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1. Definitions

A probability space is a triple consisting of the set of outcomes, the set of subsets of the
set of outcomes that we want to be able to assign probabilities to called the σ-algebra, and
the probability measure, i.e. a function that assigns probabilities.

• A sample space Ω is the set of all possible outcomes.
• An event A is a subset of Ω.
• A σ-algebra B is a subset of the set of all subsets of Ω that is closed with

respect to set operations. The minimal requirements guaranteeing that the σ-
algebra possesses these properties constitute the set of axioms that defines it:
(1) ∅ ∈ B and Ω ∈ B;
(2) If B ∈ B then Bc ∈ B (Bc is the complement of B in Ω, i.e., Bc ≡ Ω\B).
(3) If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋃

i

Ai ∈ B.

Corollary: If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋂
i

Ai ∈ B.

Indeed, ⋂
i

Ai =

(⋃
i

Aci

)c
.

1
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Example 1 Suppose you are tossing a die. For a single throw, the
sample space is Ω = {1, 2, 3, 4, 5, 6}. If you are interested in particular
number on the top, the natural choice of the σ-algebra is the set of all
subsets of Ω. Then |B| = 26 = 64. If you are interested only in whether
the outcome is odd or even, then a reasonable choice of σ-algebra is

B = {∅, {1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}}.
If you are interested only whether there is an outcome or not, you can
choose the coarsest σ-algebra

B = {∅, {1, 2, 3, 4, 5, 6}}.

Example 2 Suppose you are doing a measurement whose outcome can
be any real number. For example, you are living in a one-dimensional
world, you are throwing a point object, and measuring its position with
respect to a fixed point, i.e. the origin of a coordinate system in your 1D-
world. The set of outcomes is R. The most commonly chosen σ-algebra
is the so-called Borel σ-algebra which is generated by all open sets in
R. Thanks to the properties of σ-algebra, the Borel σ-algebra can be
generated by all intervals of the form (−∞, a], where a ∈ R.

• A probability measure P is a function P : B → [0, 1] such that
(1) P (Ω) = 1;
(2) 0 ≤ P (A) ≤ 1 for all A ∈ B.
(3) Countable additivity: If A = {A1, . . . , An, . . .} is a finite or countable col-

lection in B such that Ai ∩Aj = ∅ for any i, j, then

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

Corollary: P (∅) = 0. Indeed,

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) = 1 + P (∅).
Hence, P (∅) = 0.
• A probability space is the triple (Ω,B, P ).
• A random variable η is a B-measurable function η : Ω→ R.

A function is called B-measurable if the preimage of any measurable subset of R is in B. It is proven in analysis

that it is suffices to check that {ω ∈ Ω | η(ω) ≤ x} ∈ B for any x ∈ R.

• A probability distribution function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

Theorem 1. If F is a probability distribution function then
(1) F is nondecreasing, i.e. x < y implies F (x) ≤ F (y).
(2) limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
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(3) F (x) is continuous from the right for every x ∈ R, i.e.,

lim
y→x+0

F (y) = F (x).

Example 3 Suppose you are tossing a die. Consider the probability
space

(1) (Ω = {1, 2, 3, 4, 5, 6},B = 2Ω, P (ω) = 1
6),

where 2Ω is the set of all subsets of Ω, and ω ∈ Ω = {1, 2, 3, 4, 5, 6}.
Consider the random variable η(ω) = ω. The probability distribution
function is given by

Fη(x) =


0, x < 1,

j/6, j ≤ x < j + 1, j = 1, 2, 3, 4, 5

1, x ≥ 6.

• Suppose F ′η(x) exists. Then fη(x) ≡ F ′η(x) is called the probability density
function (pdf) of the random variable η, and

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x)dx+ o(dx).

Example 4 The Gaussian density

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,

where m and σ are constants. m is the mean, while σ is the standard
deviation.
Example 5 The density of an exponential random variable with pa-
rameter a > 0 is given by:

f(x) =

{
ae−ax, x ≥ 0,

0, x < 0.
.

Example 6 The density of a uniform random variable on an interval
[a, b] is

f(x) =
1

b− a
I[a,b](x) =

{
1
b−a , x ∈ [a, b],

0, otherwise.
.

Here I[a,b](x) is the indicator function of the interval [a, b].
• If the set of outcomes Ω is discrete (finite or countable) and the σ-algebra is the

set of all subsets Ω, then the function P (ω) is often called the probability mass
function.
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2. Expected values and moments

Definition 1. Let (Ω,B, P ) be a probability space, and η be a random variable. Then the
expected value, or mean, of the random variable η is defined as

(2) E[η] =

∫
Ω
η(ω)dP.

If Ω is a discrete set,

E[η] =
∑
i

η(ωi)P (ωi).

Example 7 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The expected
value of η is

E[η] =
6∑
j=1

j 1
6 = 3.5

Suppose that the random variable η is fixed. Then we will omit the subscript in the
notation of its probability distribution function: Fη(x) ≡ F (x).

The integral in Eq. (2) can be rewritten using F (x):

E[η] =

∫
R
xP (x < η ≤ x+ dx) =

∫ ∞
−∞

xdF (x).

If a derivative f(x) of the probability distribution function F exists, then

E[η] =

∫ ∞
−∞

xf(x)dx.

If g is a function defined on the range of the random variable η (on η(Ω)), then the
expected value of this function is

E[g(η)] =

∫ ∞
−∞

g(x)dF (x).

Moments: Let us take g(x) = xn.

E[ηn] =

∫ ∞
−∞

xndF (x).

Central moments: Let us take g(x) = (x− E[η])n.

E[(η − E[η])n] =

∫ ∞
−∞

(x− E[η])ndF (x).

Variance = 2nd central moment:

Var(η) = E[(η − E[η])2) =

∫ ∞
−∞

(x− E[η])2dF (x).
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Example 8 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The variance of η
is

Var(η) =
1

6

6∑
j=1

(j − 3.5)2 =
35

12
= 2.91(6).

The standard deviation:

σ(η) =
√

Var(η).

3. Independence, joint distributions, covariance

• Two events A,B ∈ B are independent if

P (A ∩B) = P (A)P (B).

• Two random variables η1 and η2 are independent if the events

(3) {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y}

are independent for all x, y ∈ R.

Example 9 Suppose you are tossing a die twice. Consider the proba-
bility space

(4)
(

Ω = {1, 2, 3, 4, 5, 6}2,B = 2Ω2
, P ({ω1, ω2}) = 1/36

)
, 1 ≤ ω1, ω2 ≤ 6.

Let η1 and η2 be random variables equal to the outcomes of the first and

Table 1. Two throws of a die. Values of the random variables ξ(ω1, ω2) =
ω1 + ω2 (left) and β(ω1, ω2) = ω1 − ω2 (right).

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

1 2 3 4 5 6

1 0 1 2 3 4 5
2 -1 0 1 2 3 4
3 -2 -1 0 1 2 3
4 -3 -2 -1 0 1 2
5 -4 -3 -2 -1 0 1
6 -5 -4 -3 -2 -1 0

the second throws respectively. These random variables are independent.
Now consider the random variables η(ω1, ω2) = ω1 and ξ(ω1, ω2) = ω1+ω2

(see Table 1, left). We can show that η and ξ are dependent by taking
e.g., x = 1 and y = 2 in Eq. (3):

P (η ≤ 1 & ξ ≤ 2) = 1
36 6= P (η ≤ 1)P (ξ ≤ 2) = 1

6 ·
1
36 = 1

216 .
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Finally, we consider the random variables ξ(ω1, ω2) = ω1+ω2 and β(ω1, ω2) =
ω1 − ω2 (see Table 1, right). We can show that they are dependent by
taking e.g., x = 2 and y = −1 in Eq. (3):

P (ξ ≤ 2 & β ≤ −1) = 0 6= P (ξ ≤ 2)P (β ≤ −1) = 1
36 ·

15
36 = 5

432 .

• The joint distribution function of two random variables η1 and η2 is given by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1(ω) ≤ x, η2(ω) ≤ y) .

• If the second mixed derivative of Fη1η2 exists, it is called the joint probability
density of η1 and η2 and denoted by

fη1η2(x, y) :=
∂Fη1η2(x, y)

∂x∂y
.

In this case,

Fη1,η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(x, y)dxdy.

Exercise Show that two random variables are independent if and only if

Fη1η2(x, y) = Fη1(x)Fη2(y).

Furthermore, if the joint pdf fη1η2(x, y) exists, then η1 and η2 are independent iff

fη1η2(x, y) = fη1(x)fη2(y).

• Given the joint pdf fη1η2 , one can obtain fη1(x) by

fη1(x) =

∫ ∞
−∞

fη1η2(x, y)dy.

In this equation, fη1 is called a marginal of fη1η2 , and the variable η2 is integrated
out.
• Properties of expected value and variance It follows from the definition, that

the expected value is a linear functional:

(5) E[aη1 + bη2] = aE[η1] + bE[η2].

•

(6) Var(aη) = a2Var(η).

• If η1 and η2 are independent, then

(7) Var(η1 + η2) = Var(η1) + Var(η2).

If η1 and η2 are dependent, (7) is not true: take η1 = η2. In general,

(8) Var(η1 + η2) = Var(η1) + Var(η2) + 2Cov(η1, η2),

where Cov(η1, η2) is the covariance of η1 and η2 – see below. You will see below that
(7) does not imply that η1 and η2 are independent, only that they are uncorrelated.
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Example 10 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 9. Then

E[ξ] = E[η1 + η2] = E[η1] + E[η2] = 7.

E[β] = E[η1 − η2] = E[η1] + E[−η2] = 0.

Var[ξ] = Var[η1 + η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).

Var[β] = Var[η1 − η2] = Var[η1] + Var[−η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).

Example 11 Consider the Bernoulli random variable

(9) η =

{
1, P (1) = p,

0, P (0) = 1− p.

Its expected value and variance are

E[η] = 1 · p+ 0 · (1− p) = p,

Var(η) = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).
Now consider the sum of n independent copies of η:

ξ :=
n∑
i=1

ηi.

Using Eq. (5) we calculate E[ξ]:

E[ξ] =
n∑

ı=1

E[ηi] = np.

Since ηi, 1 ≤ i ≤ n, are independent, we can calculate Var(ξ) using Eq.
(7):

Var(ξ) =
n∑
i=1

Var(ηi) = np(1− p).

Finally, consider the average of n independent copies of η:

ζ :=
1

n

n∑
i=1

ηi ≡
ξ

n
.

Using Eqs. (5) and (6), we find

E[ζ] = p,

Var(ζ) = Var

(
ξ

n

)
=

1

n2
Var(ξ) =

p(1− p)
n

.

• The covariance of two random variables η1 and η2 is defined by

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].
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Remark If η1 and η2 are independent, then Cov(η1, η2) = 0. If Cov(η1, η2) = 0
then η1 and η2 are uncorrelated. Note that uncorrelated random variables are not
necessarily independent.

Example 12 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 9. As we have
established in Example 9, ξ and β are dependent. However, they are
uncorrelated. Indeed,

Cov(ξ, β) =
∑

1≤ω1≤6, 1≤ω2≤6

(ω1 + ω2 − 7)(ω1 − ω2)P ({ω1, ω2})

=
1

36

( ∑
ω1<ω2

(ω1 + ω2 − 7)(ω1 − ω2) +
∑
ω1>ω2

(ω1 + ω2 − 7)(ω1 − ω2)

)
= 0.

Example 13 A vector-valued random variable η = [η1, . . . , ηn] is jointly
Gaussian if

P (x1 < η1 ≤ x1 + dx1, . . . , xn < ηn ≤ xn + dxn) =
1

Z
e−

1
2

(x−m)>A−1(x−m)dx+ o(dx),

where x = [x1, . . . , xn]>, m = [m1, . . . ,mn]>, dx = dx1 . . . dxn, and A is
a symmetric positive definite matrix. The normalization constant Z is
given by

Z = (2π)n/2|A|1/2, where |A| = detA.

In the case of jointly Gaussian random variables, the covariance matrix
C whose entries are

Cij = E[(ηi − E[ηi])(ηj − E[ηj ])]

is equal to A. Two jointly Gaussian random variables are independent if
and only if they are uncorrelated.

4. Chebyshev’s inequality

Chebyshev’s inequality holds for any random variable. It is a very useful theoretical tool for proving various estimates.
In practice, it often gives too rough estimates which is a consequence of its universality. Chebyshev’s inequality is not
improvable, as we can construct a random variable for which it turns into an equality.

Theorem 2. Let η be a random variable. Suppose g(x) is a nonnegative, nondecreasing function (i.e., g(x) ≥ 0,
g(a) ≤ g(b) whenever a < b). Then for any a ∈ R

(10) P (η ≥ a) ≤
E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞
−∞

g(x)dF (x)

≥
∫ ∞
a

g(x)dF (x) ≥ g(a)

∫ ∞
a

dF (x) = g(a)P (η ≥ a).

�
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Given a random variable η we define a random variable

ξ := |η − E[η]|.

Define

g(x) =

{
x2, x ≥ 0,

0, x < 0.
.

Plugging this into Eq. (10) we obtain

P (|η − E[η]| ≥ a) ≤
Var(η)

a2
.

Example 14 Suppose you are tossing a die twice. Consider the probability space and random
variables introduced in Example 9. We will compare the exact probabilities with their Chebyshev
estimates.

P (|ξ − 7| ≥ 1) = P (ξ 6= 7) = 1− 6
36 = 5

6 = 0.8(3),
Var(ξ)

1
= 35

6 = 5.8(3);

P (|ξ − 7| ≥ 2) = P (ξ ≤ 5 or ξ ≥ 9) = 20
36 = 5

9 = 0.(5),
Var(ξ)

4
= 35

24 = 1.458(3);

P (|ξ − 7| ≥ 3) = P (ξ ≤ 4 or ξ ≥ 10) = 12
36 = 1

3 = 0.(3),
Var(ξ)

9
= 35

54 = 0.6(481);

P (|ξ − 7| ≥ 4) = P (ξ ∈ {2, 3, 11, 12}) = 6
36 = 1

6 = 0.1(6),
Var(ξ)

16
= 35

96 = 0.36458(3);

P (|ξ − 7| ≥ 5) = P (ξ ∈ {2, 12}) = 2
36 = 1

18 = 0.0(5),
Var(ξ)

25
= 35

150 = 0.2(3);

Choosing a = kσ we get

P (|η − E[η]| ≥ kσ) ≤
1

k2
.

This means that for any random variable η defined on any probability space we have that the probability that η deviates
from its expected value by at least k standard deviations does not exceed 1/k2.

The bounds given Chebyshev’s inequality cannot be improved in principle, because they are exact for the random variable

η =


1, P = 1

2k2
,

0, P = 1− 1
k2
,

−1, P = 1
2k2

.

.

It is easy to check that E[η] = 0, Var(η) = 1
k2

. Hence

P (|η| ≥ 1) = 1
k2

=
Var(η)

12
,

i.e. Chebyshev’s inequality turns into equality.

5. Types of convergence of random variables

Suppose we have a sequence of random variables {η1, η2, . . .}. In probability theory, there
exist several different notions of convergence of a sequence of random variables {η1, η2, . . .}
to some limit random variable η.

• {η1, η2, . . .} converges in distribution or converges weakly, or converges in
law to η if

(11) lim
n→∞

Fn(x) = F (x) for every x where F (x) is continuous,

where Fn and F are the probability distribution functions of ηn and η respectively.

Remark Convergence of pdfs fn(x) implies convergence of Fn(x). The converse is
not true in general. For example, consider Fn(x) = x − 1

2πn sin(2πnx), x ∈ (0, 1).
The corresponding pdf is fn(x) = 1 − cos(2πnx), x ∈ (0, 1). {Fn(x)} converges to
F (x) = x, i.e., to the uniform distribution, while {fn(x)} does not converge at all.
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Remark In the discrete case, the convergence of probability mass functions f(k) :=
P (η = k) implies the convergence of the probability distribution functions.

Example 15 Consider the sum of n independent copies of the Bernoulli
random variable as in Example 11:

(12) ξ =
n∑
i=1

ηi, where ηi =

{
1, P (1) = p,

0, P (0) = 1− p.

Its probability distribution is the binomial distribution given by

(13) f(k;n, p) ≡ P (ξ = k) =

(
n
k

)
pk(1− p)n−k,

where

(
n
k

)
is the number of k-combinations of the set of n elements:(

n
k

)
=

n!

k!(n− k)!
.

Now we let n→∞ and p→ 0 in such a manner that the product np (i.e.,
the expected value of ξ) remains constant. We introduce the parameter

λ := np.

Consider the sequence of random variables ξn where ξn is the sum of n
independent copies of Bernoulli random variable with p = λ/n, i.e,

(14) ξn =
n∑
i=1

η
(n)
i , where η

(n)
i =

{
1, P (1) = λ/n,

0, P (0) = 1− λ/n.

Plugging in p = λ/n in the results of Example 11 we find the expected
value and the variance:

E[ξn] = n
λ

n
= λ.

Var(ξn) = n
λ

n

(
1− λ

n

)
= λ

(
1− λ

n

)
.

We will show that the sequence ξn converges to the Poisson random vari-
able with parameter λ in distribution. Consider the limit

lim
n→∞

f

(
k;n,

λ

n

)
= lim

n→∞

n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k
=

λk

k!
lim
n→∞

n(n− 1) . . . (n− k + 1)

nk
lim
n→∞

(
1− λ

n

)n
lim
n→∞

(
1− λ

n

)−k
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The first limit in the equation above is 1 as n(n − 1) . . . (n − k + 1) =
nk + O(nk−1). The second limit can be calculated using the well-known
fact that

lim
n→∞

(
1 +

1

n

)n
= e.

Hence

lim
n→∞

(
1− λ

n

)n
= e−λ.

The third limit is 1. Therefore,

lim
n→∞

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!
e−λ,

which is the Poisson distribution with parameter λ.
• {η1, η2, . . .} converges in probability to η if for any ε > 0

(15) lim
n→∞

P (|ηn − η| ≥ ε) = 0

Remark Convergence in probability implies convergence in distribution.

Proof. We will prove this fact for the case of scalar random variables. We have limn→∞ P (|ηn − η| ≥ ε) = 0, we
need to prove limn→∞ P (ηn ≤ x) = P (η ≤ x) for every x where Fη is continuous. First we show an auxiliary
fact that for any two random variables ξ and ζ, x ∈ R and ε > 0

(16) P (ξ ≤ a) ≤ P (ζ ≤ a+ ε) + P (|ξ − ζ| > ε).

Indeed,

P (ξ ≤ a) = P (ξ ≤ a & ζ ≤ a+ ε) + P (ξ ≤ a & ζ > a+ ε)

≤ P (ζ ≤ a+ ε) + P (ξ − ζ ≤ a− ζ & a− ζ < −ε)

≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε)

≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε) + P (ζ − ξ > ε)

= P (ζ ≤ a+ ε) + P (|ζ − ξ| > ε).

Applying Eq. (16) to ξ = ηn and ζ = η with a = x and a = x− ε, we get

P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε)

P (η ≤ x− ε) ≤ P (ηn ≤ x) + P (|ηn − η| > ε).

P (η ≤ x− ε)− P (|ηn − η| > ε) ≤ P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε).

Taking the limit n→∞ and taking into account that limi→∞ P (|ηn − η| ≥ ε) = 0, we get

Fη(x− ε) ≤ lim
n→∞

Fηn (x) ≤ Fη(x+ ε).

If x is a point of continuity of Fη ,

lim
ε→0

Fη(x− ε) = lim
ε→0

Fη(x+ ε) = Fη(x).

Therefore, taking the limit ε→ 0 we obtain the weak convergence:

lim
n→∞

Fηn (x) = Fη(x)

for any x where Fη(x) is continuous. �

Remark The converse is, generally, not true. However, convergence in distribution
to a constant random variable implies convergence in probability.
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• {η1, η2, . . .} converges almost surely or almost everywhere or with proba-
bility 1 or strongly to η if

(17) P
(

lim
n→∞

ηn = η
)

= 1.

Remark Convergence almost surely implies convergence in probability (by Fatou’s
lemma) and in distribution.

• To summarize,

(18) ηi → η almost surely ⇒ ηi → η in probability ⇒ ηi → η in distribution

6. Laws of Large Numbers and the Central Limit Theorem

• Let {η1, η2, . . .} be a sequence of random variables with finite expected values {m1 =
E[η1],m2 = E[η2], . . .}. Define

ξn =
1

n

n∑
i=1

ηi, ξ̄n =
1

n

n∑
i=1

mi.

Definition 2. (1) The sequence of random variables ηn satisfies the Law of Large
Numbers if ξn − ξ̄n converges to zero in probability, i.e., for any ε > 0

lim
n→∞

P (|ξn − ξ̄n| > ε) = 0.

(2) The sequence of random variables ηn satisfies the Strong Law of Large Numbers
if ξn − ξ̄n converges to zero almost surely, i.e., for almost all ω ∈ Ω

lim
n→∞

ξn − ξ̄n = 0.

• If the random variables ηn are independent and if Var(ηi) ≤ V <∞, then the Law
of Large Numbers holds by the Chebyshev Inequality (10):

P (|ξn − ξ̄n| > ε) = P

(∣∣∣∣∣
n∑
i=1

ηi −
n∑
i=1

mi

∣∣∣∣∣ > nε

)

≤ Var(η1 + . . .+ ηn)

ε2n2
≤ V

ε2n
→ 0 as n→∞.

•

Theorem 3. (Khinchin) A sequence of independent identically distributed random
variables {ηi} with E[ηi] = m and E[|ηi|] <∞ satisfies the Law of Large Numbers.
•

Theorem 4. (Kolmogorov) A sequence of independent identically distributed ran-
dom variables with finite expected value and variance satisfies the Strong Law of
Large Numbers.
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•

Theorem 5. (The central limit theorem) Let {η1, η2, . . .} be a sequence of
independent identically distributed (i.i.d.) random variables with m = E[ηi] and
0 < σ2 = Var(ηi) <∞, then

(19)
(
∑n

i=1 ηi)− nm
σ
√
n

−→ N(0, 1) in distribution,

i.e., converges weakly to the standard normal distribution N(0, 1) (i.e., the Gaussian
distribution with mean 0 and variance 1) as n→∞.

A proof via Fourier transform can be found in [1]. Another proof making use of
characteristic functions can be found in [2].

Remark Eq. (19) can be recasted as

(20)
1

n

n∑
i=1

ηi −→ N

(
m,

σ2

n

)
in distribution,

i.e., the average of the first n i.i.d. random variables ηi converges in distribution to
the Gaussian random variable with mean m = E[ηi] and variance σ2/n.

7. Conditional probability and conditional expectation

• The conditional probability of an event B given that the event A has happened is
given by

P (B|A) =
P (A ∩B)

P (A)
.

Note that if A and B are independent, then P (A ∩B) = P (A)P (B) and hence

P (B|A) =
P (A)P (B)

P (A)
= P (B).

Example 16 Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw
is even, and B be the event that the sum of the outcomes is ≥ 10. Then
(see Table 1)

P (B|A) =
P (A ∩B)

P (A)
=

4/36

1/2
=

2

9
.

Note that P (B) = 1/6 < P (B|A). Hence the events A and B are depen-
dent.

If the event A is fixed, then P (B|A) defines a probability measure on (Ω,B).
• If η is a random variable on Ω, then conditional expectation of η given the event
A is

E[η|A] =

∫
Ω
η(ω)P (dω|A) =

∫
Ω
η(ω)

P (dω ∩A)

P (A)
=

∫
A η(ω)P (dw)

P (A)
.
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Example 17 . Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw is
even, and η be the random variable whose value is the sum of outcomes,
i.e., η({ω1, ω2}) = ω1 + ω2. Then

E[η|A] =
6∑

ω1=1

6∑
ω2=1

(ω1 + ω2)P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).

Let us calculate P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).

P ({ω1, ω2} | ω1 ∈ {2, 4, 6}) =
P ({ω1, ω2} ∩ (ω1 ∈ {2, 4, 6}))

P (ω1 ∈ {2, 4, 6})

=

{
0, ω1 ∈ {1, 3, 5},
P ({ω1,ω2})

P (ω1∈{2,4,6}) = 1/36
1/2 = 1

18 , ω1 ∈ {2, 4, 6}.

Now we continue our calculation:

E[ω1 + ω2 | ω1 ∈ {2, 4, 6}] =
∑

ω1∈{2,4,6}

6∑
ω2=1

(ω1 + ω2)
1

18
=

135

18
= 7.5.

Note that E[η] = 7 6= E[η|A] = 7.5.
• Now we show how one can construct new random variables using conditional prob-

ability. For simplicity, we start with partitioning the set of outcomes Ω into a finite
or countable number of disjoint measurable subsets:

Ω =
⋃
i

Ai, where Ai ∈ B, Ai ∩Aj = ∅.

Definition 3. Let η be a random variable on the probability space (Ω,B, P ). Let
A = {Ai} be a partition of Ω as above. Define a new random variable E[η|A] as
follows:

(21) E[η|A] =
∑
i

E[η|Ai]χ(Ai),

where χ(Ai) is the indicator function of Ai:

χ(Ai;ω) =

{
1, ω ∈ Ai,
0, ω /∈ Ai.

Remark Note that E[η|A] is a random variable as it is a function of the outcome
ω. Indeed,

E[η|A](ω) = E[η|Ai] where Ai 3 ω.
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Example 18 Suppose you are tossing a die twice. Let us partition the
set of outcomes as follows:

Ω =

6⋃
i=1

{(ω1, ω2) | ω1 = i}.

The corresponding partition A is

A = {{(ω1, ω2) | ω1 = i}}6i=1 .

Take the random variable ξ = ω1 + ω2 (see Table 1, left), the sum of
numbers on the top. Construct a new random variable

E[ξ|A] =

6∑
i=1

E[ξ|ω1 = i]χ(ω1 = i) =

6∑
i=1

(i+ 3.5)χ(ω1 = i)

= 4.5χ(ω1 = 1) + 5.5χ(ω1 = 2) + 6.5χ(ω1 = 3)

+ 7.5χ(ω1 = 4) + 8.5χ(ω1 = 5) + 9.5χ(ω1 = 6).

• Now we define the conditional expectation of one random variable η given the other
random variable θ. First we assume that θ assumes a finite or countable number
of values {θ1, θ2, . . .}. Define the partition A where

Ai = {ω ∈ Ω | θ = θi}.

Definition 4. We define a new random variable E[η|θ] as a the following function
of the random variable θ:

E[η|θ] := E[η|A], i.e., E[η|θ] = E[η|Ai] if θ = θi.

Example 19 Suppose you are tossing a die twice. Let (ω1, ω2) be the
numbers on the top. Define random variables ξ = ω1 + ω2 and θ = ω1.
Then it follows from our calculation from the previous example that

E[ξ|θ] = 3.5 + θ.
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