\]

\[
P(\eta \leq x - \epsilon) - P(|\eta_n - \eta| > \epsilon) \leq P(\eta_n \leq x) \leq P(\eta \leq x + \epsilon) + P(|\eta_n - \eta| > \epsilon).
\]
Taking the limit \(n \to \infty \) and taking into account that \(\lim_{n \to \infty} P(|\eta_n - \eta| \geq \epsilon) = 0 \), we get
\[
F_\eta(x - \epsilon) \leq \lim_{n \to \infty} F_{\eta_n}(x) \leq F_\eta(x + \epsilon).
\]
If \(x \) is a point of continuity of \(F_\eta \),
\[
\lim_{\epsilon \to 0} F_\eta(x - \epsilon) = \lim_{\epsilon \to 0} F_\eta(x + \epsilon) = F_\eta(x).
\]
Therefore, taking the limit \(\epsilon \to 0 \) we obtain the weak convergence:
\[
\lim_{n \to \infty} F_{\eta_n}(x) = F_\eta(x)
\]
for any \(x \) where \(F_\eta(x) \) is continuous. \(\square \)

Remark The converse is, generally, not true. However, convergence in distribution to a constant random variable implies convergence in probability.
• \{η_1, η_2, \ldots\} converges almost surely or almost everywhere or with probability 1 or strongly to η if

\[(17) \quad P \left(\lim_{n \to \infty} η_n = η \right) = 1. \]

Remark Convergence almost surely implies convergence in probability (by Fatou’s lemma) and in distribution.

• To summarize,

\[(18) \quad η_i \to η \text{ almost surely} \Rightarrow η_i \to η \text{ in probability} \Rightarrow η_i \to η \text{ in distribution}\]

6. Laws of Large Numbers and the Central Limit Theorem

• Let \{η_1, η_2, \ldots\} be a sequence of random variables with finite expected values \(\{m_1 = E[η_1], m_2 = E[η_2], \ldots\}\). Define

\[ξ_n = \frac{1}{n} \sum_{i=1}^{n} η_i, \quad \bar{ξ}_n = \frac{1}{n} \sum_{i=1}^{n} m_i.\]

Definition 2. (1) The sequence of random variables η_n satisfies the Law of Large Numbers if ξ_n − \bar{ξ}_n converges to zero in probability, i.e., for any ε > 0

\[\lim_{n \to \infty} P(|ξ_n - \bar{ξ}_n| > ε) = 0.\]

(2) The sequence of random variables η_n satisfies the Strong Law of Large Numbers if ξ_n − \bar{ξ}_n converges to zero almost surely, i.e., for almost all \(ω \in Ω\)

\[\lim_{n \to \infty} ξ_n - \bar{ξ}_n = 0.\]

• If the random variables η_n are independent and if \(\text{Var}(η_i) \leq V < \infty\), then the Law of Large Numbers holds by the Chebyshev Inequality (10):

\[P(|ξ_n - \bar{ξ}_n| > ε) = P\left(\left| \sum_{i=1}^{n} η_i - \sum_{i=1}^{n} m_i \right| > nε \right) \leq \frac{\text{Var}(η_1 + \ldots + η_n)}{ε^2 n^2} \leq \frac{V}{ε^2 n} \to 0 \text{ as } n \to \infty.\]

Theorem 3. (Khinchin) A sequence of independent identically distributed random variables \{η_i\} with \(E[η] = m\) and \(E[|η_i|] < \infty\) satisfies the Law of Large Numbers.

Theorem 4. (Kolmogorov) A sequence of independent identically distributed random variables with finite expected value and variance satisfies the Strong Law of Large Numbers.
Theorem 5. (The central limit theorem) Let \(\{\eta_1, \eta_2, \ldots\} \) be a sequence of independent identically distributed (i.i.d.) random variables with \(m = E[\eta_i] \) and \(0 < \sigma^2 = \text{Var}(\eta_i) < \infty \), then

\[
 \frac{\sum_{i=1}^{n} \eta_i - nm}{\sigma \sqrt{n}} \xrightarrow{\text{in distribution}} N(0, 1),
\]

i.e., converges weakly to the standard normal distribution \(N(0, 1) \) (i.e., the Gaussian distribution with mean 0 and variance 1) as \(n \to \infty \).

A proof via Fourier transform can be found in [1]. Another proof making use of characteristic functions can be found in [2].

Remark Eq. (19) can be recasted as

\[
\frac{1}{n} \sum_{i=1}^{n} \eta_i \xrightarrow{\text{in distribution}} N\left(m, \frac{\sigma^2}{n}\right),
\]

i.e., the average of the first \(n \) i.i.d. random variables \(\eta_i \) converges in distribution to the Gaussian random variable with mean \(m = E[\eta_i] \) and variance \(\sigma^2/n \).

7. Conditional probability and conditional expectation

• The conditional probability of an event \(B \) given that the event \(A \) has happened is given by

\[
P(B|A) = \frac{P(A \cap B)}{P(A)}.
\]

Note that if \(A \) and \(B \) are independent, then \(P(A \cap B) = P(A)P(B) \) and hence

\[
P(B|A) = \frac{P(A)P(B)}{P(A)} = P(B).
\]

Example 16 Suppose you are tossing a die twice. Consider the probability space (4). Let \(A \) be the event that the outcome of the first throw is even, and \(B \) be the event that the sum of the outcomes is \(\geq 10 \). Then (see Table 1)

\[
P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{4/36}{1/2} = \frac{2}{9}.
\]

Note that \(P(B) = 1/6 < P(B|A) \). Hence the events \(A \) and \(B \) are dependent.

If the event \(A \) is fixed, then \(P(B|A) \) defines a probability measure on \((\Omega, B)\).

• If \(\eta \) is a random variable on \(\Omega \), then conditional expectation of \(\eta \) given the event \(A \) is

\[
E[\eta|A] = \int_{\Omega} \eta(\omega)P(d\omega|A) = \int_{\Omega} \eta(\omega) \frac{P(d\omega \cap A)}{P(A)} = \int_{A} \eta(\omega) \frac{P(d\omega)}{P(A)}.
\]
Example 17. Suppose you are tossing a die twice. Consider the probability space (4). Let A be the event that the outcome of the first throw is even, and η be the random variable whose value is the sum of outcomes, i.e., $\eta(\omega_1, \omega_2) = \omega_1 + \omega_2$. Then

$$E[\eta|A] = \sum_{\omega_1=1}^{6} \sum_{\omega_2=1}^{6} (\omega_1 + \omega_2)P(\{\omega_1, \omega_2\} | \omega_1 \in \{2, 4, 6\}).$$

Let us calculate $P(\{\omega_1, \omega_2\} | \omega_1 \in \{2, 4, 6\})$.

$$P(\{\omega_1, \omega_2\} | \omega_1 \in \{2, 4, 6\}) = \frac{P(\{\omega_1, \omega_2\} \cap (\omega_1 \in \{2, 4, 6\}))}{P(\omega_1 \in \{2, 4, 6\})} = \frac{\frac{1}{36}}{\frac{1}{18}} = \frac{1}{2}, \quad \omega_1 \in \{2, 4, 6\}.$$

Now we continue our calculation:

$$E[\omega_1 + \omega_2 | \omega_1 \in \{2, 4, 6\}] = \sum_{\omega_1 \in \{2,4,6\}} \sum_{\omega_2=1}^{6} (\omega_1 + \omega_2) \frac{1}{18} = \frac{135}{18} = 7.5.$$

Note that $E[\eta] = 7 \neq E[\eta|A] = 7.5$.

Now we show how one can construct new random variables using conditional probability. For simplicity, we start with partitioning the set of outcomes Ω into a finite or countable number of disjoint measurable subsets:

$$\Omega = \bigcup_i A_i, \quad \text{where} \quad A_i \in \mathcal{B}, \quad A_i \cap A_j = \emptyset.$$

Definition 3. Let η be a random variable on the probability space (Ω, \mathcal{B}, P). Let $A = \{A_i\}$ be a partition of Ω as above. Define a new random variable $E[\eta|A]$ as follows:

$$E[\eta|A] = \sum_i E[\eta|A_i] \chi(A_i),$$

where $\chi(A_i)$ is the indicator function of A_i:

$$\chi(A_i; \omega) = \begin{cases} 1, & \omega \in A_i, \\ 0, & \omega \notin A_i. \end{cases}$$

Remark. Note that $E[\eta|A]$ is a random variable as it is a function of the outcome ω. Indeed,

$$E[\eta|A](\omega) = E[\eta|A_i] \quad \text{where} \quad A_i \ni \omega.$$
Example 18 Suppose you are tossing a die twice. Let us partition the set of outcomes as follows:

\[\Omega = \bigcup_{i=1}^{6} \{(\omega_1, \omega_2) \mid \omega_1 = i\}. \]

The corresponding partition \(\mathcal{A} \) is

\[\mathcal{A} = \{(\omega_1, \omega_2) \mid \omega_1 = i\}^{6}_{i=1}. \]

Take the random variable \(\xi = \omega_1 + \omega_2 \) (see Table 1, left), the sum of numbers on the top. Construct a new random variable

\[
E[\xi | \mathcal{A}] = \sum_{i=1}^{6} E[\xi | \omega_1 = i] \chi(\omega_1 = i) = \sum_{i=1}^{6} (i + 3.5) \chi(\omega_1 = i)
= 4.5 \chi(\omega_1 = 1) + 5.5 \chi(\omega_1 = 2) + 6.5 \chi(\omega_1 = 3)
+ 7.5 \chi(\omega_1 = 4) + 8.5 \chi(\omega_1 = 5) + 9.5 \chi(\omega_1 = 6).
\]

Now we define the conditional expectation of one random variable \(\eta \) given the other random variable \(\theta \). First we assume that \(\theta \) assumes a finite or countable number of values \(\{\theta_1, \theta_2, \ldots\} \). Define the partition \(\mathcal{A} \) where

\[A_i = \{\omega \in \Omega \mid \theta = \theta_i\}. \]

Definition 4. We define a new random variable \(E[\eta | \theta] \) as a the following function of the random variable \(\theta \):

\[
E[\eta | \theta] := E[\eta | \mathcal{A}], \quad \text{i.e.,} \quad E[\eta | \theta] = E[\eta | A_i] \quad \text{if} \quad \theta = \theta_i.
\]

Example 19 Suppose you are tossing a die twice. Let \((\omega_1, \omega_2) \) be the numbers on the top. Define random variables \(\xi = \omega_1 + \omega_2 \) and \(\theta = \omega_1 \). Then it follows from our calculation from the previous example that

\[E[\xi | \theta] = 3.5 + \theta. \]

References